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Relativistic free-motion time-of-arrival operator for massive spin-0 particles with positive energy

Philip Caesar Flores * and Eric A. Galapon †

Theoretical Physics Group, National Institute of Physics University of the Philippines Diliman, 1101 Quezon City, Philippines

(Received 2 March 2022; accepted 16 May 2022; published 8 June 2022)

A relativistic version of the Aharonov-Bohm time-of-arrival operator for spin-0 particles was constructed
by Razavi [Il Nuovo Cimento B 63, 271 (1969)]. We study the operator in detail by taking its rigged Hilbert
space extension. It is shown that the rigged Hilbert space extension of the operator provides more insights into
the time-of-arrival problem that goes beyond Razavi’s original results. This allows us to use time-of-arrival
eigenfunctions that exhibit unitary arrival to construct time-of-arrival distributions. The expectation value is also
calculated and shown that particles can arrive earlier or later than expected classically. Last, the constructed
time-of-arrival distribution and expectation value are shown to be consistent with special relativity.
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I. INTRODUCTION

At two extremes, classical mechanics branches out to rel-
ativity and quantum theory. However, the unification of the
two theories under a single framework is hindered by the
incompatible notions of time [1]. Quantum mechanics treats
time only as a parameter that governs the evolution of the
system in the same way that we use time in Newton’s equa-
tions of motion to calculate the position of a particle after
a specific interval has elapsed. Meanwhile, time in general
relativity plays a dynamic and intrinsic role in the evolution
of the system.

The problem becomes apparent when we consider the time
of arrival (TOA) of a particle. The classical TOA can be
calculated by inverting the particle’s equation of motion. In
special relativity, we can calculate the TOA of a particle as
measured in a particular Lorentz frame and perform a Lorentz
transform to calculate the TOA as measured in another frame.
However, standard quantum mechanics offers no solution to
the TOA problem.

The prevalent von Neumann formulation of quantum me-
chanics implies that time is not an observable; thus, TOA
is also not treated as an observable and it is nonsensical to
ask the TOA of a quantum particle. The demotion of time as
a parameter in quantum mechanics is mainly due to Pauli’s
theorem which states that there is no self-adjoint time op-
erator that is canonically conjugate with its corresponding
semibounded system Hamiltonian [2]. This has lead the con-
struction of TOA operators to either give up self-adjointness
or conjugacy with the Hamiltonian to bypass Pauli’s theorem.

The earliest detailed investigation on a TOA operator was
due to Aharonov and Bohm [3] where they considered a
symmetric quantization of the classical TOA of a free particle

T̂AB = −μ
q̂p̂−1 + p̂−1q̂

2
, (1)
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where μ is the mass of the particle. The Aharonov-Bohm
TOA operator is Hermitian but not self-adjoint; instead, it is
a maximally symmetric operator [4]. Grot, Rovelli, and Tate
traces the non-self-adjointness of T̂AB to the singularity at
p = 0 and constructed a regularized TOA operator [5]. A self-
adjoint variant of T̂AB was proposed by Kijowski, Delagado,
and Muga by considering the combination

T̂KDM = T̂AB�(p̂) − T̂AB�(−p̂), (2)

where �(z) is the heaviside function [6,7]. The first (second)
term of T̂KDM only acts on the positive (negative) subspace of
the system Hilbert space. This combination bypasses Pauli’s
theorem because T̂KDM is not canonically conjugate to the
system Hamiltonian; instead,

[sgn(p̂)Ĥ, T̂KDM] = ih̄, (3)

where sgn(p̂) is the sign function.
Pauli’s proof was only formal, i.e., without regard to the

domains of the operators involved and to the validity of the
operations leading to his conclusion. One of us has shown
that Pauli has made some implicit assumptions and that these
were inconsistent [8]. This opens up an avenue to still consider
TOA as an observable in standard quantum mechanics [9–26].
Moreover, it was discussed in Ref. [11] that a time-operator-
based theory of quantum arrival has an unexpected connection
with the collapse of the wave function on the appearance of a
particle. In our pursuit to promote time as an observable in
quantum mechanics, it is reasonable to investigate the possi-
bility of a relativistic TOA operator to extend the insights of
Ref. [11] to the relativistic regime.

The construction of such an operator seems natural because
special relativity tells us to treat space and time on equal
footing as components of a four-vector, and thus it is natural
to promote time as an observable with a corresponding oper-
ator because we also treat position as an operator. A caveat
is that relativistic quantum mechanics is not a well-defined
one-particle theory. This can lead to spontaneous pair creation
such that if we perform a TOA experiment for a relativistic
particle, then we are not sure if the particle that arrived is the
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same particle we started with. Nevertheless, we know that if
one performs a TOA experiment, then we will obtain a TOA
distribution. Assuming that TOA is a dynamical observable, is
this TOA distribution generated by the spectral resolution of a
corresponding TOA operator? If so, then how do we construct
this relativistic TOA operator?

In nonrelativistic quantum mechanics, one of us has pro-
posed several methods to construct TOA operators for the free
and interacting case by either solving the time-energy canoni-
cal commutation relation, quantizing the classical TOA, or by
solving the time kernel equation [10,22]. The resulting TOA
operators are Hermitian, canonically conjugate with the sys-
tem Hamiltonian, and reduce to the classical TOA in the limit
as h̄ → 0. Furthermore, the TOA eigenfunctions, which are
referred to as non-nodal and nodal, exhibit unitary arrival, i.e.,
they unitarily evolve through time to localize at the intended
arrival point at their corresponding eigenvalues [13,14,22,27].
We postulate that the same properties should also be seen in
our relativistic TOA operators.

In general, not all operators in nonrelativistic quantum
mechanics can be transferred to the relativistic regime because
the eigenvalues and expectation values of the operator are not
equal to the corresponding classical quantity [28]. But despite
the debates on time’s status as a dynamical observable in
nonrelativistic quantum mechanics, e.g., time of arrival, there
have been attempts to construct a corresponding relativistic
TOA operator. The earliest construction of a such an operator
was done by Razavi wherein TOA was treated as a constant
of motion and applying a simple symmetric ordering to the
quantization [29]. For spin-0 particles with positive energy
Ep =

√
p2c2 + μ2c4, the TOA operator has the form

T̂Ra = −μ

2

(√
1 + p̂2

μ2c2
p̂−1q̂ + q̂

√
1 + p̂2

μ2c2
p̂−1

)
, (4)

where μ is the rest mass of the particle and arrival point at x =
0. This operator is canonically conjugate to the free Hamil-
tonian

√
p̂2c2 + μ2c4 and is the relativistic version of T̂AB.

For spin-1/2 particles, Razavi applied a Foldy-Wouthuysen
transform on Eq. (4). The same operator for spin-0 parti-
cles was also recently obtained in Ref. [30] by enlarging
the system Hilbert space to include time as a dynamical ob-
servable. They then used the positive energy solution of the
Klein-Gordon equation to construct a positive operator valued
measure (POVM) whose first moment coincides with T̂Ra.

In spite of T̂Ra being the earlieast known relativistic free
TOA operator, it was not studied in much detail in the same
way as T̂AB. There have been several other studies on the
construction of relativsitic free TOA operators for spin-0 and
spin-1/2 particles with each having proposed a different op-
erator [29,31–38]. Another TOA operator for spin-0 particles
was proposed in Ref. [31] by inverting the equation of mo-
tion of the position operator using a suitable ordering rule
that reduces to the nonrelativistic TOA operator proposed by
Grot, Rovelli, and Tate [5]. A relativistic TOA operator for
spin-1/2 particles was proposed in Ref. [32] using a total sym-
metrization of the relativistic TOA and imposing conjugacy
with the Dirac Hamiltonian in one dimension. Reference [33]
proposed a self-adjoint TOA operator for spin-1/2 particles
wherein the resulting commutation relation is analogous to the

position-momentum commutation relation. Last, one-particle
TOA operators for spin-0 and spin-1/2 particles were pro-
posed in Refs. [37] and [38] by solving the canonical
commutation relation using the Bender-Dunne basis operators
[39–41] and performing a Feshbach-Villars transformation
[28,42] to diagonalize the TOA operator which separates the
positive and negative energy components of the wave func-
tions. Explicitly, the action of the one-particle operator of
Refs. [37] and [38] on a wave function ψ̃ (p) is

T̂BGψ̃ (p) = − σ̂3
ih̄

c2

(
Ep

p

d

d p
− 1

2

μ2c4

p2Ep

)
ψ̃ (p)

= σ̂3T̂Raψ̃ (p), (5)

where σ̂3 is a Pauli spin matrix. This implies that T̂Ra is the
positive energy component of the one-particle operator T̂BG.

The purpose of this paper is to provide a detailed study
of the operator T̂Ra by taking its position space representation
within the rigged Hilbert space (RHS) formulation of quantum
mechanics [22,43–46]. This is in contrast to Razavi’s results
[29] wherein he used the momentum space representation
of the operator. It turns out that the rigged Hilbert space
extension of T̂Ra provides more insight to the TOA problem
than that of Razavi’s. Specifically, its eigenfunctions exhibit
unitary arrival in the same way as that of the nonrelativistic
TOA operators in Ref. [22]. This allows us to provide a
meaningful interpretation to the operator T̂Ra that is beyond
Razavi’s results.

The rest of the paper is structured as follows. Section II
discusses the construction of the rigged Hilbert space exten-
sion of T̂Ra. The corresponding eigenvalue equation is then
solved numerically in Sec. III to investigate the dynamics of
the eigenfunctions, which are then compared with the ones
solved analytically by Razavi in Ref. [29]. It is also shown
how Razavi’s results can be modified to recover the non-nodal
and nodal eigenfunctions. In Sec. IV, we calculate the ex-
pected TOA of a single-peaked wave packet and show that
there are quantum correction terms to the relativistic TOA of
a quantum particle. The extent of these quantum correction
terms is demonstrated in Sec. V by considering a Gaussian
wave packet. The corresponding TOA distributions are then
constructed in Sec. VI and shown to spread to “superluminal”
times of arrival due to the nonlocality of the wave packet. Fur-
thermore, TOA distributions are constructed to demonstrate
that the Hamiltonian is a generator of time translation. Last,
Sec. VII summarizes the paper.

II. QUANTIZED RELATIVISTIC FREE
TIME-OF-ARRIVAL OPERATOR

We describe a quantum particle within the RHS for-
mulation of quantum mechanics [22,43–46] to accomodate
nonsquare integrable functions that are outside the Hilbert
space, e.g., Dirac-delta function (plane wave) which is an
eigenfunction of the position (momentum) operator. In our
case, we choose the fundamental space of our RHS to be
the the space of infinitely continuously differentiable complex
valued functions with compact supports � such that the RHS
is � ⊂ L2(R) ⊂ �×. The standard Hilbert space formulation
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of quantum mechanics is recovered by taking the closures on
� with respect to the metric of L2(R).

In coordinate representation, a quantum observable Â is a
mapping from � to �× and is given by the formal integral
operator

(Âϕ)(q) =
∫ ∞

−∞
dq′〈q|Â|q′〉ϕ(q′), (6)

where the kernel satisfies 〈q|Â|q′〉 = 〈q′|Â|q〉∗ to ensure Her-
miticity. In general, the integral Eq. (6) is interpreted in the
distributional sense, i.e., it is a functional on � wherein the
kernel is a distribution. By doing so, we are able to treat
observables as scalar objects. In our present case, we will see
that T̂Ra becomes an integral operator with a regular kernel.

It follows that the position space representation of T̂Ra is

(T̂Raϕ)(q) =
∫ ∞

−∞
dq′〈q|T̂Ra|q′〉ϕ(q′), (7)

wherein the time kernel is given by

〈q|T̂Ra|q′〉 = −μ
q + q′

2
〈q|p̂−1

√
1 + p̂2

μ2c2
|q′〉. (8)

The right-hand side of Eq. (8) is evaluated by inserting the
resolution of the identity 1 = ∫ ∞

−∞ d p |p〉 〈p|, and using the

plane-wave expansion 〈q|p〉 = eiqp/h̄/
√

2π h̄, which yields the
expression

〈q|p̂−1

√
1 + p̂2

μ2c2
|q′〉

=
∫ ∞

−∞

d p

2π h̄
exp

[
i

h̄
(q − q′)p

]
1

p

(√
1 + p2

μ2c2

)
. (9)

The integral Eq. (9) is equal to the Cauchy principal value and
is evaluated using the method in Ref. [47], i.e.,

〈q|p̂−1

√
1 + p̂2

μ2c2
|q′〉

= i

2h̄

[
1 + 2

π

∫ ∞

1
dz exp

(
−μc

h̄
|q − q′|z

)√
z2 − 1

z

]
×sgn(q − q′). (10)

See Appendix A for details. Thus, the time kernel is now

〈q|T̂Ra|q′〉 = μ

ih̄

(
q + q′

4

)
Tc(q, q′)sgn(q − q′), (11)

where

Tc(q, q′) = 1 + 2

π

∫ ∞

1
dz exp

(
−μc

h̄
|q − q′|z

)√
z2 − 1

z
.

(12)

It is easy to see that limc→∞ Tc(q, q′) = 1 since the integral
term vanishes, which reduces Eq. (11) to the known kernel of
the Aharonov-Bohm TOA operator [22], i.e.,

lim
c→∞〈q|T̂Ra|q′〉 = 〈q|T̂AB|q′〉 = μ

ih̄

(
q + q′

4

)
sgn(q − q′).

(13)

For completeness, a closed-form expression for the integral
term in Eq. (12) can be obtained using the substitution z =
sec θ and the identity

K1(a) =
∫ π

2

0
dθ sec2 θe−a sec θ , (14)

where Kn(a) is the modified bessel function of the second
kind. This will make

Tc(q, q′) = 2

π
K1

(
μc

h̄
|q − q′|

)

+ μc

h̄
|q − q′|K0

(
μc

h̄
|q − q′|

)
L−1

(
μc

h̄
|q − q′|

)

+ μc

h̄
|q − q′|K1

(
μc

h̄
|q − q′|

)
L0

(
μc

h̄
|q − q′|

)
,

(15)

where Ln(z) is the modified Struve function. For practical
purposes, we will use the integral form Eq. (12) in the next
sections because it separates the relativistic and nonrelativistic
terms of the TOA.

III. DYNAMICS OF THE TOA EIGENFUNCTIONS
IN POSITION SPACE

A time operator T̂ is a legitimate TOA operator if the eigen-
functions exhibit unitary arrival, i.e., they unitarily evolve
through time to localize at the intended arrival point at their
corresponding eigenvalues [13,14,22,27]. In this section, we
investigate the eigenfunctions of the rigged Hilbert space
extension of T̂Ra given by Eq. (7) and their dynamics. We
compare these with the eigenfunctions solved by Razavi [29].

A. Eigenfunctions of the time kernel

To study, the dynamics of the TOA eigenfunctions of the
kernel 〈q|T̂Ra|q′〉, we need to solve the corresponding eigen-
value equation. It follows from Eqs. (7) and (11) that the
relevant eigenvalue problem is∫ ∞

−∞
dq′

[
1 + 2

π

∫ ∞

1
dz exp

(
−μc

h̄
|q − q′|z

)√
z2 − 1

z

]

× μ

ih̄

(
q + q′

4

)
sgn(q − q′)�̃τ (q′)

= τ�̃τ (q), (16)

where �̃τ (q) is the TOA eigenfunction with an eigenvalue
τ . However, solving this integral equation is intractable and
we must proceed to a numerical solution by coarse-graining.
This is done by confining the system in a box centered at the
origin with length 2l to project the operator in the Hilbert
space Hl = L2[−l, l]. The eigenvalue problem is then solved
by quadrature using the Nystrom method and the dynam-
ics of the eigenfunctions were constructed by modifying the
methods outlined in Refs. [9,13,22] to allow evolution via
the Klein-Gordon equation (see Appendix B for details). The
behavior as l → ∞ is investigated by successivley increasing
the confining length.

The eigenfunctions of Eq. (7) are twofold degenerate
and are categorized into non-nodal and nodal eigenfunctions
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FIG. 1. Eigenfunction dynamics of the RHS extenstion of T̂Ra. The eigenvectors in Eq. (16) are confined in the region [−1, 1] and solved
numerically with the parameters μ = c = h̄ = 1. The eigenvector with eigenvalue τ = 0.9944 is then made to evolve in time using the time
evolution operator Ût = e−iEpt/h̄.

whose dynamics are shown in Fig. 1 (we shall work in atomic
units [a.u.] in all the succeeding figures). The former has a
single peak that gathers at the arrival point with its mini-
mum width occurring at its eigenvalue, while the latter has
two peaks that gather at the arrival point with their closest
separation occurring at its eigenvalue. This behavior is also
present for all the nonrelativistic quantized TOA operators
[13,14,16,22]. We thus claim that RHS extension of T̂Ra rep-
resents a legitimate TOA operator.

B. Razavi’s TOA eigenfunctions

Razavi obtained an analytic form of the TOA eigenfunc-
tions [29] by solving the eigenvalue equation in momentum
representation, i.e.,

T̂Raφτ (p)

= −μih̄

2

(√
1 + p2

μ2c2

1

p

∂

∂ p
+ ∂

∂ p

√
1 + p2

μ2c2

1

p

)
φτ (p)

= − ih̄

c2

[
Ep

p

∂

∂ p
− 1

2

μ2c4

p2Ep

]
φτ (p) = τφτ (p). (17)

The eigenfunctions are then given as

φτ (p) = N

√
|p|c
Ep

exp

(
i

h̄
Epτ

)
, (18)

where N is a normalization constant. He then concluded
that the eigenvalue τ must be complex valued so that the

eigenfunction is square integrable. For real-valued τ , the
eigenfunction is obtained from Eq. (18) by performing the
integration

φ(Re)
τ (ε, p) =

∫ τ+ε

τ−ε

dτ ′φτ ′ (p)

=
√

h̄

πε

sin(εEp/h̄)

Ep

√
|p|c
Ep

exp

(
i

h̄
Epτ

)
, (19)

where ε → 0. The dynamics of the eigenfunctions Eqs. (18)
and (19) in position space are constructed via

φ̃τ (q, t ) =
∫ ∞

−∞

d p√
2π h̄

eipq/h̄e−iEpt/h̄φτ (p). (20)

In anticipation that the integral Eq. (20) may diverge, we insert
a converging factor limδ→0 e−δp2

.
Figure 2 shows the dynamics of the unnormalized eigen-

functions φτ (p) in Eq. (18) with eigenvalues τ± = 1 ± i. It
can be seen that the eigenfunctions do not exhibit unitary
arrival compared to the non-nodal and nodal eigenfunction in
Fig. 1. Specifically, for τ− the probability density oscillates
and there is no sharp localization at each peak. Moreover, for
τ+ there is a single peak that gathers at the arrival point at a
time equal to Reτ+ = 1 but no sharp localization is observed.
Thus, the operator T̂Ra is not a legitimate TOA operator when
it is expressed as the first moment of the identity generated by
the eigenfunctions Eq. (18).

Figure 3 shows the dynamics of the eigenfunctions
φ(Re)

τ (ε, p) in Eq. (19) with eigenvalues τ = 1. It can be seen
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FIG. 2. Dynamics of Razavi’s unnormalized “complex” TOA eigenfunctions. The eigenfunctions Eq. (18) are made to evolve in time using
the time evolution operator Ût = e−iEpt/h̄. We choose the eigenvalues to be complex-valued τ = 1 ∓ 1i and insert a converging factor e−0.001p2

for the parameters μ = c = h̄ = 1.

FIG. 3. Dynamics of Razavi’s “real” TOA eigenfunctions. Time evolution of the eigenfunctions Eq. (19) with eigenvalue τ = 1 for the
parameters μ = c = h̄ = 1 and converging factor e−0.001p2

. The parameter ε causes two peaks to gather that are separated in time. The peaks
coincide as ε → 0.
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that as ε → 0, the eigenfunction φ(Re)
τ (ε, p) is able to capture

the dynamics of the non-nodal eigenfunction in Fig. 1 and
exhibits unitary arrival. However, φ(Re)

τ (ε, p) is not able to
reproduce the dynamics of the nodal eigenfunction. As such,
the operator T̂Ra will also not be a legitimate TOA operator
when expressed as the first moment of the identity generated
by the eigenfunctions Eq. (19).

C. Recovering the non-nodal and nodal eigenfunction from
Razavi’s eigenfunctions

The analytic form of the non-nodal and nodal eigenfunc-
tions in momentum representation can be obtained by also
solving Eq. (17). This is done by treating the eigenfunction
φτ (p) as a distribution for the cases p < 0 and p > 0. Inci-
dentally, the same problem was solved in Refs. [37,38] which
yields

φ(±)
τ (p) =

√
c

4π h̄

√
|p|c
Ep

exp

(
i

h̄
Epτ

)
�(±p). (21)

wherein the eigenvalue τ is real. The heaviside function
�(±p) imposes the eigenfunctions φ(±)

τ (p) to have support
on either positive or negative momentum only.

The non-nodal and nodal eigenfunctions, �(non)
τ (p) and

�(nod)
τ (p), respectively, are then constructed by taking the sum

and difference of φ(±)
τ (p), i.e.,

�(non)
τ (p) = φ(+)

τ (p) + φ(−)
τ (p)

=
√

c

4π h̄

√
|p|c
Ep

exp

(
i

h̄
Epτ

)
, (22)

�(nod)
τ (p) = φ(+)

τ (p) − φ(−)
τ (p)

=
√

c

4π h̄

√
|p|c
Ep

exp

(
i

h̄
Epτ

)
sgn(p). (23)

Notice that the non-nodal eigenfunction Eq. (22) and Razavi’s
eigenfunction Eq. (18) are equal if he concluded that the
eigenvalues are real valued. The non-nodal and nodal eigen-
functions Eqs. (22) and (23) are complete but nonorthogonal
[37,38]. This makes T̂Ra a maximally symmetric operator
which is also true for T̂AB [4,13,14,16,18]. Furthermore, in
the limit as c → ∞, the eigenfunctions Eqs. (22) and (23)
reduces to the non-nodal and nodal eigenfunctions of T̂AB up
to a phase factor [37,38].

The dynamics of the non-nodal and nodal eigenfunctions
Eqs. (22) and (23) in position space are then constructed
using Eq. (20) and inserting a converging factor limδ→0 e−δp2

.
Figure 4 shows a pair of evolving non-nodal and nodal eigen-
functions which captures the same dynamics as that of Fig. 1
and exhibits unitary arrival. However, the localization is not
as sharply defined as that of Fig. 1 which is a consequence of
coarse-graining the operator.

IV. EXPECTATION VALUE OF THE RELATIVISTIC
FREE TIME-OF-ARRIVAL OPERATOR

Let the expected time of arrival be the average of an ar-
bitrarily large number of independent measurements of the
TOA at the origin. We assume that the initial wave function is

FIG. 4. Dynamics of the analytic non-nodal and nodal eigenfunc-
tions. Time evolution of the eigenfunctions Eqs. (22) and (23) with
eigenvalue τ = 1 for the parameters μ = c = h̄ = 1 and converging
factor e−0.001p2

.

prepared in a pure state ψ (q) = eipq/h̄ϕ(q), wherein the wave
packet ϕ(q) is independent of h̄ and satisfies 〈ϕ|p̂|ϕ〉 = 0. The
expected time of arrival is explicitly given as

τ =
∫ ∞

−∞

∫ ∞

−∞
dqdq′ψ∗(q)〈q|T̂Ra|q′〉ψ (q′) = τ0 + τc, (24)

where

τ0 =
∫ ∞

−∞
dqϕ∗(q)e−ipq/h̄

×
∫ ∞

−∞
dq′eipq′/h̄ϕ(q′)

[
μ

4ih̄
(q + q′)sgn(q − q′)

]
, (25)

τc =
∫ ∞

−∞
dqϕ∗(q)e−ipq/h̄

×
∫ ∞

−∞
dq′eipq′/h̄ϕ(q′)

[
μ

4ih̄
(q + q′)sgn(q − q′)

]

×
[

2

π

∫ ∞

1
dz

√
z2 − 1

z
exp

(
−μc

h̄
|q − q′|z

)]
. (26)

It is easy to see that τ0 is just equal to the expectation value
of the time of arrival of a nonrelativistic free particle because
it is independent of c, while τc is the relativistic correction.
Now τ0 was already calculated in Ref. [19] and is explicitly
given as

τ0 = −μ

∞∑
n=0

h̄2nχ
(n)
1

p2n+1
+ μ

∞∑
n=0

(−1)nh̄2n+1χ
(n)
2

p2n+2
, (27)

where

χ
(n)
1 =

∫ ∞

−∞
dqq|ϕ(n)(q)|2q, (28)

χ
(n)
2 =

∫ ∞

−∞
dqIm

[
ϕ∗(q)ϕ(2n+1)(q)

]
q. (29)
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To evaluate τc, it will be convenient to interchange the orders
of integration as follows:

τc = 2

π

∫ ∞

1
dz

√
z2 − 1

z

∫ ∞

−∞
dqe−ipq/h̄ϕ∗(q)ψp(q), (30)

where

ψp(q) = e−μcqz/h̄ μ

4ih̄

∫ q

−∞
dq′(q + q′)ϕ(q′)ei(p−iμcz)q/h̄

− eμcqz/h̄ μ

4ih̄

∫ ∞

q
dq′(q + q′)ϕ(q′)ei(p+iμcz)q/h̄.

(31)

We apply repeated integration by parts on Eq. (31) and follow
the steps used in Ref. [19] which leads to

τc = −μ

∞∑
n=0

h̄2n�2n(p)χ (n)
1

+ μ

∞∑
n=0

(−1)nh̄2n+1�2n+1(p)χ (n)
2 , (32)

where

�n(p) = 2

π

∫ ∞

1
dz

√
z2 − 1

z

Re[(p + iμcz)n+1]

(p2 + μ2c2z2)n+1
. (33)

Combining the results for τ0 and τc we get

τ = −μ

∞∑
n=0

h̄2n

p2n+1
γ (2n)

c χ
(n)
1

+ μ

∞∑
n=0

(−1)nh̄2n+1

p2n+2
γ (2n+1)

c χ
(n)
2 , (34)

where

γ (n)
c (p) = 1 + 2

π

∫ ∞

1
dz

√
z2 − 1

z

(
p

p2 + μ2c2z2

)n+1

× Re[(p + iμcz)n+1]. (35)

Generally, the series expansion Eq. (34) diverges but we can
assign meaningful numerical results by interpreting the series
as an asymptotic expansion of Eq. (24). Furthermore, the
closed form expression of Eq. (34) may be obtained by Borel
resummation [41,48].

The asymptotic relation Eq. (34) shows that the leading
term of the first infinite series corresponds to the classical rel-
ativistic time of arrival, while the rest are quantum correction
terms. These terms arise due to the dispersion of the wave
packet ϕ(q) as it propagates to arrive at q = 0, which implies
that the particle may be either delayed or advanced depending
on the initial wave packet [19]. However, the effect of these
quantum correction terms may be minimized up to an arbitrary
order of h̄ by imprinting an appropriate position-dependent
phase on the initial wave function [20].

For a single peaked wave packet ϕ(q) centered around
q = qo, the expected classical relativistic TOA emerges from

the first term of the first infinite series in Eq. (34), explicitly
we have

t = −μqo

p

[
1 + 2

π

∫ ∞

1
dz

p2

(p2 + μ2c2z2)

√
z2 − 1

z

]
. (36)

The integral term simplifies to

2

π

∫ ∞

1
dz

p2

(p2 + μ2c2z2)

√
z2 − 1

z
= −1 +

√
1 + p2

μ2c2
, (37)

which reduces Eq. (36) to

t = −μq0

p

√
1 + p2

μ2c2
. (38)

The quantum correction terms vanish as the momentum in-
creases since the factor γ (n)

c /pn in Eq. (34) goes to zero. The
only nonvanishing term is the classical relativistic time of
arrival Eq. (38) which goes to t = −qo/c. Thus, the expected
TOA of a relativistic free particle is bounded by the TOA of a
photon.

V. QUANTUM CORRECTION FOR GAUSSIAN
WAVE PACKETS

Let us now demonstrate the extent of these quantum cor-
rection terms by considering a single particle described as a
Gaussian wave packet

ϕ(q) = 1√
σ
√

2π
exp

[
− (q − q0)2

4σ 2

]
. (39)

Since ϕ(q) is a real valued function, then χ
(n)
2 vanishes for all

n while

χ
(n)
1 = q0

�
(
n + 1

2

)
√

π (2σ 2)n
. (40)

It follows from the asymptotic series Eq. (34) that the ex-
pected quantum time of arrival for a Gaussian wave packet
can be written as τ = tQc(μ, p, σ ) wherein Qc(μ, p, σ ) is the
quantum correction factor to the classical relativistic time of
arrival t , i.e.,

Qc =
(

1 + p2

μ2c2

)−1/2 ∞∑
n=0

h̄2n

p2n

1

(2σ 2)n

�(n + 1
2 )√

π
γ (2n)

c (p). (41)

The series Eq. (41) diverges because of �(n + 1
2 ) but we

can obtain a meaningful numerical result by performing a
Borel resummation. To do so, we replace the gamma function
with its integral representation

�

(
n + 1

2

)
=

∫ ∞

0
dse−ssn− 1

2 , (42)

and interchange the orders of summation and integration,
which yields

Qc =
(

1 + p2

μ2c2

)−1/2[
Q(1)

c + Q(2)
c

]
, (43)
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FIG. 5. Comparison of the expectation value of the relativistic
TOA operator given by the exact integral with the asymptotic expan-
sion as the momentum increases with qo = −3 and and σ = 0.5 for
the parameters μ = c = h̄ = 1.

where

Q(1)
c = 1√

π
P.V.

∫ ∞

0
e−ss−1/2

(
1 − h̄2

p2

s

2σ 2

)−1

, (44)

Q(2)
c = 2

π3/2

∫ ∞

1
dz

√
z2 − 1

z

∫ ∞

0
dse−ss−1/2

× Re

⎧⎨
⎩ 1

1 − i μc
p z

⎡
⎣1 − 1(

1 − i μc
p z

)2

h̄2

p2

s

2σ 2

⎤
⎦

−1⎫⎬
⎭. (45)

For completeness, a comparison of the TOA expectation
value given by the exact integral Eqs. (24)–(26), and the
asymptotic expansion leading to Eqs. (43)–(45) is shown in
Fig. 5. It can be seen that the two values are numerically
equivalent. The effect of the quantum correction is shown in
Fig. 6. The TOA of a Gaussian wave packet may be delayed
(Qc > 1) or advanced (Qc < 1) but the effect of the quantum
correction vanishes as σ and p increases.

VI. TIME OF ARRIVAL DISTRIBUTION
OF GAUSSIAN WAVE PACKETS

An ensemble of quantum particles prepared in the same
initial state will not arrive at the origin at the same time.
Instead, we get a time-of-arrival distribution that should peak
at the expected time of arrival. Consider the measurement
scheme shown in Fig. 7 as prescribed in Refs. [23] and [24] to
provide an indirect and realistic way of obtaining the TOA of
the particle. A wave packet is initially prepared in a state ψ (q)
between two detectors DR and DT . The detector DT is located
at the arrival point q = 0 and records the TOA whenever a
particle passes through it, while the detector DR is placed
in the far left of the wave packet’s initial position and does
not record any data. After performing repeated measurements
of identically prepared wave packets, we then get a TOA
distribution at DT .

The TOA distribution is assumed to be generated by the
spectral resolution of the operator T̂Ra using the non-nodal
and nodal eigenfunctions. It was recently shown in Ref. [27]
that for the nonrelativistic free TOA operator, the non-nodal

FIG. 6. (a) Effect of σ as p increases on the quantum correction
Qc and (b) the effect of p as σ increases, where μ = c = h̄ = 1.

(nodal) eigenfunction is associated to particle arrival with
detection (nondetection). We postulate that the same is true for
the relativistic case and only use the non-nodal eigenfunction
to construct TOA distributions.

For a particle prepared in an initial state |ψ〉, the probabil-
ity that it will arrive at the origin, at a time t before τ is given
by

〈ψ |Π̂|ψ〉 =
∫ τ

−∞
dt〈ψ |t〉〈t |ψ〉, (46)

where Π̂ is a POVM and |τ 〉 is an eigenvector of the TOA
operator. The TOA distribution is then constructed by differ-
entiating Eq. (46) with respect to τ , which yields

�ψ (τ ) = d

dτ
〈ψ |Π̂|ψ〉 =

∣∣∣∣
∫ ∞

−∞
ψ∗(q)φτ (q)

∣∣∣∣
2

, (47)

FIG. 7. Time of arrival measurement scheme.
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where φτ (q) is the TOA eigenfunction. It is easy to see that
the TOA distribution is constructed by taking the overlap of
the initial state with the TOA eigenfunction. The distribution
Eq. (47) represents the ideal distribution of a TOA experiment.
In general, the measured TOA distribution will be deformed in
the presence of a measuring instrument, and will be dependent
on the details of the measuring instrument.

The TOA distribution can be constructed by either us-
ing the non-nodal eigenfunction �̃τ (q) of the time kernel
〈q|T̂Ra|q′〉, i.e.,

�ψ (τ ) =
∣∣∣∣
∫ ∞

−∞
dqψ∗(q)�̃τ (q)

∣∣∣∣
2

, (48)

or by using the the non-nodal eigeinfunctions Eq. (22) from
T̂Ra so that

�ψ (τ ) =
∣∣∣∣
∫ ∞

−∞
d pψ̃∗(p)�(non)

τ (p)

∣∣∣∣
2

, (49)

where ψ̃ (p) is the Fourier transform of the initial state.
Figure 8 shows a comparison of the constructed TOA

distribution at the origin for a Gaussian wave packet us-
ing (a) Eq. (48) via the coarse-grained TOA eigenfunctions
of 〈q|T̂Ra|q′〉 confined from [−10, 10] (see Appendix B for
details) with (b) Eq. (49) via the non-nodal eigenfunctions
Eq. (22). The same behavior is observed for both cases as
expected. For completeness, a TOA distribution using
Razavi’s real-valued TOA eigenfunction φ(Re)

τ (ε, p) is shown
in Fig. 9. It can be seen that as ε → 0, the TOA distribution
flattens out into a line which is not able to provide a mean-
ingful interpretation for the distribution. This then means that
the appropriate choice of TOA eigenfunctions that can give
more insight on the quantum TOA problem is obtained by
using the non-nodal and nodal eigenfunctions which were first
obtained by taking the rigged Hilbert space extension of the
operator T̂Ra.

The TOA distributions shown in Fig. 8 exhibits delayed
arrival as the quantum expectation value τ is greater than
the relativistic TOA t . Furthermore, it can be seen that the
expectation value τ approaches t since the quantum correc-
tion factor Qc approaches unity as the momentum increases.
Last, the TOA distribution becomes sharper as the momen-
tum increases, which suggests that the particle becomes more
“classical.” It is important to note that the peak of the TOA
distributions, and expectation values τ in Fig. 8, are always to
the right side of the TOA for a photon tphoton = 3. This means
that massive spin-0 particles will, on average, always arrive
later than a photon. However, the TOA distribution can spread
to values that are smaller than tphoton which suggests that there
is a nonzero probability for the particle to be “superluminal”
but this behavior is not because the particle travels at a speed
greater than the speed of light.

The nonlocality of the Gaussian wave packet implies that
the particle may be found in the neighborhood of its arrival
point. This means that there is a nonzero probability that the
particle may be found somewhere between its initial position
and q = 0 which causes the particle to arrive faster than
tphoton = 3 since it is nearer to the arrival point. To illus-
trate, consider an initial Gaussian wave packet with compact

FIG. 8. Comparison of the TOA distribution of a Gaussian wave
packet with initial position q = −3 and σ = 0.5 for the parameters
μ = h̄ = c = 1, using (a) the coarse-grained non-nodal eigenfunc-
tion and (b) the analytic eigenfunction. The blue line represents the
relativistic time of arrival t , the red dots represent the expectation
value τ = tQc, and the red line represent the TOA of a photon.

FIG. 9. Time of arrival distribution using φ (Re)
τ (ε, p) for a Gaus-

sian wave packet with initial position q = −3, momentum po = 3,
and σ = 0.5 for the parameters μ = h̄ = c = 1 as ε → 0. The red
line represent the TOA of a photon.
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FIG. 10. Comparison of the TOA distribution of a Gaussian wave
packet that has a compact support with initial position q = −3,
momentum p = 7 and σ = 0.5 for the parameters μ = h̄ = c = 1,
using (a) the coarse-grained non-nodal eigenfunction, and (b) the
analytic eigenfunction. The blue lines represent the relativistic TOA
t of a localized particle with initial position q = −5 and q = −1.

support

ψa(q) = ϕ(q)eipoq/h̄�[(q − qo) + a]�[a − (q − qo)]. (50)

The support of ψa(q) is chosen so that the tail of the Gaus-
sian wave packet does not extend to ±∞. Again, it can be
seen in Fig. 10 that the same results are obtained using the
coarse-grained eigenfunctions of 〈q|T̂Ra|q′〉 and the non-nodal
eigenfunctions Eq. (22), which further supports our claim that
the non-nodal and nodal TOA eigenfunctions provides more
insight onto the quantum TOA problem. It is easy to see that
the TOA distribution is now bounded by τ = tQc = 1.011 and
τ = tQc = 5.054 which are the TOA of a localized particle
with initial position q = −1 and q = −5, respectively. Thus,
the “superluminal”TOA does not violate special relativity in
the sense that the particle does not travel faster than the speed
of light but because of its nonlocality.

Last, having established that the coarse-grained eigenfunc-
tions of 〈q|T̂Ra|q′〉 and the non-nodal eigenfunctions Eq. (22)
yield the same result, it will be convenient to use Eq. (22)
to show that the Hamiltonian and TOA operator are genera-
tors of translation of each other. This follows from the fact

FIG. 11. Comparision of the (a) position density distribution and
(b) TOA distribution of a time-evolved Gaussian wave packet with
initial position q = −3, momentum p = 2, and σq = 0.5 for the
parameters μ = h̄ = c = 1.

that T̂Ra is canonically conjugate to the free Hamiltonian√
p̂2c2 + μ2c4. Specifically, if �ψ̃o

(τ ) represents the TOA
distribution of an initial state ψ̃o = ψ̃ (p, t = 0), then the TOA
distribution for the time-evolved state ψ̃ (p, t ) = Ûtψ̃ (p, t =
0) = e−iEpt/h̄ψ̃ (p, t = 0) is given as

�ψ̃ (τ − t ) =
∣∣∣∣
∫ ∞

−∞
d pψ̃∗(p, t )�τ (p)

∣∣∣∣
2

. (51)

It can be seen from Fig. 11 that the TOA distribution for the
corresponding time-evolved state are just time translations of
each other.

VII. SUMMARY AND CONCLUSION

The relativistic free TOA operator T̂Ra is Hermitian and
canonically conjugate with the system Hamiltonian, which
are the basic requirements for a TOA operator. The rigged
Hilbert space extenstion of T̂Ra was then constructed and
shown that the eigenfunctions are twofold degenerate which
are called non-nodal and nodal. These eigenfunctions exhibit
unitary arrival, which is also present for all the quantizations
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of the free and interacting case for the nonrelativistic TOA
operators.

The TOA expectation value for a single-peaked wave
packet localized around q = qo was also shown to be equal to
the classical relativistic TOA plus quantum correction terms.
These correction terms imply that the TOA of a relativis-
tic quantum particle may either be delayed or advanced.
Furthermore, the effect of these correction terms vanish in
the large-momentum limit and that the expectation value is
bounded by the TOA of a photon tphoton = −qo/c. Thus, mas-
sive spin-0 particles will, on average, always arrive later than
a photon.

The constructed TOA distributions were shown to be
consistent with special relativity. That is, the peak of the dis-
tribution is always at a time greater than tphoton. The spread of
the TOA distribution to times less than tphoton was also shown
to be a consequence of the nonlocality of the wave packet.
Furthermore, the Hamiltonian was shown to be a generator of
time translation, which is a consequence of its conjugacy with
the TOA operator.

These results give us confidence that it is possible to con-
struct a meaningful relativistic TOA operator. Future studies
may include the connection of a time-operator-based theory
of quantum TOA with the localization and appearance of
a relativistic particle as an extension of the study done in
Ref. [11]. Moreover, a formalism for the quantization of a
TOA operator for the interacting case may be useful in the tun-
neling time problem. That is, a formalism for the quantization
of the relativistic TOA may provide new insights on whether
the quantum particle becomes superluminal inside the barrier
region, as current formalisms only use nonrelativistic quantum
mechanics.
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APPENDIX A: DETAILS ON THE CALCULATION
OF THE TIME KERNEL

The integral in Eq. (9) has a pole at p = 0 and branch
points at p = ±iμc. The Cauchy principal value is obtained
by taking the average of the integral along the contours γ +
and γ −, that is,∫ ∞

−∞
d p

f (p)

p
= 1

2

(∫
γ +

+
∫

γ −

)
f (z)

z
dz, (A1)

where

f (p) = 1

2π h̄
exp

[
i

h̄
(q − q′)p

]
1

p

√
1 + p2

μ2c2
. (A2)

To illustrate, we consider the case when q − q′ > 0 and eval-
uate Eq. (A1) using the contours shown in Fig. 12. It is easy
to show that as ε → 0 and R → ∞, only the contribution of

FIG. 12. Contours of integration for q − q′ > 0.

the branch cut and residue will remain. This now turns∫ ∞

−∞

d p

2π h̄
exp

[
i

h̄
(q − q′)p

]
1

p

√
1 + p2

μ2c2

= i

2h̄
Res

{
exp

[
i

h̄
(q − q′)z

]
1

z

√
1 + z2

μ2c2

}
z=0

+ i

h̄

1

π

∫ ∞

1
dz exp

[
−μc

h̄
(q − q′)z

]√
z2 − 1

z

= i

2h̄

{
1 + 2

π

∫ ∞

1
dz exp

[
−μc

h̄
(q − q′)z

]√
z2 − 1

z

}
.

(A3)

The same process can be done when q − q′ < 0 wherein
the contour will have to avoid to branch cut at z = −iμc and
the contour is closed in the clockwise direction. Thus,∫ ∞

−∞

d p

2π h̄
exp

[
i

h̄
(q − q′)p

]
1

p

√
1 + p2

μ2c2

= i

2h̄

(
1 + 2

π

∫ ∞

1
dz exp

[
− μc

h̄
|q − q′|z

]√
z2 − 1

z

)

× sgn(q − q′). (A4)

APPENDIX B: COARSE-GRAINING
OF THE TOA OPERATOR

For completeness, we outline the methods used by
Refs. [9,22] to construct the evolution of the TOA eigenfunc-
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tions and Refs. [11,16,17] for the TOA distribution. This is
done by numerically solving the eigenvalue equation∫ ∞

−∞
dq′〈q|T̂Ra|q′〉�̃(q′) = τ�̃(q) (B1)

by replacing the bounds (−∞,∞) to [−l, l] and replacing the
integral with a representative weighted sum

τ�̃(qk ) ≈
2n+1∑
l=1

wl〈qk|T̂Ra|ql〉�̃(ql ), (B2)

where 2n + 1 is the number of quadrature points in the in-
tegration range qk . The weights and abscissas are assigned

using Gauss-Legendre quadrature method. The eigenvectors
of Eq. (B2) are then sorted out as either non-nodal or nodal
based on the nth element of the eigenvector, i.e., if the nth
element is zero, then it is sorted as nodal; otherwise, it is non-
nodal. The evolution of the state is then done in discrete time
steps using the time evolution operator Ût = e−iEpt/h̄, where
Ep =

√
p2c2 + μ2c4. The behavior as l → ∞ is investigated

by successively increasing the confining length.
The time-of-arrival distribution Eq. (48) is then con-

structed by taking the overlap of the non-nodal eigenfunctions
solved previously, with the initial state using Gauss-Legendre
quadrature. The values are then interpolated to create a smooth
curve.
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