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Macroscopic delayed choice and retrocausality: Quantum eraser, Leggett-Garg,
and dimension witness tests with cat states
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We propose delayed-choice experiments carried out with macroscopic qubits, realized as macroscopically
distinct coherent states |α〉 and | − α〉. Quantum superpositions of |α〉 and | − α〉 are created via a unitary
interaction U (θ ) based on a nonlinear Hamiltonian, in analogy with polarizing beam splitters used in photonic
experiments. Macroscopic delayed-choice experiments give a compelling reason to develop interpretations not
allowing macroscopic retrocausality: This would otherwise suggest changes to the macroscopic qubit value
based on a future measurement setting φ. We therefore consider weak macroscopic realism (wMR), which for
the system at time t specifies a hidden variable λθ to determine the macroscopic qubit value, independently of
φ. Using entangled cat states, we demonstrate a quantum eraser where the choice to measure a which-way or
wave-type property is delayed. Consistency with wMR is possible, if we interpret the macroscopic qubit value
to be determined by λθ without specification of the state at the level of h̄. We then demonstrate violations
of a delayed-choice Leggett-Garg inequality, and of the Wheeler-Chaves-Lemos-Pienaar dimension witness
inequality, for the macroscopic qubits. This negates all two-dimensional nonretrocausal wMR models. However,
one can interpret consistently with wMR, thus avoiding conclusions of macroscopic retrocausality, by noting
extra dimensions, and that violations require further unitary dynamics U after t . The violations are then
explained as failure of deterministic macroscopic realism, which specifies the validity of λθ prior to the dynamics
U (θ ) determining the measurement setting θ . Finally, although there is consistency with wMR for macroscopic
observations, Einstein-Podolsky-Rosen–type paradoxes pointing to the incompleteness of quantum mechanics
exist at a microscopic level, based on fringe distributions.
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I. INTRODUCTION

Gedanken experiments involving a delayed choice of mea-
surement motivated Wheeler and others to consider whether
quantum mechanics implies failure of realism, or else retro-
causality [1–3]. The argument is often presented for the
two-slit experiment, where a photon travels through the slits
exhibiting either particlelike or wavelike behavior. The obser-
vation of an interference pattern is interpreted as wavelike
behavior; the observation that the photon traveled along a
single path is interpreted as particlelike behavior. A similar
argument exists for a Mach-Zehnder (MZ) interferometer,
where the photon travels in one or other path associated
with the outputs of a beam splitter [1,2]. In the delayed-
choice quantum eraser [4], the decision to observe either the
wavelike or particlelike behavior is delayed until after the
photon has passed through the apparatus, and the fringe distri-
bution vanishes or emerges, conditionally on the measurement
made at the later time. Thus, there is an apparently paradoxical
situation whereby it seems as though whether the photon went
through “both slits” or “one slit” can be changed by an event
(the choice of measurement) in the future.

Multiple different refinements and interpretations have
been given [3,5–27], but the consensus is that the origi-
nal delayed-choice experiments do not imply the need for
retrocausality. The above paradox arises only if one views

the system as being either a wave or particle. The work of
Ionicioiu and Terno proposed a quantum beam splitter [19],
which would place the system in a quantum superposition of
wavelike and particlelike states. An intermediate regime can
be quantified, and a class of hidden variable theories based
on the assumption of either wavelike or particlelike behavior
can be negated [19,20]. Significantly, Chaves, Lemos, and
Pienaar (CLP) resolved these issues further by constructing
a two-dimensional causal model for the MZ delayed-choice
experiment [27], thus ruling out any need for retrocausal
explanations.

On the other hand, with the inclusion of an additional
phase shift in the MZ interferometer, CLP demonstrated that
a two-dimensional classical model would need to be retro-
causal in order to explain the predicted observations, which
imply violation of a dimension witness inequality [27]. Recent
experiments confirm these predictions [28–30]. In their anal-
ysis, “nonretrocausal” implies that, in a model which assumes
realism, hidden variables λ associated with the preparation
state are independent of any future measurement setting φ.
La Cour and Yudichak recently presented a model which is
nonretrocausal, but possesses extra dimensions [18]. Their
model is based on stochastic electrodynamics, which is not
generally equivalent to quantum mechanics.

In this paper, we propose and analyze macroscopic ver-
sions of delayed-choice experiments. Our results demonstrate
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that delayed-choice paradoxes and the causal-modeling tests
of CLP are evident at a macroscopic level, beyond h̄, with-
out the need for a microscopic resolution of measurement
outcomes. Since retrocausality is more paradoxical at a
macroscopic level, we argue that this strengthens the need
to explain the results of the experiments without invoking
retrocausality.

Specifically, we follow [31–33] and map from a micro-
scopic to a macroscopic regime, where spin qubits | ↑〉 and
| ↓〉 are realized as macroscopically distinct coherent states
|α〉 and | − α〉 (α is large), that form a macroscopic qubit. The
qubit values S of +1 and −1 corresponding to the coherent
states |α〉 and | − α〉 can be distinguished by a measurement of
the field quadrature amplitude X , without the need to resolve
at the level of h̄. In analogy with a polarizing beam splitter
(PBS) used in the photonic experiments, superpositions of the
two coherent states (called cat states) [31–34]

cos θ |α〉 + i sin θ | − α〉 (1)

can be created using a unitary interaction U (t ) ≡ U (θ ) based
on a nonlinear Hamiltonian HNL. The value of t determines θ

and hence the probability amplitudes of the two-state superpo-
sition. This provides a mechanism for a direct mapping from
the microscopic to macroscopic delayed-choice experiments.

To analyze quantitatively, we seek to define macroscopic
retrocausality. In analyses of delayed-choice experiments, the
meaning of retrocausality is intertwined with that of real-
ism. Following Leggett and Garg [35], we therefore consider
macroscopic realism: Macroscopic realism (MR) asserts a
predetermination of the outcome S of the measurement of
the macroscopic qubit value (the sign of X ), for the system
prepared at time tM in a superposition (1). In a MR model,
a hidden variable λM exists to describe the macroscopic state
of the system at the time tM , meaning that its value gives the
outcome S of the macroscopic qubit measurement. Since the
value does not require a microscopic resolution, the validity of
λM is a very weak assumption (i.e., is more strongly justified)
compared to the assumption of hidden variables made in the
original delayed-choice proposals, or in Bell’s theorem [36],
where measurements must distinguish microscopic states. The
advantage of the cat-state analysis is that it is based on macro-
scopic as opposed to microscopic realism.

However, recent work establishes the need to carefully
consider whether the unitary rotation U (θ ) associated with
the measurement setting θ has been performed prior to tM ,
or not. This leads to two definitions of macroscopic realism:
deterministic macroscopic realism (dMR) and weak macro-
scopic realism (wMR) [32,33]. Deterministic macroscopic
realism asserts a predetermination of outcomes, at a time t , for
multiple future choices of θ (e.g., θ1 and θ2 = φ), so that these
outcomes are given by multiple hidden variables (e.g., λ1 and
λ2) simultaneously specified at t . Deterministic macroscopic
realism is falsifiable for cat states [32,33].

To define macroscopic retrocausality, we therefore con-
sider weak macroscopic realism (wMR) [33]: Weak macro-
scopic realism asserts that the system prepared at time tM in a
superposition (1) is in a state giving a definite outcome λM (λM

being +1 or −1) for the macroscopic pointer qubit measure-
ment S. It is implicit as part of the definition that the value λM

be independent of any future measurement setting φ. We use

FIG. 1. Venn diagram showing the different models of macro-
scopic realism (MR). The superset consists of all weak macroscopic
realism models (wMR). The three models (dMR, quantum macro-
scopic realism models, and two-dimensional wMR models) that are
subsets are predicted to be ruled out by the experiments proposed in
this paper.

the term pointer measurement because it is assumed that the
unitary rotation U (θ ) determining the measurement setting
has already been performed, prior to tM , i.e., the system has
been prepared in the appropriate basis.

The main results of this paper are threefold: First,
we demonstrate the possibility of performing macroscopic
delayed-choice tests using cat states. We consider three tests:
the quantum eraser, a delayed-choice Leggett-Garg test, and
a CLP violation of the dimension witness inequality. By ex-
amining the unitary dynamics U (t ), it is shown that at certain
times tM the assumption of λM is relevant because the system
is in a two-state macroscopic superposition (1). The results
give paradoxes suggesting macroscopic retrocausality.

Second, we explain how these predictions can be viewed
consistently with wMR, thus providing a counter argument
to any conclusions of macroscopic retrocausality. During the
dynamics, the state of the system has a more general form
than (1) and extra dimensions are evident in the quantum
continuous-variable phase-space representations. It is possible
to argue consistently within the framework of CLP frame-
work that λM is valid at the time tM , and hence that there
is no macroscopic retrocausality. Instead, the violations of
the dimensions witness and delayed-choice Leggett-Garg in-
equalities reflect the extra dimensions and the failure of dMR,
which (it is argued) arises from failure of Bell-type hidden
variables defined microscopically.

Lastly, we point out Einstein-Podolsky-Rosen (EPR) type
paradoxes [33,37] giving inconsistencies with the complete-
ness of quantum mechanics at a microscopic level (where
fringes in the distributions are evident), if one assumes the
validity of wMR. This allows a negation of a class of models,
which we refer to as quantum MR models. The conclusions
regarding negation of the different models of macroscopic
realism are summarized in Fig. 1.
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Layout of paper. The paper is organized as follows. In
Secs. III–VI, we propose four experiments. In Sec. II we first
summarize the different models of macroscopic realism ex-
amined in this paper, and give an overview of the conclusions
about which models are negated based on the predictions for
the four experiments.

In Sec. III, we propose a quantum eraser experiment using
cat states. In analogy with quantum eraser experiments based
on entangled states [3,7,24], the system is prepared at t1 = 0 in
a two-mode entangled cat state ∼|α〉a| − β〉b − | − α〉a|β〉b.
We identify the qubit value Si at time ti as “which-way”
information. The qubit value for mode a can be determined
by a quadrature measurement XB of the mode b, and the
interference for system a created by interacting locally ac-
cording to UA(t2) for a specific time t2. Similarly, one may
apply UB(t2) for b. The loss of which-way information is
identified by fringes in the distributions of the orthogonal
quadrature PA for a. However, we conclude there is no para-
dox involving macroscopic retrocausality since the fringes
are only distinguished at the level of h̄. The results can be
viewed consistently with weak macroscopic realism (wMR).
Nonetheless, in Sec. VI we show that at the microscopic level
of h̄, EPR-type paradoxes can be constructed (similar to those
discussed in [33,38]), based on the fringe patterns.

We turn to macroscopic paradoxes, in Sec. IV, by present-
ing tests based on a delayed-choice Leggett-Garg proposal
where it is only necessary to measure macroscopic qubit
values Si. We show violation of a Leggett-Garg inequality,
where one measures Si at three times ti (t3 > t2 > t1). The
violation reveals failure of the joint assumptions of weak
macroscopic realism (wMR) and noninvasive measurability
(called macrorealism). Noninvasive measurability asserts that
one can determine the value Si for the system satisfying wMR,
in a way that does not affect the future S j ( j > i). In the
present proposal, the measurement of Si (i = 1, 2) of a is
justified to be noninvasive because it is performed on the
spacelike-separated system b and, furthermore, the choice of
which measurement (S1 or S2) to make is delayed, until after
t3. A natural interpretation is that the measurement of S2 (or
S1) disturbs the dynamics to affect the result for λ3, therefore
violating macrorealism. Since there is a delayed choice, this
suggests macroscopic retrocausality.

In Sec. V, we propose a Chaves-Lemos-Pienaar delayed-
choice experiment that applies to macroscopic qubits based
on the coherent states |α〉 and | − α〉 (cat states) [27]. This
involves identification of the appropriate unitary interaction
U that takes the role of the beam splitter in the MZ interfer-
ometer. We thus predict a violation of the dimension witness
inequality for cat states, which would imply falsification of all
two-dimensional nonretrocausal MR models. This rules out a
class of wMR models, implying the need for extra dimensions
if consistency with wMR is to be upheld.

To counter conclusions of macroscopic retrocausality, in
Sec. IV C we give an interpretation of the violations of the
delayed-choice Leggett-Garg inequalities that is consistent
with wMR: The apparent macroscopic retrocausality comes
about because of the entanglement with the meter system b at
the time t2, and the macroscopic nonlocality associated with
the dynamics of the unitary rotations, when such rotations
occur for both systems after the time t2. Using phase-space

depictions of P(XA, XB), we identify extra dimensions not
present in the two-dimensional nonretrocausal models. We
show that the violation of the Leggett-Garg inequalities cer-
tifies a failure of deterministic macroscopic realism (dMR),
but not wMR (which is a weaker assumption than dMR).

II. MODELS OF MACROSCOPIC REALISM AND
OVERVIEW OF CONCLUSIONS

In this section, we give details of the different definitions
of macroscopic realism used in this paper and present an
overview of the conclusions reached regarding the validity of
each, assuming the predictions of quantum mechanics for the
proposed experiments are correct.

Macroscopic realism was defined by Leggett and Garg [35]
who considered a system S which has just two macroscopi-
cally distinct states available to it. Macroscopic realism asserts
that the system actually be in one or other of these states at all
times. In their paper, Leggett and Garg introduced a hidden
variable λM which takes the value +1 or −1 depending on
which of the two states the system is in. The hidden variable
gives the prediction for a measurement M that can be made on
the system in order to determine which of the distinct states
the system is in at the time t . However, since the states are
macroscopically distinct, the states can be distinguished by a
measurement M that allows a macroscopic coarse graining.
This motivates a more relaxed definition of macroscopic real-
ism which we use in this paper.

Definition 1: Macroscopic realism (MR) asserts that the
system S can be assigned a hidden variable λM , the value of
which gives the outcome of the coarse-grained measurement
M distinguishing between the two states. The definition of MR
does not require the system with outcome +1 (or −1) be in a
particular quantum state ψ+ (ψ−), nor even necessarily in any
quantum state.

It is possible to define two types of macroscopic realism,
depending on whether the unitary dynamics associated with
the choice of measurement setting has taken place. This leads
us to first consider deterministic macroscopic realism.

A. Deterministic macroscopic realism (dMR)

The system S may have available to it two or more sets of
macroscopically distinct states. An example is a system which
is found to be in one of two macroscopically distinguishable
colors: either blue or red. The hidden variable λC takes the
value +1 or −1, respectively, for red or blue. Simultaneously,
the system may be found to be always either with a texture
that is soft or hard. The hidden variable λT can be assigned
to describe the outcome of the measurement distinguishing
these textures. We consider such a system at the time t , prior
to any measurement. Macroscopic realism asserts that both of
these hidden variables can be ascribed to the system at time t ,
simultaneously.

In a Bohm-Bell experiment, measurements of spin are
made on two separated particles, or systems [36,39]. For each
system, there is the choice to measure one of two different
spin components. Let us consider these components to be Sz

and Sx, for one of the systems. The eigenstates are denoted
| ↑〉z, | ↓〉z and | ↑〉x, | ↓〉x, respectively. If we were to suppose
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FIG. 2. Sketch of the setup of a Bell-Bohm experiment: the sys-
tem is prepared in a Bell state where two particles propagate towards
detectors at A and B, respectively. The polarizer-beam-splitter (PBS)
settings determine the choice of θ and φ and hence whether Sx or
Sz is measured at each site. Let us suppose that the spin eigenstates
represent macroscopically distinct states. Deterministic macroscopic
realism (dMR) asserts that the system at time t1 prior to the unitary
rotation U has predetermined values for the outcomes of both Sz and
Sx . Weak macroscopic realism (wMR) asserts that the system after
the unitary interaction at time t2 has predetermined outcome for the
observation or either + or −.

that the two eigenstates represented macroscopically distinct
states, then MR would assign hidden variables λz and λx

to determine the outcome of the measurements Sz and Sx,
respectively. The possible values of λx and λz are +1 and −1,
these representing the Pauli spin outcomes. The definition of
deterministic macroscopic realism is that the hidden variables
λx and λz can be assigned to the system, prior to the unitary
interaction Uθ (usually realised by a Stern-Gerlach apparatus
or polarizing beam splitter) that determines which spin com-
ponent will be measured (Fig. 2).

Definition 2: Deterministic macroscopic realism (dMR).
We consider a pair of macroscopically distinguishable states
(labeled θ ) that can be distinguished by a measurement Mθ .
We allow for multiple pairs θ and associated measurements
Mθ . For each θ , MR asserts a hidden variable λθ that de-
termines the outcome of a coarse-grained measurement Mθ

distinguishing between the two macroscopically distinct states
of the system. Deterministic macroscopic realism asserts that
these hidden variables describe the system prior to the unitary
interaction Uθ that determines the measurement setting θ .

Deterministic macroscopic realism can be falsified in a
macroscopic Bell-type experiment, if the spin states are
macroscopically distinct for all relevant measurement set-
tings, θ and φ. This allows the assertion of two hidden
variables for each system, at the time t1 in the diagram of
Fig. 2. We define λ

(A)
θ and λ

(A)
θ ′ for system A, and λ

(B)
φ and

λ
(B)
φ′ for system B, where each λ takes the value +1 or −1.

As in the original derivations of Bell inequalities [36,40,41],
the assumption would imply |λ(A)

θ λ
(B)
φ − λ

(A)
θ λ

(B)
φ′ + λ

(A)
θ ′ λ

(B)
φ +

λ
(A)
θ ′ λ

(B)
φ′ | � 2 and hence a Bell inequality B � 2 follows,

where B = |〈S(A)
θ S(B)

φ 〉 − 〈S(A)
θ S(B)

φ′ 〉 + 〈S(A)
θ ′ S(B)

φ 〉 + 〈S(A)
θ ′ S(B)

φ′ 〉|.
Here, S(A)

θ and S(B)
φ are the qubit values for the spin measure-

ments at sites A and B respectively, with the settings θ and
φ. The dMR model is predicted to be falsified for gedanken
experiments involving cat states, in [32,33]. In those treat-
ments, as in this paper, the measurements M̂θ distinguish the
states |α〉 and | − α〉 for all α → ∞, or similar states with
macroscopically distinguishable amplitudes in phase space.
Violations giving B > 2

√
2 were shown theoretically possible

for α → ∞, thus enabling falsification of dMR. Violations
of Bell inequalities using measurements with a macroscopic
coarse graining were also considered for different states in
[42,43].

One may also consider three angle settings: 1, 2, and 3 for
each of two systems A and B. The assumption of dMR implies
three hidden variables λ

(A)
i and λ

(B)
j (i, j = 1, 2, 3) at each site,

each taking values +1 or−1. This leads to a Bell inequality〈
S(A)

1 S(B)
2

〉 + 〈
S(A)

2 S(B)
3

〉 − 〈
S(A)

1 S(B)
3

〉
� 1 (2)

similar to that derived in Bell’s original paper [36], where all
the spin components of each particle were assumed to have
definite predetermined values prior to measurement. We may
also suppose that the measurements could be made on a single
system A. Then,

Blg ≡ 〈
S(A)

1 S(A)
2

〉 + 〈
S(A)

2 S(A)
3

〉 − 〈
S(A)

1 S(A)
3

〉
� 1, (3)

which is a Leggett-Garg inequality, if the measurements Si are
made at different times and can be made noninvasively [35].

In this paper, we consider three gedanken experiments
involving cat states and delayed choice. For the second of
those, the apparent retrocausality manifests as a violation of
inequalities (2) and (3). We will show that this violation, while
suggestive of a macroscopic retrocausal effect, in fact indi-
cates violation of dMR, where the λM distinguishes between
states |α〉 and | − α〉 (α → ∞).

B. Weak macroscopic realism (wMR)

Since dMR can be falsified, this motivates testing of a
weaker form of MR (Fig. 1). In all of the examples using cat
states and indeed in the Bell example of Fig. 2, the choice of
measurement setting involves a unitary interaction U which
takes place over a time interval.

In defining weak macroscopic realism, one considers the
definition of MR at a single time t , where the system has been
prepared after the unitary interaction. In the Bell experiment,
the polarizer acts to prepare the system with respect to the
pointer basis, so that a photon detection determines the out-
comes. The outcomes +1 and −1 correspond to a detection
at a location + or at a location −, respectively (Fig. 2). The
system is initially prepared at time t1 in

|ψBell〉 = 1√
2
{| ↑〉z| ↓〉z − | ↓〉z| ↑〉z}. (4)

If the polarizers are set at angle 0, then this represents the
pointer basis and weak macroscopic realism would assert the
hidden variables λ(A)

z and λ(B)
z for the final photon detection at

the pointer positions + or −. There is no assumption that the
values for Ŝx are determined, however.

If a further unitary rotation is to take place, so that the spin-
x component is measured at systems A and B, then after the
unitary rotation at the time t2, one considers the system to be
described by the state

|ψBell〉 = 1√
2
{| ↑〉x| ↓〉x − | ↓〉x| ↑〉x} (5)

in the new basis. Weak macroscopic realism asserts the system
to be in a state with a well-defined hidden variable λx for the
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outcome of Sx at the time t2, but not (necessarily) at the time
t1.

Definition 3: Weak macroscopic realism (wMR). Consider
a system prepared in a superposition of pointer states at a time
t (after the selection of the measurement setting θ ), e.g.,

|x〉 + | − x〉, (6)

where |x〉 and | − x〉 are macroscopically distinct states cor-
responding to macroscopically distinct positions (locations)
of a photon, or of a macroscopic object. Weak macroscopic
realism asserts that the system can be described by a hidden
variable λM , which takes the value +1 or −1 to determine that
the outcome of the pointer measurement M will be either x or
−x, respectively. We note that as the distinction between x and
−x is macroscopic, the hidden variable need not determine the
precise value of x, i.e., it is coarse grained. In this paper, we
propose three delayed-choice macroscopic experiments and
show that all three can be explained consistently with wMR.

C. Two-dimensional wMR models

The values for the hidden variables in the tests of wMR
and dMR that we will consider are dichotomic (+1 or −1). At
the times examined in the tests, quantum mechanics predicts
the systems to be in superposition of just two states, |α〉 and
| − α〉. We find in this paper that it is possible to negate wMR,
if restricted to a two-dimensional model.

If one assumes a two-dimensional classical nonretrocausal
model, then the system is described by the hidden variable λM

as above, taking values +1 and −1. With a restriction on the
dimensionality, constraints exist of the correlations [27]. For
a single system A, consider a setup with settings given by θ

at a time tp and φ at a later time tm. It has been shown that
all two-dimensional models that are not retrocausal satisfy
a dimension witness (DW) inequality [44–47] involving the
expectation value of an observable Sφ at time tm, given the
previous setting of θ [27]. The Wheeler-CLP experiment gives
a negation of such models. In this paper, we apply this result to
propose a macroscopic version of the CLP experiment, where
a hidden variable λM refers to macroscopically distinct states,
and the two-dimensional nonretrocausal model is therefore
also a two-dimensional wMR model.

Definition 4: Two-dimensional wMR models. We consider
a two-dimensional classical model, as in the Definition 1 of
macroscopic realism (MR). For a single system A, we consider
a setup with settings given by θ at a time tp and φ at a later time
tm. Supposing the system at each time is given by two states
so that wMR applies at the times tp and tm, then two hidden
variables λp and λm can be assigned to describe the outcome
of the measurement M at those times. With the restriction of
a two-dimensional model, this leads to the same dimension
witness (DW) inequality

IDW = |E (θ, φ) + E (θ, φ′) + E (θ ′, φ)

− E (θ ′, φ′) − E (θ ′′, φ)| � 3 (7)

derived for qubits originally in the microscopic regime [27].
Here E (θ, φ) = 〈Sφ〉θ is the expectation value of Sφ at time
tm, given the previous setting of θ .

We show in this paper that the inequality (7) is violated for
dynamical cat states and therefore that all two-dimensional

wMR models can be negated for this system (Fig. 1). In fact,
an analysis of the dynamics shows that at intermediate times
between tp and tm, the system is not a simple superposition of
just two coherent states. Moreover, we will compare with a
system evolving from a classical mixture of the two coherent
states, which does not violate the DW inequality. The dynam-
ics in the multi-dimensional phase space shows the emergence
of the quantum correlations over the duration of the unitary
dynamics occurring between times tp and tm.

D. Quantum macroscopic realism (QMR) models

As explained above, the original definition of macroscopic
realism as quoted by Leggett and Garg considers a system
with two macroscopically distinct states available to it, and
then proposes that the system be in one or other of those two
states.

Definition 5: Quantum macroscopic realism (QMR). If it
is assumed that the two states specified in the MR definition
are well defined as quantum states (ρ+ and ρ−), then this is a
further restriction imposed on the definition of MR. We call
such a refined definition of macroscopic realism “quantum
macroscopic realism (QMR)”, because the states associated
with the hidden variable λM taking a value +1 or −1 are then
the states ρ+ or ρ−, respectively. All QMR models satisfy
weak macroscopic realism for the appropriate pointer mea-
surement.

It is possible to negate QMR models, which were also
considered in [38]. Rigorous signatures of a Schrödinger-cat
paradox will exclude the possibility of a system being in
one or other of two macroscopically distinguishable quan-
tum states, though often specific quantum states are assumed,
as in [34]. The observation of a strict form of macroscopic
quantum coherence will also imply negation of QMR. If it
is possible to exclude that the system is in a mixture of two
quantum states ρ+ and ρ−, where the only condition on ρ+
and ρ− is that these states give predictions +1 and −1 for the
measurement M, then the QMR models are directly negated.

In Sec. VI, we illustrate how the QMR models can be
negated for the cat states considered in this paper. If one
begins with the premise of local realism, or else if one as-
sumes weak macroscopic realism, then all QMR models can
be negated.

E. Conclusions

In this paper, we consider three gedanken experiments in-
volving cat states and delayed choice. For the second of those,
we confirm violation of deterministic macroscopic realism
(dMR). All three gedanken experiments can be viewed con-
sistently with weak macroscopic realism. However, the third
delayed-choice experiment violates the DW inequality (7),
thus negating two-dimensional wMR nonretrocausal models.
In all these experiments, “macroscopic” implies a distinction
between amplitudes α and −α of a cat state, for α → ∞.
For some states, we are able to show inconsistency between
weak macroscopic realism (wMR) and quantum macroscopic
realism (QMR), thus ruling out the class of wMR models
satisfying QMR. The different models of macroscopic realism
and the relationship between them are depicted in Fig. 1.
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FIG. 3. Sketch of the setup for the quantum eraser test. The
system is prepared in the two-mode entangled cat state |ψBell(t1)〉
at the time t1 = 0, with the modes spatially separated. The values of
S(A)

1 and S(B)
1 at time t1 are anticorrelated. Independent local unitary

interactions UA and UB take place at sites A and B, respectively, with
time settings ta and tb. The time at A is selected as ta = t3 = π/2
.
The final detection enables measurement of S(A)

3 , with an equal prob-
ability for outcomes S(A)

3 = 1 or −1. At B, one selects either tb =
t1 = 0 or tb = t3 = π/2
, the final detection enabling measurement
of S(B)

1 or S(B)
3 . The outcomes of S(B)

1 and S(B)
3 are anticorrelated with

the outcomes of S(A)
1 and S(A)

3 , respectively, if measured. The choice
of the interaction time at B is delayed until after the final detection
at A, at time t3. The value of S(A)

3 can be inferred by measuring S(3)
B ,

in which case it is known which state the system A was in at the past
time t3. The fringes in PA for system A then vanish, conditional on
the result at B. On the other hand, if the value of S(B)

1 is measured,
then S(A)

1 is known but there is no information about S(A)
3 and fringes

are present. We argue that the results are not inconsistent with the
validity of weak macroscopic realism (wMR): wMR asserts that the
system A at time t3 is in a state with a definite value (+1 or −1) of
S(A)

3 and that this value is merely elucidated by the later measurement
of S(B)

3 . There is a paradox, however, because one may show that the
system A at the time t3 cannot be regarded as being in any quantum
state with a definite value for S(A)

3 .

III. DELAYED-CHOICE QUANTUM ERASER WITH
ENTANGLED CAT STATES

A. Setup

We begin by presenting an analog of the delayed-choice
quantum eraser experiment for cat states (Fig. 3). The overall
system is prepared at time t1 = 0 in the entangled cat Bell
state [48]

|ψBell(t1)〉 = N (|α〉| − β〉 − | − α〉|β〉), (8)

where |α〉 and |β〉 are coherent states for single-mode systems
A and B. We take α and β to be real, positive, and large. Here,
N = 1√

2
{1 − exp(−2|α|2 − 2|β|2)}−1/2 is the normalization

constant.
For each system, one may measure the field quadrature

phase amplitudes X̂A = 1√
2
(â + â†), P̂A = 1

i
√

2
(â − â†), X̂B =

1√
2
(b̂ + b̂†), and P̂B = 1

i
√

2
(b̂ − b̂†), which are defined in a

rotating frame, with units so that h̄ = 1 [34]. The boson de-
struction operators for modes A and B are denoted by â and
b̂, respectively. The outcome of the measurement X̂A distin-
guishes between the states |α〉 and | − α〉, and similarly X̂B

distinguishes between the states |β〉 and | − β〉. Dropping the

operator “hats” where the meaning is clear, we define the
outcome of a macroscopic qubit measurement S(A) on system
a to be S(A) = +1 if XA > 0, and −1 otherwise. Similarly, the
outcome of a macroscopic qubit measurement S(B) on system
b is S(B) = +1 if XB > 0, and −1 otherwise. S is identified as
the spin of the system, i.e., the qubit value.

The coherent states of A and B become orthogonal in the
limit of large α and β, in which case the superposition (8)
maps onto the two-qubit Bell state

|ψBell〉 = 1√
2

(|+〉a|−〉b − |−〉a|+〉b). (9)

At time t1, the outcomes for S(A) and S(B) are anticorrelated.
Therefore, one may infer the outcome for S(A) noninvasively
by measuring XB, and hence S(B).

We present an analogy with the delayed-choice quantum
eraser based on the photonic versions of the state (9). In the
photonic version, the next step is that the photon of system A
propagates through two slits, or else through a 50/50 beam
splitter (BS1) with two equally probable output paths as in
a Mach-Zehnder (MZ) interferometer. If a single photon is
incident on BS1, this creates a superposition, e.g., for mode A,
the state |+〉a is transformed to

|ψ〉a,2 = 1√
2

(|+〉a,2 + i|−〉a,2), (10)

where |+〉a,2 and |−〉a,2 refer to the photon in paths designated
+ or − of the MZ interferometer. In the original quantum
eraser, the measurement of which-way information is made
by measuring whether the system is + or −. This is done
by recombining the paths using a second beam splitter (BS2),
which is set to be fully transmitting so that the paths are not
mixed. An alternative choice is that BS2 is similar to BS1

with a 50% transmittivity, which restores the state |+〉, the
photon appearing only at one of the output paths, indicating
interference.

In the cat-state gedanken experiment (Fig. 3), the super-
position (10) is achieved by a unitary interaction U (t ) for a
particular choice t = t3. After preparation at the time t1, the
systems A and B evolve independently according to the local
unitary transformations UA(ta) and UB(tb), defined by

UA(ta) = e−iH (A)
NL ta/h̄, UB(tb) = e−iH (B)

NL tb/h̄, (11)

where

H (A)
NL = 
n̂k

a, H (B)
NL = 
n̂k

b. (12)

Here, ta and tb are the times of evolution at each site, k is a
positive integer, n̂a = â†â and n̂b = b̂†b̂, and 
 is a constant.
We take k = 2; or else k > 2 and k is even. As the systems
evolve, the spin for each can be measured at a given time. We
denote the value of spin S(A) after an interaction time ta = ti to
be S(A)

i , and the value of the spin S(B) after the interaction time
tb = t j to be S(B)

j . The dynamics of the unitary evolution (11)
is well known [34,49,50]. If the system A is prepared in a
coherent state |α〉, then after a time ta = t3 = π/2
, the state
of the system A is [31–33]

U (A)
π/4|α〉 = e−iπ/4{cos π/4|α〉 + i sin π/4| − α〉}, (13)
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FIG. 4. Plots of P(XA)± and P(PA)± for the system A at time t3,
when which-way information is present. The P(XA)± and P(PA)± are
distributions conditioned on the outcome ± for XB at B. The P(PA)+
and P(PA)− are identical and show no fringes. Here, α = β = 2.

where U (A)
π/4 = UA(π/2
). A similar transformation U (B)

π/4 is
defined at B for tb = t3 = π/2
. We note the state (13) maps
onto (10). The generation of the superposition (13) using
k = 2 has been reported in [49,50]. The system A in the super-
position (13) exhibits interference fringes in the distribution
P(PA) for P̂A [34].

If one evolves for a time of t3 = π/2
 at both sites, then
the final state is

|ψBell(t3)〉 = U (A)
π/4U

(B)
π/4|ψBell(t1)〉

= N e−iπ/2(|α〉| − β〉 − | − α〉|β〉), (14)

which is a Bell state. At the time t3, the spin S(A)
3 of system

A can be inferred by measuring S(B)
3 , which is anticorrelated

with the spin S(A)
3 at A. This gives the which-way information

of system A at time t3, analogous to measuring through which
slit or path the photon went through in the original quantum
eraser setups. Only the absolute interaction times ta and tb at
each site are relevant to the correlation, however, and it is
hence possible to delay interaction at B until a time t4, after
the system at A has already interacted.

With this method of measurement of S(A)
3 , the system A

has not been directly measured. One can thus make a mea-
surement of P̂A at the time t3. The system (being coupled to
B) can be detected as being in one or other state, ϕ+ or ϕ−,
giving + or − outcomes for S(A)

3 . Which-way information is
present and, consistent with that, the distribution P(PA) shows
no fringes. This is seen in Fig. 4, where we plot the conditional
distributions P(XA)± and P(PA)± given the outcome ± for
XB at B, as evaluated from the joint distributions P(XA, XB)
and P(PA, XB). The distribution P(PA)± for an outcome of the
measurement P̂A is a Gaussian centered at 0 with no fringes
present, consistent with that of the coherent state | ± α〉 [34].

On the other hand, one may take ta = t3 and tb = 0, so
that there is no local unitary interaction at B. Alternatively,
one may evolve both sites according to ta = tb = t3, and then

FIG. 5. Plots of P(XA)± and P(PA)± of the system A at time t2,
where the outcome for S(B)

4 = S(1)
A is (lower left) +1, and (lower right)

−1. The which-way information is lost, and the system A is in the
superposition (16). Here, α = β = 2.

perform a local unitary transformation UB(t2)−1 = (U (B)
π/4)−1

at B, to transform the system B “back” to the initial state of B
at time t1. Which-way information about A at t3 is then absent.
The state of the combined systems at this time t4 > t3 is

|ψ (t4)〉 = N
{
U (A)

π/4|α〉| − β〉 − U (A)
π/4| − α〉|β〉}. (15)

If the final stage of the spin measurement B is made at time
t4, the result will give either S(B)(t4) = 1 or −1. From the
anticorrelation of (8), S(B)(t4) is interpreted as a measurement
of the initial value of −S(A)

1 , and hence knowledge of that
state of system A at that time t1. If the outcome of S(B)(t4)
is ∓1, then, assuming the limit where | − β〉 and |β〉 are
orthogonal states (i.e., large β), the system A is projected into
the superposition state

Uπ/4| ± α〉 = e−iπ/4{cos π/4| ± α〉 + i sin π/4| ∓ α〉}.
(16)

This is the state of the local system A at time t2 [see Eq. (13)],
conditioned on the initial state of A at time t1 being | ± α〉.
Thus, if one measures P(PA) conditional on the result of
−S(B)(t4) = S(A)

1 , the fringes are recovered. We find

P(PA)± = e−P2
A√

π
{1 ∓ sin(2

√
2PA|α|)}, (17)

where P(PA)+ and P(PA)− are the distributions for PA con-
ditional on the result +1 or −1 for S(A)

1 , respectively. The
distributions (Fig. 5) show fringes, indicative of the system
A at time t3 being in the superposition (16), and indicative of
the loss of which-way information.

The accurate calculation of the conditional probabilities
P(PA)±, without the simplistic assumption of a projection into
a definite coherent state at A on measurement at B, gives

P(PA)± = 2N 2e−P2
A√

π

{
1 − e−2|β|2 cos(2

√
2PA|α|)

∓ sin(2
√

2PA|α|)erf(
√

2|β|}, (18)
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where erf is the error function (refer Appendix 1). The plots
are indistinguishable from those of the approximate result for
β > 1, the limit β → ∞ being the limit of an ideal measure-
ment. The calculations in Figs. 4 and 5 are based on evaluation
of the joint distribution P(PA, XB) (refer to [32]).

B. Interpretation in terms of wMR

As summarized in the Introduction, the delayed choice
experiment has been interpreted as suggesting retrocausal-
ity. The decision to observe either the particlelike behavior
(which-way information) or the wavelike behavior (fringes)
of system A is made at the later time t4 (at B). This appears to
retrospectively change the system A at time t3 from being in
“one or other state” (ϕ1 or ϕ2; |α〉 or | − α〉) to being “in both
states” [since the observation of fringes in P(PA) is often in-
terpreted to suggest the system A was in “both states”, |α〉 and
| − α〉]. As explained in [27], there is in fact no requirement to
assume retrocausality for the MZ delayed-choice experiment.
The experiment described for cat states maps onto the qubit
experiment for large α, β, and gives a similar conclusion for
the macroscopic qubits.

The macroscopic version of the quantum eraser is informa-
tive because, with the introduction of the macroscopic hidden
variable λM , there is a separation of the macroscopic from
the microscopic behaviour. According to the premise of weak
macroscopic realism (wMR), at the time t3 the system (13)
may be regarded as being in one or other of two macroscopi-
cally distinguishable states (ϕ+ and ϕ−) which have a definite
value +1 or −1 for the outcome S(A)

3 , should that measurement
be performed. Here, there is no attempt to define the quantum
state associated with that predetermination, so that predictions
for other more microscopic measurements (and hence other
hidden variables that determine those predictions) are not rel-
evant. While it might be tempting to identify the states ϕ+ and
ϕ− as being |α〉 and | − α〉, this would be a full microscopic
identification of the states in quantum terms. The states ϕ+
and ϕ− are not specified to this precision, corresponding to
distinct values of the macroscopic observable S(A)

3 only. In
fact, we see there is no negation of wMR because the fringes
are only evident at the microscopic level of h̄ (here h̄ ∼ 1).
The gedanken experiment is consistent with wMR. In that
sense, the system always displays a particlelike behavior.

The determination of the value of S(A)
3 gives the “which-

way” information in the quantum eraser experiment. If one is
able to design an appropriate macroscopic observable (similar
to S(A)

3 ) for the two-slit and MZ scenarios, then the assumption
of wMR is analogous to the interpretation that the particle
goes through one slit or the other in the double-slit exper-
iment, or goes through one path or the other, in the MZ
interferometer. This assumption, however, does not specify
the system to be in either state |−α〉a,2 or |α〉a,2 [refer to
Eq. (10)]. The assumption of wMR if applied to the double-slit
experiment would be that the particle has a position constrain-
ing it to go through a definite slit, even when fringes are
observed (provided the slit does not restrict the position to
of order h̄ or less). In relation to the definition of wMR, the
predictions for other more precise measurements of order h̄
are not relevant.

FIG. 6. Sketch of the setup for the delayed-choice Leggett-Garg
test. The system is prepared in the two-mode entangled cat state
|ψBell(t1)〉 at the time t1 = 0, with the modes spatially separated.
Independent local unitary interactions UA and UB take place at sites
A and B, respectively, with time settings ta and tb. The times at A are
selected as either ta = t2 = π/4
 or ta = t3 = π/2
 and the final
detection enables measurement of S(A)

2 or S(A)
3 respectively. At B,

one selects either tb = t1 = 0 or tb = t2 = π/4
, the final detection
enabling measurement of S(B)

1 or S(B)
2 . The outcomes of S(B)

1 and S(B)
2

are anticorrelated with the outcomes of S(A)
1 and S(A)

2 , respectively, if
measured. In the delayed-choice experiment, the interaction at B is
delayed until after the final detection at A, at time t3. Hence, the mea-
surement of S(B)

1 (or S(B)
2 ) allows inference of the past value of S(A)

1

(or S(A)
2 ). The results indicate a violation of a Leggett-Garg inequality,

which we show implies failure of deterministic macroscopic realism
(dMR) but can be explained consistently with weak macroscopic
realism (wMR).

The interpretation based on wMR suggests a lack of com-
pleteness of the description at the microscopic level. This can
be clarified further. Indeed, if wMR holds, then it is possible
to show that EPR-type paradoxes exist at the microscopic
level. The EPR-type arguments indicate an incompleteness of
a quantum state description if compatible with wMR [33], and
are discussed in Sec. VI.

IV. DELAYED-CHOICE LEGGETT-GARG TEST OF
MACROREALISM

In this section, we consider the delayed-choice experiment
in the form of a Leggett-Garg test of macrorealism using
entangled cat states. The advantage of the Leggett-Garg test is
that all relevant measurements are macroscopic, distinguish-
ing between the two macroscopically distinct coherent states.
This contrasts with the quantum eraser proposal, where the
paradoxical effects are inferred by the measurement of finely
resolved fringes.

A. Setup

At time t1, the system is prepared in the entangled cat
state |ψBell(t1)〉 of Eq. (8). The modes are spatially separated
systems at sites A and B, and dynamically evolve according
to the unitary interactions (11) where k = 4. We consider
three times t1 = 0, t2 = π/4
, and t3 = π/2
 (Fig. 6). If the
system at A were prepared in a coherent state |α〉, then at the
later time ta = t2 = π/4
, the state of the system A at time t2
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is in the asymmetric superposition [31–33]

U (A)
π/8|α〉 = e−iπ/8{cos π/8|α〉 + i sin π/8| − α〉}, (19)

where U (A)
π/8 = UA(π/4
). A similar transformation U (B)

π/8 is
defined at B for tb = t2 = π/4
. If one evolves for a time of
t2 = π/4
 at both sites, then the final state is

|ψBell(t2)〉 = U (A)
π/8U

(B)
π/8|ψBell(t1)〉

= N e−iπ/4(|α〉| − β〉 − | − α〉|β〉). (20)

The values of the macroscopic spins after the interaction time
t2 at each site are denoted S(A)

2 and S(B)
2 . The spin S(A)

2 of system
A can be inferred by measuring S(B)

2 which is anticorrelated
with the spin at A.

On the other hand, one may choose to evolve at A for a time
ta = t2 = π/4
, but not at the site B, so that tb = 0. The state
after these interactions is

|ψ (t2, t1)〉 = N
{
U (A)

π/8|α〉| − β〉 − U (A)
π/8| − α〉|β〉}. (21)

If the final readout stage of the spin measurement at B is
made at time t4 (Fig. 6), the result will give a value S(B)(t4) ≡
S(B)

1 = ±1. From |ψBell(t1)〉 [Eq. (8)], the value of S(B)(t4) is
anticorrelated with the initial value of S(A)

1 , if we had chosen
ta = t1 = 0. Therefore, the measurement at B is interpreted as
a measurement of S(A)

1 . If the outcome of S(B)(t4) is ∓1 then
(assuming |β〉 and | − β〉 are orthogonal) from (15) we see
that the system A is reduced to the superposition state

Uπ/8| ± α〉 = e−iπ/8{cos π/8| ± α〉 + i sin π/8| ∓ α〉}.
(22)

This is the state of the local system A at time t2 [see Eq. (13)],
conditioned on the initial state of A at time t1 being | ± α〉. The
value of S(A)

2 can be measured directly at A. This combination
of interactions therefore allows measurement of both S(A)

2 and
S(A)

1 .
Alternatively, we may evolve the system A for a time ta =

t3 = π/2
, while not evolving at B (tb = t1 = 0). This gives

|ψ (t3, t1)〉 = N
{
U (A)

π/4|α〉| − β〉 − U (A)
π/4| − α〉|β〉}, (23)

where Uπ/4| ± α〉 is given by Eq. (13). The spin S(A)
3 can be

measured directly at A. Measurement of S(B)(t4) ≡ S(B)
1 at B

gives the inferred result for the measurement S(A)
1 . This allows

measurement of both S(A)
3 and S(A)

1 .
Alternatively, one may select tb = t2 = π/4
 at B. Ac-

cording to (20), the measurement at B then allows measure-
ment of S(A)

2 . If one evolves at A for a time ta = t3 = π/2
,
then this combination of interactions allows measurement of
both S(A)

2 and S(A)
3 .

The setup (Fig. 6) allows for a delayed choice of the
measurement of either S(A)

1 or S(A)
2 , by delaying the choice

at B to measure either S(B)
1 or S(B)

2 . This amounts to a delay
in the choice to interact the system B for a time tb = 0, or
else to interact system B for a time tb = t2. This choice can be
delayed until a time well after the time t3, and well after the
final detection (given by the measurement and readout of XA)
takes place at A.

FIG. 7. Violation of the Leggett-Garg inequality (24). We plot
BLG = −{〈S(B)

1 S(A)
2 〉 − 〈S(B)

1 S(A)
3 〉 + 〈S(B)

2 S(A)
3 〉} versus α for the state

|ψBell(t1)〉 (8), with β = 2. Violation is obtained when BLG > 1. The
verification of 〈S(A)

i S(A)
j 〉 = −〈S(B)

i S(A)
j 〉 for i = 1, 2 is given by the

conditional distribution Pcond defined as Pcond = P(S(A)
i = 1|S(B)

i =
−1) as shown.

B. Leggett-Garg inequality and violations

We now summarize the Leggett-Garg test of macrorealism
for this system [33]. The definition of macrorealism involves
two assumptions: macroscopic realism and noninvasive mea-
surability (NIM). For our purposes, we take the definition of
macroscopic realism to be that of weak macroscopic realism
(wMR) defined in Sec. II: This asserts that the system given
by (1) is in a state with a definite prediction for the macro-
scopic spin S(A), +1 or −1. The system can then be assigned
the hidden variable λ, the value of λ being +1 or −1, which
determines the result of the measurement S(A) should it be
performed. Macrorealism also assumes NIM, that the value
of λ can be measured with negligible effect on the subsequent
macroscopic dynamics of the system.

For measurements of spin S(A)
j made on a single system

A at consecutive times t1 < t2 < t3, macrorealism implies the
Leggett-Garg inequality [35,51,52]

BLG = 〈
S(A)

1 S(A)
2

〉 + 〈
S(A)

2 S(A)
3

〉 − 〈
S(A)

1 S(A)
3

〉
� 1. (24)

As shown in [31–33], the cat system of Sec. IV A is predicted
to violate this inequality (Fig. 7), meaning that macrorealism
is falsified. While other Leggett-Garg inequalities have been
proposed (e.g., [35,53,54]), this particular inequality is useful
where measurements are made on entangled subsystems. The
approach we give in this paper uses spatial separation and
delayed choice to justify noninvasiveness, since the measure-
ments of S(A)

1 and S(A)
2 are made by inference, after performing

a delayed measurement on the spacelike-separated system B.
The approach can be applied to other macroscopic superpo-
sition states, such as NOON states [55,56] using the local
unitary interaction given in [32]. Violations of Leggett-Garg
inequalities have been predicted and tested for a range of
superposition states (e.g., [57–68]) and alternative procedures
exist to justify NIM.

We summarize the measurements enabling a test of the
inequality (24), as in Figs. 8 and 9. As we have seen, the
value of S(A)

1 or S(A)
2 of system A can be inferred noninvasively

by measurement of the anticorrelated spin S(B)
1 or S(B)

2 . The
result for the moment 〈S(A)

1 S(A)
2 〉 is determined by a direct

measurement of S(A)
2 at time t2, and an inferred measurement

of S(A)
1 by measuring S(B)

1 at B (Fig. 8, top). The moment
〈S(A)

1 S(A)
3 〉 is measured similarly (Fig. 8, lower).
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FIG. 8. Sketch of the setup for the delayed-choice Leggett-Garg
test. Notation is as for Fig. 6. The top (lower) sketch shows measure-
ment of 〈S(A)

2 S(B)
1 〉 (〈S(A)

3 S(B)
1 〉). These measurements give the values

of 〈S(A)
2 S(A)

1 〉 and 〈S(A)
3 S(A)

1 〉, based on the anticorrelation S(B)
1 = −S(A)

1 .
For this measurement, there is no unitary interaction (rotation) at B.
The predictions for the relevant distributions are given in Fig. 10
(top). The results here are consistent with macrorealism, being indis-
tinguishable from those of the initial nonentangled state ρmix given
by Eq. (26) [compare Fig. 11 (top)].

The quantum prediction for 〈S(A)
1 S(A)

2 〉 is based on the as-
sumption that the measurement of S(B)

1 projects the system A
into one or other state, |α〉 or | − α〉. The prediction is then
〈S(A)

1 S(A)
2 〉 = cos(π/4), based on the evolution time of t2 at

A [see Eq. (22)]. The moment 〈S(A)
1 S(A)

3 〉 is evaluated simi-
larly, and from Eq. (13) we see the prediction is 〈S(A)

1 S(A)
3 〉 =

cos(π/2) = 0.
For 〈S(A)

2 S(A)
3 〉, one would measure S(B)

2 to determine the
anticorrelated S(A)

2 , and measure S(A)
3 directly at A (Fig. 9).

The prediction for 〈S(A)
2 S(A)

3 〉 is based on the assumption that
the system A is in either |α〉 or | − α〉, at time t2 (or else, that
the measurement of S(B)

2 projects A to one of these states).
The subsequent evolution for a time �t = π/8 then leads to
the prediction of 〈S(A)

2 S(A)
3 〉 = cos(π/4) [refer Eq. (19)]. This

gives violation of the inequality (24), the left side being
√

2.
The above calculations assume large β (and hence orthog-

onal |β〉 and | − β〉) so that one may justify the assumption
that the system A at times t1 and t2 is projected into one
or other of the states |α〉 or | − α〉, once the measurement
at B is performed. To evaluate accurately requires evaluation
of the joint distributions P(XA, XB) for the different times of
interaction ta and tb. For large α and β, the simplistic result
is indeed recovered, for all α, β > 1. The precise results were

FIG. 9. Sketch of the setup for the Leggett-Garg test. Notation
is as for Fig. 6. The sketch depicts measurement of 〈S(A)

3 S(B)
2 〉,

which (based on the anticorrelation S(B)
2 = −S(A)

2 ) gives the value for
〈S(A)

3 S(A)
2 〉. The predictions for the relevant distributions are given in

Fig. 10 (lower). The results at time t4 are macroscopically different
from those obtained if the state at time t2 is not entangled [compare
Fig. 11 (lower)]. The results are inconsistent with the premise of
deterministic macroscopic realism (dMR) and lead to the violation
of macrorealism.

calculated in [33], and are given in Fig. 7. The results agree
with the moments above, predicting violation of the inequal-
ity, for α > 1. The plots of P(XA, XB) for the various times of
evolution are given in Fig. 10.

The violation of the inequality (24) implies falsification of
macrorealism. We note that the measurements S(A)

i and S(B)
j

are macroscopic in the sense that one needs only to distin-
guish between the two macroscopically separated peaks of
the distributions P(XA, XB) (Fig. 10). Here, the meaning of
“macroscopic” refers to a separation in phase space of quadra-
ture amplitudes X by an arbitrary amount (α → ∞).

C. Interpretation without macroscopic retrocausality

As explained above, macrorealism involves two assump-
tions: weak macroscopic realism (wMR) and noninvasive
measurability. If we assume the validity of wMR, then we
would conclude that noninvasive measurability fails: the mea-
surement of the spin S(B)

i of B disturbs the result for the spin
S(A)

j of A ( j > i). However, since the measurements are made
at B after the state of A at the time t3 is measured, this con-
clusion might suggest that the violation of the Leggett-Garg
inequality is due to a macroscopic retrocausal effect, where
which measurement is made at B alters the past value of λi

at A.
Here, we show how the dynamics pictured in Fig. 10

provides an interpretation that avoids the conclusion of macro-
scopic retrocausality. This is done by showing consistency
with weak macroscopic realism (wMR) and that the violation
of the Leggett-Garg inequality coincides with the failure of
deterministic macroscopic realism (dMR).

1. Consistency with weak macroscopic realism: The pointer
measurement

In order to demonstrate consistency with weak macro-
scopic realism (wMR), we first summarize what this assump-
tion implies for the dynamics of the Leggett-Garg test, shown
in Figs. 6–11. At each of the times t j ( j = 1, 2, 3), the systems
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FIG. 10. Contour plots of P(XA, XB ) showing the dynamics as the state |ψBell(t1)〉 evolves through the three measurement sequences of
the Leggett-Garg test in the delayed-choice gedanken experiment depicted in Figs. 8 and 9. Here, we go from time t = t1 (far left), through
to t = t2 (third picture from left), t = t3 (fifth picture from left), and, finally, t = t4 (far right). The systems evolve locally according to
H (A/B)

NL for interaction times ta and tb given by (ta, tb) in units of 
−1. Top: The sequence to infer S(A)
1 by delayed measurement of S(B)

1 ,
enabling measurement of 〈S(B)

1 S(A)
3 〉 = −〈S(A)

1 S(A)
3 〉 (final picture), as in Fig. 8 (lower). The sequence to measure 〈S(B)

1 S(A)
2 〉 = −〈S(A)

1 S(A)
2 〉 uses

ta = t2 = π/4 as in Fig. 8 (top) and ends with the third picture of the sequence. Lower: The sequence to infer S(A)
2 by measurement of S(B)

2 ,
enabling measurement of 〈S(B)

2 S(A)
3 〉 = −〈S(A)

2 S(A)
3 〉 (final picture) as in Fig. 9. Here, t1 = 0, t2 = π/4, and t3 = π/2. α = β = 3.

A and B are in an entangled macroscopic superposition of type

|ψent〉 = N (c1|α〉| − β〉 + c2| − α〉|β〉
+ c3|α〉|β〉 + c4| − α〉| − β〉), (25)

where α, β → ∞ and ck are probability amplitudes. This is
a superposition of states with definite outcomes for pointer
measurements S(A)

j and S(B)
j , and is an example of a pointer

superposition |ψpointer〉. The premise wMR asserts that the sys-
tem A at the time t j is in one or the other of two macroscopic
states ϕ+ and ϕ−, for which the result of the spin measure-
ment S(A)

j (given by the sign of the coherent amplitude) is
determined to be +1 or −1, respectively. Hence, the system
A at time t j may be described by the macroscopic hidden
variable λ

(A)
j . The value of λ

(A)
j is fixed as either +1 or −1 at

the particular time t j , prior to the pointer measurement, and is

FIG. 11. Contour plots of P(XA, XB) showing the dynamics as the nonentangled state ρmix [Eq. (26)] evolves through the same measurement
sequences given in Fig. 10. Notation as for Fig. 10. Top: The sequence evolves as in Fig. 8 (lower) with a unitary rotation at site A only.
Although starting with ρmix at time t1, the sequence is indistinguishable from that given by the top sequence in Fig. 10 for the entangled state
|ψBell(t1)〉. Lower: We assume the system evolves as for Fig. 9 and the lower sequence of Fig. 10 with two unitary rotations, one at A and one
at B, but starting from the nonentangled state ρmix at the time t = t2. Although indistinguishable at the initial time t2, the final picture at t = t4

[(π/2, π/4)] differs macroscopically from that of the entangled state (compare with the lower sequence in Fig. 10).
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independent of any future measurement. By the pointer mea-
surement at A, it is meant that the measurement can be made
as a final quadrature detection XA, with no further unitary
rotation UA necessary. For the entangled state |ψent〉, similar
assumptions apply to system B. Weak macroscopic realism
does not (necessarily) imply that prior to the measurement
of spin S(A), the system is in the state |α〉 or | − α〉, nor in
any quantum state. This is because quantum states are micro-
scopically specified, giving predictions for all measurements
that might be performed on A, whereas the definition of wMR
considers only macroscopic coarse-grained measurements.

The macroscopic predictions for quadrature measurements
XA and XB performed on the system in the entangled state
|ψent〉 [Eq. (25)] are fully consistent with wMR. This is ev-
ident on comparing with the predictions for the nonentangled
state ρMix, given by the mixture of the four states |α〉|−β〉,
|−α〉|−β〉, |α〉|β〉 and |−α〉|−β〉 (the relative probabilities for
the mixture being, in order, |c1|2, |c2|2, |c3|2 and |c4|2). Where
|ψent〉 corresponds to the Bell state |ψBell(t1)〉 of Eq. (8), ρMix

becomes

ρmix = 1
2 {|α〉| − β〉〈−β|〈α| + | − α〉|β〉〈β|〈−α|}. (26)

The nonentangled state ρMix is consistent with wMR, since
each subsystem A and B can be viewed as being in one or other
of two macroscopically distinct coherent states. We see that
there is no distinguishable difference between the predictions
P(XA, XB) for the entangled [|ψent〉] and nonentangled (ρMix)
states, at the level of the macroscopic outcomes (e.g. compare
predictions for |ψBell(t1)〉 and ρmix in the first plots of the top
sequences in Figs. 10 and 11). A distinction exists, but at
order h̄e−|α|2 , invisible on the plots. At each of the times t j

shown in the dynamics associated with the Leggett-Garg test,
the system is in a state of the type |ψent〉, which is compatible
with wMR as defined for the pointer measurements XA and XB.

For the bipartite system, wMR is consistent with a form
of macroscopic locality that we call “macroscopic locality of
the pointer” (MLP). The meaning of MLP was summarized
in [33] and asserts that the value of the macroscopic hid-
den variable λ

(A)
j , which gives the outcome for the pointer

measurement on system A, cannot be changed by any
spacelike-separated event, or measurement, at the system B
that takes place at time t � t j , e.g., it cannot be changed by
a future event at B. This premise is different to the stronger
assumption of macroscopic Bell locality (ML), which is as-
sumed to (also) apply to systems defined prior to the unitary
dynamics associated with the measurement settings [32,33].

2. Failure of deterministic macroscopic realism

We next show that the violation of the Leggett-Garg in-
equality (24) implies a failure of deterministic macroscopic
realism (dMR). This premise (different to wMR) asserts a pre-
determined outcome for the measurement prior to the unitary
rotation U that determines the measurement setting.

Let us consider the dynamics of Fig. 9, at time t2. As-
suming wMR, the value of λ

(A)
2 is determined at the time

t2 and determines the outcome for the pointer measurement
S(A)

2 . However, one may also consider the outcome of a mea-
surement S(A)

3 at the later time, made by applying a rotation
U (A)(π/4) and then measuring XA. If we assume dMR, then

this latter outcome can also be regarded as determined, and
we can assign the hidden variable λ

(A)
3 to the system at the

time t2. Similarly, assuming dMR, one may assign variables
λ

(B)
2 and λ

(B)
3 to system B, at time t2.

Extending this argument, the premise of dMR would imply
that the system A at time t1 can be ascribed simultaneous
predetermined values λ j for all three spin outcomes S j ( j =
1, 2, 3), regardless of the future unitary dynamics required
to actually perform the measurements, and hence implies the
Leggett-Garg inequality (24) to be satisfied. We have shown
in Sec. IV B that the Leggett-Garg inequality is predicted to be
violated. This implies that dMR is falsifiable by the proposed
experiment (Fig. 1).

3. Explanation

The apparent retrocausal effect can be explained as arising
from the failure of deterministic macroscopic realism (dMR).
In other words, the violations of the Leggett-Garg inequality
can be shown to arise as a failure of dMR.

We explain further. First, examining Fig. 10 for the
Leggett-Garg violations, we see that the macroscopic dynam-
ics of the sequences for 〈S(B)

1 S(A)
3 〉 and 〈S(B)

1 S(A)
2 〉 (Fig. 8)

involving only one unitary rotation are identical to those
of the nonentangled state ρmix [Eq. (26)]. Where one mea-
sures 〈S(B)

1 S(A)
2 〉 or 〈S(B)

1 S(A)
3 〉, the predictions P(XA, XB) for the

systems evolving from the entangled [|ψBell(t1)〉] and nonen-
tangled (ρmix) states remain indistinguishable throughout the
dynamics (compare the top sequences of Figs. 10 and 11).
This corresponds to there being no rotation (unitary evolu-
tion) at site B (Fig. 8). A distinction in fact exists, but at
the microscopic level of order h̄e−|α|2 , which is not visible
on the plots. These time sequences can therefore be modeled
by evolution of ρmix, which gives a dynamics consistent with
the macrorealism showing no violation of the Leggett-Garg
inequality.

Where one has two unitary rotations, one at each site as
in Fig. 9, there is no longer consistency with the predictions
of ρmix. There is a macroscopic difference for the evolution
where one measures 〈S(A)

3 S(B)
2 〉, which involves two unitary ro-

tations after t2, as depicted in Fig. 9. This is seen by comparing
the lower sequences of Figs. 10 and 11. If one starts with a
nonentangled state ρmix at time t2 [Fig. 11 (lower)], then al-
though the joint probabilities P(XA, XB) are indistinguishable
at t2, the joint probabilities differ macroscopically after the
evolution involving rotations at both sites (compare the last
pictures in the lower sequences).

We conclude that the violation of macrorealism and hence
the apparent retrocausality arises from the measurement of
〈S(A)

3 S(B)
2 〉 (i.e., 〈S(A)

2 S(A)
3 〉), as in Fig. 9. In measuring 〈S(A)

2 S(A)
3 〉

via 〈S(B)
2 S(A)

3 〉, as in the lower sequence of Fig. 10, the system
at A is entangled with B at time t2. There is no contradiction
with wMR, because the measurement of 〈S(B)

2 S(A)
3 〉 involves

two rotations after the time t2, one at A and one at B. The
premise wMR specifies a predetermined outcome λ j only for
the pointer measurement, and at any given time t j at a given
site, there can only be a preparation with respect to a single
pointer measurement, SJ (Fig. 12). The double rotation how-
ever allows a failure of deterministic macroscopic realism, as
explained in the last section.
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FIG. 12. Consistency with weak macroscopic realism is possible
for the time sequence of Fig. 9. The system at time t1 has valid hidden
variables λ

(A)
1 and λ

(B)
1 , being indistinguishable from ρmix. At time t2,

system A has valid λ
(A)
2 and λ

(A)
1 , the value of λ

(A)
1 being given by the

pointer measurement on B at the time t2. Similarly, system B at time
t2 has valid λ

(B)
1 and λ

(B)
2 . At time t3, the system A has valid λ

(A)
3 and

λ
(A)
1 , since the value of λ

(A)
1 can be given by the pointer measurement

at t3 on B. At time t3, system B has valid λ
(B)
1 and λ

(B)
3 (because λ

(B)
3

can be inferred from λ
(A)
3 ). At time t4, system A has valid hidden

variables λ
(A)
3 and λ

(A)
2 .

The assumption of weak macroscopic realism (wMR) im-
plies the following interpretation that assigns hidden variables
at each stage in the dynamics, as shown in Fig. 12. Following
Fig. 9, the system A at times t1 and t2 can be represented by
the hidden variables λ

(A)
1 and λ

(A)
2 (meaning that the pointer

measurements of S(A)
1 and S(A)

2 have predetermined outcomes).
The argument within the wMR model is that this is justified
because the predictions for pointer measurement S(A)

1 and S(A)
2

are identical with those arising from ρmix (there has been a
rotation at one site, A, only). This is also true of the system
B at time t1: it can be described by a λ

(B)
1 , for the reason

that the predictions are indistinguishable from those of ρmix.
Continuing, wMR implies that at time t2, A can also be consis-
tently represented by a hidden variable λ

(A)
1 because the value

S(B)
1 at B is determinable by a pointer measurement, without

further rotation. Also, because of the correlation with S(A)
2 ,

one would conclude λ
(B)
2 can be assigned to the state B at

the time t2 because the outcome after the unitary evolution
U (B)(π/4) is predetermined. However, it is not the case that
at time t2 the outcome of S(A)

3 is predetermined [if U (A)(π/4)
would be performed] because dMR fails. Hence, at time t2,
it is not true that the hidden variable λ3 can be assigned to
the state at A because the unitary rotation U (A)(π/4) has not
been performed. Regardless, this does not imply failure of
wMR because the dynamics associated with U (A)(π/4) is in
the future of t2.

On the other hand, if the unitary rotation U (B)(π/2) that
precedes the measurement S(B)

3 is performed prior to the time
t2 at B, then the state at A at time t2 can be assigned λ

(A)
3 ,

but can no longer be assigned λ
A)
1 at that time t2. This inter-

pretation allows for macroscopic Bell nonlocal effects when
there are unitary rotations at both sites, but is also consistent
with weak macroscopic realism (wMR) and hence does not
indicate macroscopic retrocausality.

FIG. 13. Schematic of Wheeler-CLP delayed-choice experiment.
A single-boson two-mode state |1〉a|0〉b is incident on the BS1. The
first beam splitter introduces a variable reflectivity given by θ with
output modes c and d . These two modes are again recombined
at a BS2 to produce final output modes e and f , with a variable
transformation angle φ.

V. DIMENSION WITNESS TEST

We next follow the approach of Chaves, Lemos, and Pien-
aar (CLP) [27], by demonstrating violation of the dimension
witness inequality [29,30,44–47]. Here, one considers two-
dimensional models and, within this framework, confirms the
failure of all nonretrocausal models. Our results extend be-
yond those of CLP because the conclusions of retrocausality
apply to the macroscopic qubits |α〉 and | − α〉 where α is
large, for which the binary outcomes of the relevant measure-
ments are distinguishable beyond h̄. This test makes concrete
the apparent retrocausality discussed in Sec. IV C, and eluci-
dates how this can be interpreted as due to the limitation of
the assumption of a two-dimensional hidden variable model.

We first consider the Wheeler-CLP delayed-choice exper-
iment performed with tunable beam splitters, which have
variable reflectivities. A single boson is incident on the beam
splitter, so that the input system is the two-mode state |1〉a|0〉b

(Fig. 13). The two modes (c and d) at the outputs of the beam
splitter have boson operators

ĉ = â cos θ − b̂ sin θ,

d̂ = â sin θ + b̂ cos θ. (27)

After the beam splitter, the state of the field in the interferom-
eter is

|ψ〉p = a†|0〉a|0〉b = cos θ |1〉c|0〉d + sin θ |0〉c|1〉d . (28)

This is the preparation state, prepared at time t1. The fields
pass through the interferometer, and are recombined at a sec-
ond beam splitter to produce final output modes e and f . The
beam-splitter transformation

ê = ĉ cos φ − d̂ sin φ,

f̂ = ĉ sin φ + d̂ cos φ (29)

constitutes the measurement, and gives the final state

|ψ〉m = cos(θ − φ)|1〉e|0〉 f + sin(θ − φ)|0〉e|1〉 f . (30)
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FIG. 14. The setup for a macroscopic Wheeler-CLP delayed-
choice experiment where we make use of the cat-state dynamics for
a prepare and measure scenario. An initial input of |α〉 undergoes a
nonlinear interaction HNL for a time tθ at the preparation stage, corre-
sponding to the BS1. A second interaction HNL is applied for a time
tφ at the measurement stage, which corresponds to the BS2. We make
use of a dimension test on the final output to demonstrate failure of
two-dimensional nonretrocausal models for the macroscopic system.

The binary outcomes |1〉c|0〉d and |0〉0|1〉d are denoted b = 1
and −1, respectively. The expectation value for b is E (θ, φ) =
cos2(θ − φ) − sin2(θ − φ) = cos[2(θ − φ)]. Certain choices
of angles θ and φ will violate the dimension witness inequal-
ity, as we show below.

We map the above scheme onto a macroscopic system
using the cat-state dynamics as shown by Fig. 14. The input
state is |α〉. The nonlinear interaction HNL replaces the beam
splitter interaction BS1. For certain choices of interaction time
tθ = mπ/8, where m is an integer, the system is prepared in
the superposition

|ψ〉p = e−iϕ (cos θ |α〉 + i sin θ | − α〉), (31)

where θ = tθ /2 and ϕ = tθ /2 is a phase factor. This is proved
in Appendix 3. Here we express time t in units of 
−1. The
measurement stage corresponding to the second beam splitter
consists of a second interaction HNL applied for a time tφ , so
that

|α〉 → |α〉t = e−iϕ2 (cos φ|α〉 + i sin φ| − α〉),

| − α〉 → | − α〉t = e−iϕ2 (cos φ| − α〉 + i sin φ|α〉) (32)

for certain choices of φ. The final state after the interaction is

|ψ〉 f = e−iHNLtφ/h̄|ψ〉p

= e−i(ϕ+ϕ2 )[cos θ (cos φ|α〉 + i sin φ| − α〉)

+ i sin θ (cos φ| − α〉 + i sin φ|α〉)]

= eiη[cos(θ + φ)|α〉 + i sin(θ + φ)| − α〉], (33)

where η is a phase factor. Identifying b = 1 as outcome |α〉
and b = −1 as outcome | − α〉, we obtain the results

E (θ, φ) = cos[2(θ + φ)] (34)

similar to those obtained for the modified Wheeler-CLP
delayed-choice experiment described above. It is emphasized
that the expression for E (θ, φ) is only true for certain values
of θ and φ, where (31) and (32) hold.

The setup is an example of a prepare and measure scenario
considered by CLP [27]. In their notation, the first measure-
ment setting tθ is denoted by θ and the second tφ is denoted by
φ. They derived a dimension witness inequality (DWI) that
is satisfied for nonretrocausal models of no more than two
dimensions. In our notation, this inequality for the preparation

FIG. 15. Contour plots for the Q function Q(x, p) as the system
of Fig. 14 evolves from the coherent state |α〉 at time t1 = 0. (Top)
In this sequence, the first interaction HNL acts for a time t2 = tθ ,
preparing the system in the two-state superposition |ψ〉p [Eq. (31)]
at the time t2 = tp. This is followed by a second interaction HNL for
a time tφ to produce a final state at time t3 = tm. Here, θ = π/4 and
φ = −π/8. (Lower) The lower sequence depicts the system prepared
at the time tp in a mixture of states |α〉 and | − α〉. This occurs if
the system is measured at that time, in such a way that the system
collapses to the mixture. The system then evolves according to HNL

for a time tφ to produce the final state at time t3 = tm.

settings θ , θ ′, θ ′′ and the measurement settings φ, φ′ is

IDW = |E (θ, φ) + E (θ, φ′) + E (θ ′, φ)

− E (θ ′, φ′) − E (θ ′′, φ)| � 3, (35)

where here E (θ, φ) = cos[2(θ + φ)]. The tθ and tφ denote the
time settings at the respective beam-splitter interactions HNL.
If we violate DWI, then this indicates failure of all nonretro-
causal classical two-dimensional models, therefore implying
retrocausality if we are to view the system as observing a
two-dimensional classical realist model. For such a classical
two-dimensional model, one would conclude that the choice
of measurement φ affects the earlier state.

It is known that for the solution E (θ, φ) = cos[2(θ − φ)]
given by Eq. (34), violation of the DW inequality is possible,
the maximum value for IDW being IDW = 1 + 2

√
2 = 3.8284.

The angle choices are θ = π/8, θ ′ = 3π/8, θ ′′ = −π/4, φ =
π/4, φ′ = 0 [27]. In the macroscopic case where the solution
is E (θ, φ) = cos[2(θ + φ)], we select θ = π/8, θ ′ = 3π/8,
θ ′′ = 7π/4, φ = 7π/4, φ′ = 0. For these angle choices, the
two-state solution (32) holds (refer Appendix 3), as necessary
for a macroscopic two-state test. The maximum violation
IDW = 1 + 2

√
2 is possible for this choice of angles. We may

also select θ = π/4, θ ′ = π/2, θ ′′ = 7π/8, φ = 13π/8, φ′ =
15π/8.

In Fig. 15, we plot the Q function for the state of the system
at the times t0, tp, and tm. The Q function is defined as

Q(x, p) = 1

π
〈α0|ρ|α0〉, (36)

where |α0〉 is a coherent state, and α0 = x + ip. The two-state
dynamics is evident, as the system evolves under the action
of HNL. The HNL provides the rotation into the superposition
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state, in analogy to the beam-splitter interaction. Also plotted
in Fig. 15 is the Q function where the system at the time tp is
prepared in a mixture of |α〉 and | − α〉. This applies where the
system in the superposition at tp is measured, so that an exper-
imentalist may determine which of the two states the system
was in at the time tp (according to the macro-realist model).
In fact, the Q function for the superposition (top graph) differs
from that of the mixture (lower graph) by terms of order
e−|α|2 . For α > 1, this difference is not visually noticeable
on the scale of the plots. It is noted, however, that after the
subsequent rotation Hφ

NL (φ 
= 0), the Q functions provided
from the superposition (top graph at time tm) and the mixture
(lower graph at tm) are macroscopically distinguishable.

The Q function Q(x, p) corresponds to antinormally or-
dered moments, and hence does not directly correspond to the
measured probabilities for x and p at the microscopic level of
h̄. However, at the macroscopic level where one distinguishes
between the two states |α〉 and | − α〉, the Q function ac-
curately depicts the relative probabilities, i.e., the weighting
of the two peaks as pictured in the plots corresponds to the
relative probabilities for the binary outcomes b = 1 and −1.
The extra terms of order e−|α|2 are negligible.

The violation of the dimension witness inequality indicates
failure of two-dimensional nonretrocausal wMR models. This
is not inconsistent with the nonretrocausal interpretation given
by Sec. IV C because the phase-space dynamics relies on a
continuum of values for X and P. At time t2 = tp, there is
no distinction between the macroscopic two-state depictions
Q(x, p) (compare also the pictures at t2 for the lower se-
quences of Figs. 10 and 11). Yet, there are differences of order
h̄e−|α|2 . It is due to these microscopic differences between the
superposition (entangled) and mixed (nonentangled) states,
evident in the full phase-space distribution at t2, that there is
a different dynamics, leading to a macroscopic difference in
E (θ, φ) at the later time t3 = tm.

VI. WEAK MACROSCOPIC REALISM AND EPR
PARADOXES AT A MICROSCOPIC LEVEL

In the previous sections, we show how to realize macro-
scopic paradoxes involving Leggett-Garg and dimension
witness inequalities. While there is a contradiction be-
tween deterministic macroscopic realism (dMR) and quantum
mechanics for these paradoxes, inconsistency with weak
macroscopic realism (wMR) is not demonstrated at this
macroscopic level. However, inconsistencies arise at the mi-
croscopic level.

In this section, we show that at a microscopic level where
measurements resolve at the level of h̄, the premises of
wMR and local causality give EPR-type paradoxes [37]. This
implies that there is inconsistency between each of these
premises and the completeness of quantum mechanics. EPR
paradoxes involving local causality have been illustrated pre-
viously for macroscopic superpositions of type [69,70]

|ψ〉 = 1√
2

(|α〉| ↑〉 + | − α〉| ↓〉), (37)

often taken as an example of a “Schrödinger cat”
state [71–73]. The approach here is similar since for large β,
the coherent states |β〉 and | − β〉 are orthogonal qubits.

A. EPR paradox using local causality

We consider the bipartite system prepared in the Bell state

|ψBell〉 = 1√
2

(|α〉| − β〉 − | − β〉|α〉) (38)

at time t2, as for (14). The original EPR argument shows
incompatibility between the premise of local realism and the
completeness of quantum mechanics [37]. The EPR argument
was generalized to allow for imperfect correlation between the
two sites in [74], including for spin systems in [75,76]. Here,
we apply this generalization to illustrate the paradox for the
entangled Bell cat state.

The EPR argument considers the prediction for XA, given
a measurement at B. For large β, a measurement of S(B)

2 at
B will “collapse” system A to the quantum state |α〉 or | −
α〉, implying a variance (�XA)2 = 1

2 for A, conditioned on the
result for S(B)

2 . We write this conditional variance as �2
infXA ≡

(�infXA)2 = 1
2 , the variance for the inference of XA given the

measurement at B.
The EPR argument then considers the prediction for PA of

system A at time t2, as can be inferred from a measurement
made at B. Here, we propose that the measurement made at B
be given by UB(t2)−1 followed by a measurement of S(B)

2 (the
sign of XB). The state after the transformation UB(t2)−1 is (15),
and the measurement of S(B)

2 allows an inference of the value
of PA, of system A at time t2. The measurement of S(B)

2 at B
“collapses” system A to either U (A)

π/8|α〉 or U (A)
π/8| − α〉. Follow-

ing the method of [74], the inferred statistics is thus given by
U (A)

π/8|α〉 or U (A)
π/8| − α〉, which are superpositions (16) of |α〉 or

| − α〉, and for which the conditional distributions are P+(PA)
and P−(PA) of Eq. (17), respectively. These distributions show
fringes, and have the variance �2

infPA for P. This variance of
the inferred value for PA is [70]

�2
infPA = 1

2 − |α|2e−4|α|2 . (39)

The level of combined inference is

ε = �infXA�infPA < 1
2 , (40)

which is below the value for the uncertainty principle
�XA�PA � 1

2 , thus implying an EPR paradox [74].
It is also known that the observation of (40) demonstrates

an EPR steering [77–80]. If Bell’s premise of local causality
is assumed valid, the condition (40) is paradoxical because
it implies that the system A cannot be specified as being
in any mixture of localized quantum states ϕ+ or ϕ− (since
such states would need to violate the uncertainty princi-
ple) [77–80]. This negates the hypothesis that the system
of (38) can be regarded as being in either |α〉 or | − α〉 (or
indeed in any ϕ+ or ϕ− if these are to be quantum states) in a
way that is consistent with local causality. The original EPR
paradox assumes local realism, a more specific form of local
causality useful when one has perfectly correlated results for
both conjugate measurements.

In the above prediction for the EPR inequality, it is as-
sumed that an idealized measurement at B “collapses” system
A into one or other of the coherent states. In a more rigorous
analysis, we evaluate the conditional statistics for system A
using the specific proposal for the measurement at B, where
the sign of XB is measured, as in the calculations of Sec. IV.
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FIG. 16. Plots showing the violation of the macroscopic EPR
inequality (40). We first plot (left) E2 given by Eq. (39). The same re-
sult is given for E2

M which defines the macroscopic paradox, Eq. (43).
The second plot (right) shows the full calculation for E2 given by
Eqs. (41) and (42) based on the proposed method to measure β using
XB, which becomes optimal when β is sufficiently large. Here, we
show E2 versus α for β = 0.5, 1, and 2.

This gives for the state (14) an inference variance in XA of

�2
infXA = 1

2
+ 2|α|2

(1 − e−2|α|2−2|β|2 )
− 2|α|2erf(

√
2|β|)2

(1 − e−2|α|2−2|β|2 )2
.

(41)

The full details are given in Appendices 1 and 2. Similarly, the
inferred variance for P is calculated assuming the state (15).
We find

�2
infPA = 1

2
+ 2|α|2

(e2|α|2+2|β|2 − 1)
− |α|2erf(

√
2|β|)2

{e2|α|2 − e−2|β|2}2
. (42)

In the limit of large β, where the measurement becomes ideal,
we see that �2XA → 1

2 and �2PA reduces to (39), consistent
with the arguments above. Figures 16 and 17 plot ε2 for vary-
ing β. The results become indistinguishable from the ideal
case for larger β.

B. EPR paradox based on weak macroscopic realism

The original EPR paradox argues the incompleteness of
quantum mechanics based on the assumption of local realism,
or local causality, as above. One may also argue an EPR para-
dox based on the validity of weak macroscopic realism [33].
We summarize this result, for the purpose of comparison.

The cat state for system A is the superposition c+|α〉 +
ic−| − α〉 (for α large), where c+ and c− are real probability
amplitudes. Weak macroscopic realism (wMR) postulates that
the system A in such a state is actually in one or other state ϕ+
and ϕ− for which the value of the macroscopic spin S(A)

2 is

FIG. 17. Plots showing the violation of the macroscopic EPR
inequality (40). The notation is as for Fig. 16. Here, we give a closeup
of results for the full calculation showing the cutoff values of β

needed for E2 < 1
4 , for larger α.

determined. While there is a macroscopic separation between
the two outcomes, there remains a constraint on the range of
XA that is allowed for the states ϕ+ and ϕ−. The spin S(A)

2 is
measured from the quadrature amplitude XA (as the sign of
XA). The distribution P(XA) for XA gives two distinct Gaussian
hills, each with variance (�XA)2 = 1

2 [34]. Following [33],
one may specify the variance of XA for the states ϕ+ and ϕ−.
We denote the specified variances as (�XA)2

+ and (�XA)2
−,

respectively. With the assumption that ϕ+ and ϕ− are to be
quantum states, the uncertainty relation (�XA)(�PA) � 1

2 ap-
plies to each state. Then, as explained in [38], for systems in a
classical mixture of states ϕ+ and ϕ− (with respective proba-
bilities P+ and P−), it is readily proved that (�XA)ave(�PA) �
1
2 , where (�XA)2

ave = P+(�XA)2
+ + P−(�XA)2

−. The violation
of

εM ≡ (�XA)ave(�PA) � 1/2 (43)

will therefore imply incompatibility of wMR with the com-
pleteness of quantum mechanics, since in this case the states
ϕ+ and ϕ− cannot be represented as quantum states. Since
here (�XA)ave → 1

2 [or more precisely (�XA)ave ≯ 1
2 ], we find

the inequality (43) is violated for (�PA)2 < 1
2 . This is the

case for the Leggett-Garg gedanken experiment, where the
distribution P(PA) at times t2 and t3 is given by Eq. (17).
The variance is [70]

(�PA)2 = 1
2 − α2e−4α2

. (44)

The violation is plotted in Figs. 16 and 17.

C. Discussion

In conclusion, if one assumes weak macroscopic realism
(wMR) for the state in a superposition of |α〉 and | − α〉,
then the fringe distributions shown in Fig. 5 do not indicate
that the system cannot be regarded as having a definite value
for the macroscopic spin (as sometimes interpreted). Rather,
the fringes signify that those states ϕ+ or ϕ− which would
have definite macroscopic spin values (if defined consistently
with wMR) cannot be given as quantum states. There is an
incompleteness of quantum mechanics, if wMR is to be valid.

The original EPR paradox concluded inconsistency be-
tween local realism and the completeness of quantum
mechanics [37]. Bell later showed that local realism itself can
be falsified [36]. Similarly, the EPR paradox of Sec. VI A
shows inconsistency between local causality (at the level of
h̄) and the completeness of quantum mechanics. However, the
assumption of local causality has also been falsified, based
on Bell theorems [40,41], thereby apparently resolving the
paradox. By contrast, the EPR-type paradox explained in
Sec. VI B is not readily resolved in the same manner. This
paradox shows inconsistency between wMR and the com-
pleteness of quantum mechanics [33]. However, there is to
date no obvious way to falsify wMR. The paradox involving
weak macroscopic realism is hence different and stronger.

While this paper studies the EPR paradox associated
with a macroscopic superposition state constructed from co-
herent states, similar EPR paradoxes have been formulated
for other types of macroscopic superposition states, e.g.,
for NOON states [81,82] and Greenberger-Horne-Zeilinger
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(GHZ) states [70,83]. However, these paradoxes give in-
consistencies for local causality, or local realism. Less is
known about paradoxes that illustrate the inconsistency be-
tween weak macroscopic realism and the incompleteness of
quantum mechanics, although related examples were given
for number-state superpositions in [38]. We expect such para-
doxes may also be possible for NOON and GHZ states, and for
the higher-dimensional extensions of the GHZ states [84–86].

The method of “irrealism” also gives a way to investigate
the incompleteness of quantum mechanics along the lines pro-
posed by EPR [87]. In fact, recent work applies this concept
to analyse the double slit experiment [88].

VII. CONCLUSION

In this paper, we have illustrated how one may perform
delayed-choice experiments using superpositions of two co-
herent states. We map the original proposals involving spin
qubits (| ↑〉 and | ↓〉) onto macroscopic tests, where the
qubits are coherent states |α〉 and | − α〉 (α → ∞). In the
mapping, the choice to measure a particular spin component
corresponds to a choice of interaction time for a unitary
transformation realized by a nonlinear Hamiltonian. We also
outline Einstein-Podolsky-Rosen–type tests that suggest the
incompleteness of quantum mechanics based on the premises
of macroscopic realism.

A summary of the models of macroscopic realism that are
negated by the predictions of the experiments proposed in this
paper is given in Sec. II. In order to counter interpretations that
would suggest macroscopic retrocausality, we have demon-
strated consistency of the predictions with the concept of weak
macroscopic realism (wMR). We find, however, a direct nega-
tion of deterministic macroscopic realism (dMR). We also find
it possible to negate models consistent with weak macroscopic
realism (wMR) that are limited to two dimensions, or else that
postulate the underlying macroscopically distinct states in the
definition of wMR to be quantum states.

The conclusions possible for each of the experiments pro-
posed in this paper are consistent but complementary. In
Sec. III, we presented a version of the delayed-choice quan-
tum eraser experiment, using entangled cat states. The loss
of which-way information shows as interference fringes in
distributions for the quadrature phase amplitude P. We argued
the signature is at the microscopic level of h̄ (since the fringes
must be finely resolved) and hence that there is no evidence of
macroscopic retrocausality.

Motivated further, in Sec. IV we examined a delayed-
choice version of a bipartite macroscopic Leggett-Garg test
for the entangled cat states. Here, the measurements are
macroscopically coarse grained and the test explicitly demon-
strates failure of macrorealism. Macrorealism combines wMR
with the assumption of noninvasive measurability at a macro-
scopic level. The delayed-choice nature of the measurement
is then suggestive of an apparent macroscopic retrocausality.
We countered this interpretation by showing how the violation
of the Leggett-Garg inequality can be explained using the
concept of deterministic macroscopic realism (dMR). The
premise of dMR is stricter than that of wMR. We showed
that the violation falsifies dMR but can be viewed consistently

with wMR, thus avoiding the interpretation of macroscopic
retrocausality. The nonretrocausal interpretation is supported
by the observation that the failure of macrorealism (and dMR)
occurs for this bipartite system only where there is unitary
dynamics after preparation (in the form of basis rotations that
determine the measurement settings) at both sites.

In Sec. V, the apparent macroscopic retrocausality of the
Leggett-Garg setup is demonstrated in a concrete way, by
showing violation of the dimension witness inequality, as in
the work of Chaves, Lemos, and Pienaar [27]. This implies
failure of all two-dimensional nonretrocausal wMR models.
It is explained, however, that one may avoid the conclusion
of macroscopic retrocausality, if one allows for higher di-
mensions within the wMR model. This is consistent with the
observation that the nonclassical dynamics of the cat states
involves a continuum of variables.

We further showed in Sec. VI that, although the macro-
scopic experiments are consistent with weak macroscopic
realism (wMR), EPR paradoxes exist for measurements giv-
ing a microscopic resolution. The paradoxes demonstrate the
incompleteness of quantum mechanics, based on the assump-
tions of either local causality (as applied to cat states), or
else wMR. The paradox based on wMR is a strong paradox,
because it has not been shown that wMR is falsifiable.

It is interesting to consider the prospect of an ex-
periment. The two-mode entangled cat states have been
generated [48,89,90]. The significant challenge is to real-
ize the unitary rotation, which is given by the Hamiltonian
HNL = 
n̂4 with a quartic dependence on the field boson
number. The quantum eraser can be carried out more straight-
forwardly, using the interaction HNL = 
n̂2, which has been
experimentally achieved as a Kerr nonlinearity [49,50]. Re-
alizations may also be possible using NOON states and
nonlinear beam-splitter interactions [32], or Greenberger-
Horne-Zeilinger states and CNOT gates [91].

Finally, we point out that, similar to other delayed-choice
tests, the Leggett-Garg test proposed in this paper could be
performed with microscopic or photonic Bell states, where
the unitary rotations are carried out in the standard way us-
ing polarizing beam splitters. The motivation of the proposal
using cat states is to more strongly justify interpretations that
avoid conclusions of macroscopic retrocausality. Nonetheless,
an analogous interpretation of the experiments involving the
standard microscopic qubit states | ↑〉 and | ↓〉 is also pos-
sible. In this interpretation, the system is prepared after the
unitary interaction that determines the measurement setting in
a superposition of pointer states which have a definite spin
value. Within that interpretation, a realism is assigned to this
system: the system is in a state with a definite value for the
final pointer measurement. The apparent retrocausality can
then be explained as a failure of deterministic (local) realism,
where the values of spin are assumed to be determined prior
to the unitary interaction.
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APPENDIX

1. Quantum eraser and EPR calculation

Here, we give details for the superposition Uπ/8| ± α〉 = e−iπ/8{cos π/8| ± α〉 + i sin π/8| ∓ α〉} examined in Sec. III. The
calculations for the superposition Uπ/4| ± α〉 are similar.

It is straightforward to evaluate P(PA)+ = |〈PA|Uπ/8|α〉|2 and P(PA)− = |〈PA|Uπ/8| − α〉|2 for the simple case. For the
accurate calculation based on the actual measurements that would be used, one considers |ψ (t4)〉 and evaluates P(PA, XB) =
|〈XB|〈PA|ψ (t4)〉|2:

P(PA, XB) = 2
exp(−P2

A − X 2
B − 2|β|2)

π (1 − e−2|α|2−2|β|2 )

{
sin2(

√
2PA|α|) + sinh2(

√
2XB|β|) −

√
2

4
sin(2

√
2PA|α|) sinh(2

√
2XB|β|)

}
. (A1)

This gives the result (18) using P(PA)± = P(PA|XB ≷ 0) and

P(XB) =
∫

P(PA, XB)dPA = exp(−X 2
B − 2|β|2)√

π (1 − e−2|α|2−2|β|2 )

(
1 − e−2|α|2 + 2 sinh2(

√
2XB|β|)). (A2)

To evaluate the EPR correlations, we calculate the variance of P(PA)±. We find for the simple analysis

∫
PAP(PA)±dPA = 1

π1/2

{∫
PAe−P2

A dPA∓ 1√
2

∫
PAe−P2

A sin(2
√

2PA|α|)dPA

}

= 1

π1/2

{
0∓ 1√

2

√
2
√

π |α|e−2|α|2
}

= ∓|α|e−2|α|2 ,

∫
P2

AP(PA)±dPA = 1

π1/2

{∫
P2

Ae−P2
A dPA∓ 1√

2

∫
P2

Ae−P2
A sin(2

√
2PA|α|)dPA

}

= 1

π1/2

{√
π

2
∓0

}
= 1

2
(A3)

which gives the result (39). For the complete measurement, we use the full result (18) for P(PA)±. Integration gives

∫
PAP(PA)±dPA = ∓ |α|erf(

√
2|β|)

{e2|α|2 − e−2|β|2} ,
∫

P2
AP(PA)±dPA = 1

2
+ 2|α|2

(e2|α|2+2|β|2 − 1)
(A4)

leading to (42).

2. Calculation of EPR correlations

We first evaluate �2
in f XA for the state (14). The inferred variance is defined as

�2
infXA = P(XB > 0)�2

+XA + P(XB � 0)�2
−XA, (A5)

where clearly P(XB > 0) = 1
2 . The conditional distributions are defined

P+(XA) = P(XA|XB > 0) =
∫ ∞

0 P(XA,XB )dXB∫ ∞
0 P(XB )dXB

(A6)

and similarly P−(XA) = P(XA|XB � 0), which, after evaluation of P(XA, XB) for the entangled cat state, gives

P(XA)± = 2N 2e−X 2
A −2|α|2

√
π

{cosh(2
√

2|α|XA) ∓ erf(
√

2|β|) sinh(2
√

2|α|XA) − e−2|β|2}. (A7)
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The variance of these distributions is �2
±X̂A = 〈X̂ 2

A 〉 − 〈X̂A〉2 where

〈X̂A〉± = ∫
P±(XA)XAdXA = ∓√

2|α|erf(
√

2|β|)(
1 − e−2|α|2−2|β|2) ,

〈
X̂ 2

A

〉
± = ∫

P±(XA)X 2
A dXA = 1

2
+ 2|α|2(

1 − e−2|α|2−2|β|2) . (A8)

This leads to the result

�2
infXA = 1

2
+ 4N 2|α|2 − 8N 4|α|2erf(

√
2|β|)2 = 1

2
+ 2|α|2

(1 − e−2|α|2−2|β|2 )
− 2|α|2erf(

√
2|β|)2

(1 − e−2|α|2−2|β|2 )2
. (A9)

Similarly, we evaluate �2
in f PA for the state (15). Here,

�2
infPA = P(XB > 0)�2

+PA + P(XB � 0)�2
−PA.

We first evaluate evaluate the conditional distributions of

P+(PA) = P(PA|XB > 0) =
∫ ∞

0 P(PA,XB )dXB∫ ∞
0 P(XB )dXB

(A10)

and, similarly, P+(PA) = P(PA|XB � 0) =
∫ ∞

0 P(PA,XB )dXB∫ 0
−∞ P(XB )dXB

using

P(PA, XB) = |〈XB|〈PA|ψ (t4)〉|2 = e−P2
A

√
π{1 − e−2|α|2−2|β|2}

{
1 − e−2|β|2 cos(2

√
2PA|α|) −

√
2

2
erf(

√
2|β|) sin(2

√
2PA|α|)

}
.

(A11)

This gives

P±(PA) = 2N 2e−P2
A√

π

{
1 − e−2|β|2 cos(2

√
2PA|α|) ∓

√
2

2
erf(

√
2|β|) sin(2

√
2PA|α|)

}
. (A12)

Hence,

〈P̂A〉± =
∫

P±(PA)PAdPA = ∓|α|e−2|α|2 erf(
√

2|β|)
{1 − e−2|α|2−2|β|2} ,

〈
P̂2

A

〉
± =

∫
P±(PA)P2

AdPA = 1

2
+ 2|α|2

{e2|α|+2|β|2 − 1} (A13)

which leads to

�2
infPA = 1

2
+ 4N 2|α|2e−2|α|−2|β|2 − 4N 4|α|2e−4|α|2 erf(

√
2|β|)2 = 1

2
+ 2|α|2e−2|α|−2|β|2

{1 − e−2|α|2−2|β|2} − |α|2e−4|α|2 erf(
√

2|β|)2

{1 − e−2|α|2−2|β|2}2
. (A14)

3. Cat-state dynamics for the dimension witness test

In this section we consider the two-state solution for the dynamically evolved macroscopic cat states under a nonlinear
interaction. Considering α to be real, for an initial coherent state |α〉 undergoing an evolution with a nonlinear interaction HNL,
the state created after an interaction time tθ can be written as

|α, tθ 〉 = exp

[
−|α|2

2

] ∞∑
n=0

αn exp(−i
tθnk )√
n!

|n 〉. (A15)

We restrict to k = 4. Let us constrain to tθ = mπ/8 where m is an integer and choose the units of time such that 
 = 1. To obtain
the two-state solution in terms of |α〉 and | − α〉, we require solutions of type

exp

[
−|α|2

2

]∑
n

αn exp(−im π
8 n4)√

n!
|n〉 = exp

[
−|α|2

2

] ∑
n

A
αn

√
n!

|n〉 + exp

[
−|α|2

2

] ∑
n

B
(−1)nαn

√
n!

|n〉, (A16)

where A and B are constants. Now since the summation indices are the same, this requires exp(−im π
8 n4) = A + (−1)nB. By

assigning n = 0, 1 we find A + B = 1 and e−im π
8 = A − B, giving the solutions as

A = e−im π
16 cos

(
m

π

16

)
, B = ie−im π

16 sin
(

m
π

16

)
. (A17)

Hence, we propose that for all integers n such that n = 0, 1, 2, . . .

exp
(
−im

π

8
n4

)
= e−im π

16

[
cos

(
m

π

16

)
+ (−1)ni sin

(
m

π

16

)]
. (A18)
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We now prove this to be true. For even n, we see that the right side of Eq. (A18) satisfies RHS = 1. We can write n = 2J where
J = 1, 2, . . . in which case n4 = (2J )4= 16J4 . Then we see that the left side (LHS) of Eq. (A18) satisfies LHS = 1, since m is an
integer. Next we consider odd n. We see that RHS = e−im π

8 . We can write n = 2J + 1, where J is an integer, J � 1. We now show
that n4 = (2J + 1)4 = 16M + 1, where M is integer. This is proved by considering (2J + 1)4 = 16J4 + 32J3 + 24J2 + 8J + 1
from which we see that the condition holds if J is even. Then also (2J + 1)4 − 1 = 16{J4 + 2J3 + J

2 (3J + 1)}. This gives the
result since 3J + 1 is even if J is odd and the term {J4 + 2J3 + J

2 (3J + 1)} becomes an integer for all values of J . Hence,
LHS = exp(−im π

8 ). Hence, we can write a two-state solution for time multiples of π/8, as

|α, tθ 〉 = e−itθ /2[cos(tθ /2)|α〉 + i sin(tθ /2)|−α〉], (A19)

where tθ = m π
8 .
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