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Non-Markovian dynamics of a single excitation within many-body dissipative systems
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We explore the dynamics of N coupled atomic two-level systems embedded within a generic bosonic reservoir
under specific system symmetries. In the regime of many atoms identically coupled to a single reservoir, we
identify remarkable effects, notably that the initial configuration of the atomic excited-state amplitudes strongly
impacts the dynamics of the system and can even fully sever the system from its environment. Additionally,
we find that steady-state amplitudes of the excited states become independent of the specific structure of the
bosonic reservoirs considered. The framework introduced is deployed to model a structured photonic reservoir
associated with a photonic crystal, where it recaptures previous theoretical and experimental results for the
superradiance rates even within the single-excitation regime. For the photonic band-gap system, our formalism
predicts the generation of pairwise entanglement between initially uncorrelated atomic systems. Furthermore,
it suggests that—with respect to a non-Markovian metric—the non-Markovianity of the aggregated many-atom
system is modulated by the total number of atoms. This is due to a stark interplay between the Lamb shifting
of the atomic transition energies due to their varying number and the increased number of atomic systems with
resonant transition energies.
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I. INTRODUCTION

Recently, the interest in deploying quantum technologies to
go beyond current computational approaches has experienced
rapid growth. This has mainly been driven by advances in
the capabilities and design of larger quantum computers [1]
as well as the developments in quantum algorithm designs
that have the capabilities to undermine modern cryptographic
methods [2–5]. However, a major difficulty in utilizing such
quantum implementations is their proclivity to decohere and
dissipate into the environment. In this context, understanding
how the environment impacts the evolution of quantum sys-
tems along with developing capabilities to control this impact
is of vital importance for the next advances in the quantum
technologies field [6]. Furthermore, understanding the dynam-
ics of atomic systems within dissipative environments has
played a pivotal role in developing new and better artificial
structures that have the capacity for processing information
on shorter spatial and temporal scales [7–9]. The conventional
approach to studying such systems is to deploy the theory of
open quantum systems [10], wherein the archetypal model
of spin systems coupled to bosonic reservoirs are utilized to
model two-level atomic systems coupled to quantized elec-
tromagnetic fields. Unravelling the combined dynamics of the
two systems is exceedingly difficult and often it is merely the

*a.d.burgess@surrey.ac.uk
†m.florescu@surrey.ac.uk

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

dynamics of the atomic system that is of interest. Therefore, a
scheme is required to reduce out the environmental degrees of
freedom. A common approach to achieving this is by invoking
the Markov approximation, which is valid for environments
that recover instantaneously from interacting with the system
[11]. Although this approach has proven fruitful in under-
standing many systems it fails to adequately capture quantum
induced memory effects in the system. For example, within
microstructured photonic systems, such as photonic crystals,
the local density of states for the electromagnetic field varies
rapidly for frequencies near the band edges of the photonic
band gap. Such rapid fluctuations make the Markov approx-
imation invalid [12–14], and embedding a two-level atomic
system with its transition energy near the band edge of a
photonic band-gap results in highly non-Markovian dynamics.
The strong interaction between the atomic system and the
photonic reservoir leads to a dressing of the atomic states
highly intertwining the attributes of the photonic reservoir
and the atomic degrees of freedom and thus leading to tem-
poral oscillations and fractional decay of atomic population,
spectral splitting, and subnatural linewidths of the atomic
transitions [15].

Moreover, as we begin to scale up the technology of these
artificial systems, it becomes necessary to understand the
collective effects of many atomic systems coupled to elec-
tromagnetic reservoirs. Recently, it has been shown [16] that
by effective characterization of the non-Markovian noise one
can extend the coherence lifetime of multiqubit systems. This
solidifies the need for a deeper understanding of many-bodied
interactions with non-Markovian environments. Understand-
ing these control mechanisms may lead to designing better and
more robust technologies that have a plethora of implemen-
tations, including that of quantum networks [17] and clocks
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[18]. Another difficulty facing quantum technologies, beyond
the preservation of entanglement, is the generation of such en-
tanglement. An interesting recent development shows that it is
possible to utilize the non-Markovianity of the environment to
generate entanglement between initially uncorrelated atomic
systems [19,20]. By understanding the bidirectional flow of
information between system and environment—the essence
of non-Markovian systems—it becomes possible to transfer
information, and therefore quantum correlations between sys-
tems using the environment as an intermediary. It is of great
interest to be able to prepare and control these entangled
states for quantum computation applications. Photonic band
gap systems appear to be naturally suited for generating such
interatomic entanglement, as the atoms couple strongly to a
single photonic band edge mode [13] allowing for efficient
energy transfer between atoms, even in the absence of direct
dipole-dipole interactions.

In this work, we study the single-excitation regime
of many-body two-level systems that interact dissipatively
with generically structured bosonic reservoirs—that can be
described by a continuum of quantum harmonic oscillators—
and reveal some remarkable characteristics. We also apply
the formalism developed for a model system, that of the
isotropic photonic crystal, a particularly interesting example
which displays what can be considered the highest degree
of non-Markovianity for a reservoir due to the divergence
in its density of states at the photonic band edge [14]. Such
spin-coupled systems have been realized in a plethora of
experiments, including quantum dots [21], superconducting
networks [22], trapped ions [23], cold atoms inside of optical
lattices [24], and more recently within photonic crystal wave
guides [25–27].

Previous studies have considered the two-qubit interaction
with independent reservoirs utilizing the second-order time-
convolutionless approach [28], the study of entanglement of
two qubits coupled to a single reservoir [29–31], the single-
excitation dynamics for a single-spin in a non-Markovian
reservoir [32], the single-excitation dynamics of two coupled
atoms inside three-dimensional anisotropic photonic crystals
[33], and the entanglement generation in N atom systems
within the weak-coupling regime [20]. In this study we go
further by studying the dynamics of N coupled atomic sys-
tems coupled—not necessarily weakly—to generic bosonic
reservoirs that can be adequately described by a local density
of states around the atomic system location. Such models
are useful in understanding the induced dynamics of atomic
systems in a range of environments such as the quantized elec-
tromagnetic fields as well as nonzero temperature vibronic
environments.

This article is organized as follows. In Sec. II we em-
ploy the Schrödinger equation to study the single excitation
dynamics of N coupled atomic systems embedded within a
single bosonic reservoir. Two system topologies are consid-
ered, the first being symmetric coupling wherein all the atoms
are coupled to one another with the same coupling strength
and a nearest-neighbor system wherein atoms only interact
with adjacent partners describing a chain of atoms. We study
the late time behavior of the excited-state populations for each
system. In Sec. III we contrast these results with those for
independent reservoir dissipative systems. Finally, in Sec. IV

we consider the specific case of the photonic crystal and derive
the full time evolution for the system wherein the transition
energies of the atoms are close to an isotropic photonic band
gap—a model system that has very strong non-Markovian
characteristics due to a divergence in the local density of
states of the electromagnetic field around a photonic band
gap. We then study the preservation and generation of entan-
glement between the N atoms in the system as well as how
non-Markovianity is modulated with the number of atomic
systems N .

II. MANY ATOMS IN A SINGLE BOSONIC RESERVOIR

We begin with a system of N two-level atoms embedded
within a single structured reservoir, with all atoms coupling to
the reservoir with the same coupling strengths. To facilitate
analytic solutions we assume that the reservoir is initially
in its vacuum state. Such assumptions are justified for very
low-temperature systems. Furthermore, in the case of pho-
tonic crystals with a photonic band edge, energetic modes
of the electromagnetic field with energy less than the band
gap frequency ωI are not accessible and as such cannot be
excited by thermal fluctuations. For band-gap frequencies in
the optical range, the thermal fluctuations exciting electro-
magnetic field modes with energy greater than the band gap
are negligible [34,35]. Furthermore, we deploy the rotating
wave approximation (RWA) to restrict our study to the single
excitation sector of the Hilbert space.

A. Fully symmetric coupling

The first model we consider is a many-body dissipative
system wherein the atomic systems are coupled to each other
and the bosonic reservoir with the same coupling strengths.
For such a model, there are two relevant length scales, the first
being the spatial range of the interatomic coupling generated
by the dipole-dipole interaction. The second is the total size
of the atomic ensemble. We require the local density of states
for the reservoir across both length scales to remain the same.
However, it is clear that the length scale of the dipole-dipole
interaction is necessarily smaller than the ensemble size and
such models have been used to effectively describe superra-
diant effects in electromagnetic field reservoirs [36–38]. The
Hamiltonian associated with this model in the rotating wave
approximation is given by

H =
N∑

i=1

ω0σ
+
i σ−

i +
∑

λ

ωλa†
λaλ

+ i
∑
i,λ

gλ(aλσ
+
i − a†

λσ
−
i ) +

∑
i �= j

Jσ+
i σ−

j , (1)

where σ+
i and σ−

i are the excitation and deexcitation operators
for the ith atomic system, respectively, aλ and a†

λ are the
bosonic field annihilation and creation operators, ω0 and ωλ

are the atomic transition and the λ-boson mode frequencies,
gλ is the coupling strength of the atomic system and the
λ-boson mode [36,39,40], and J is the dipole-dipole coupling
strength between atoms. This is equivalent to a Dicke model
[38] for N atoms with a coupling between each of the atoms.
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The Hamiltonian has the convenient property that it con-
serves the excitation number [41], that is to say it commutes
with the number operator N = ∑N

i=1 σ+
i σ−

i + ∑
λ a†

λaλ. As
such we consider the single excitation wave function given
by

φ(0) = c0ψ0 +
N∑
i

ci(0)ψi +
∑

λ

cλ(0)ψλ, (2)

where ψi = |i〉A |0〉B is the state wherein the ith atom is in
its excited state and all other atoms and the reservoir are in
the ground state. ψλ = |0〉A |λ〉B represents all atoms in their
ground state and the bosonic system has its λ mode excited.
ψ0 = |0〉A |0〉B denotes the ground state of the entire system.
The time evolution of this state is given by

φ(t ) = c0ψ0 +
N∑
i

ci(t )ψi +
∑

λ

cλ(t )ψλ. (3)

It is convenient to introduce the following parameter that sums
over the excited-state amplitudes:

c+(t ) =
N∑

i=1

ci(t ). (4)

The Schrödinger equation generates the set of coupled
differential equations for the state amplitudes:

ċi = − iJ (c+ − ci ) +
∑

λ

cλgλei(ω0−ωλ )t ,

ċ+ = − iJ (N − 1)c+ + N
∑

λ

cλgλei(ω0−ωλ )t ,

ċλ = − gλe−i(ω0−ωλ )t c+. (5)

Assuming now that the bosonic field is initially in its vac-
uum configuration [cλ(0) = 0,∀ λ], formally integrating the
differential equation for cλ yields

cλ(t ) = −
∫ t

0
gλe−(ω0−ωλ )t1 c+(t1)dt1. (6)

We introduce the so-called “memory kernel” G(t ) =∑
λ g2

λei(ω0−ωλ )t . Substituting Eq. (6) in Eqs. (5) we obtain

ċi = − iJ (c+ − ci ) −
∫ t

0
G(t − t1)c+(t1)dt1,

ċ+ = − iJ (N − 1)c+ − N
∫ t

0
G(t − t1)c+(t1)dt1. (7)

Note that the dynamics induced by the bosonic reservoir
are solely controlled by the value of c+ convoluted with the
memory kernel G(t ); this can be interpreted as the reservoir
only coupling to the total polarization of the collection of
atoms. To emphasize this point, we can consider the total
polarization operator σ−

T = ∑N
i=1 σ−

i , which is the sum of the
polarization for each of the atomic systems. The expectation
value of this operator is 〈σ−

T 〉 = c0c+(t ) ∝ c+(t ), suggest-
ing that c+ is a measure of the total system’s polarization.
Similarly, the atom-atom coupling term is ∝ c+ − ci, so we
can interpret this as the individual atom coupling to the total
polarization of all the other atoms in the system. Additionally,

it is this convolution term in Eq. (7) that controls the non-
Markovianity of the system’s dynamics as it integrates over
all previous time states of the system, effectively allowing
for previous states of the system to impact the current time
dynamics. This is a truly non-Markovian process as the con-
volution accounts for states from the initial condition at t = 0
up to the current time t . The strength of the non-Markovianity
of the system is then determined by the particular character of
the memory kernel G(t − t1). This is clear when noting that
for G(t − t1) = δ(t − t1) we have purely Markovian dynamics
as the memory kernel only gives information when the two
times are equal.

Equation (5) can be solved in terms of the Laplace trans-
form of the single atom amplitudes ci and c+ (the full
derivation is presented in Appendix A1). We obtain for the
value of the total polarization c+ of the atoms

c̃+(s) = c+(0)

s + iJ (N − 1) + NG̃(s)
, (8)

where G̃(s) is the Laplace transform of the memory kernel.
It is often useful to think of the environmental modes being
distributed in a continuum such that we can relate G̃(s) to the
spectral density S(ω)—describing the coupling strengths of
the atomic systems to the environment at different environ-
mental frequencies defined by

S(ω) =
∑

λ

g2
λδ(ω − ωλ). (9)

Thus the relation between the Laplace transform of the mem-
ory kernel and the spectral density is

G̃(s) =
∫

dω
S(ω)

s − i(ω0 − ω)
. (10)

Interestingly the dynamics associated with the total polariza-
tion parameter c+ maps onto the single (N = 1) atomic system

c̃1(s) = c1(0)

s + G̃(s)
, (11)

with rescaled coupling strengths gλ → √
Ngλ and a Lamb

shift of the transition frequency ω0 → ω0 + J (N − 1), which
ultimately leads to a phase parameter eiJ (N−1)t in the time
resolved dynamics. The Laplace transforms of the individual
state amplitudes are given by

c̃i(s) = ci(0)

s − iJ
− c+(0)[G̃(s) + iJ]

(s − iJ )[s + iJ (N − 1) + NG̃(s)]
. (12)

The Laplace transform solutions in Eqs. (11) and (12)
provide a few interesting results. Note that the coupling to the
reservoir dynamics is strongly dependent on the initial value
of the total polarization c+(0). Also, note that we can decouple
the atoms from their environment by choosing an appropri-
ate initial condition such that the initial total polarization
c+(0) = 0. Doing so leaves only the first term on the right-
hand side of Eq. (12) nonzero. The inverse Laplace transform
of this leads to only time evolution in the phase of each
excited-state amplitude ci(t ) = ci(0)eiJt and does not affect
population dynamics. This is because the total polarization for
the system is zero, preventing the atoms from coupling to the
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environment. Another initial condition of note is full initial
symmetry, such that each atom has equivalent time evolution.
Each atom acts identically towards the evolution of the total
polarization and, as such, each acts as a single atom within a
dissipative environment as the gain in excitation due to energy
transfer between atoms is balanced with the loss. For example,
assuming ci(0) = 1√

N
and c+(0) = √

N the evolution of the
excited-state amplitudes is governed by

c̃i(s) = 1√
N[s + iJ (N − 1) + NG̃(s)]

, (13)

which is simply the rescaled dynamics of c+ in Eq. (8).
We also find that the steady state of these systems is

nonzero. The total polarization for the system tends to relax
in a conventional sense; however, this does not necessitate
that individual atoms relax back to the ground state as we
only require the total polarization to relax. Using the final
value theorem (FVT) and removing the phase dependence
(s → s + iJ) yields

ci∞ = lim
s→0

sc̃i(s + iJ ) = ci(0) − c+(0)

N
. (14)

As such, we expect the late time excited-state population of
the ith atom |ci|2 to tend towards |ci(0) − c+(0)

N |2 discounting
oscillations as the FVT does not account for these. Effectively,
by configuring the initial condition of the atomic systems, we
can localize excitations in particular atoms. Such a technique
may have relevance in quantum memory storing devices.

An interesting case occurs when the total polarization for
the atoms is equal to a single atom’s polarization [c1(0) =
c+(0)]. As the environment only couples to the total polar-
ization and the relaxation of the total polarization is carried
equally across all of the atomic systems this allows for
nonzero steady-state polarizations for individual atoms even
in highly dissipative or Markovian environments—where the
total polarization goes to zero. This is apparent when we apply
the final value theorem with this initial condition yielding
c1∞ = c1(0)(1 − 1

N ). As we increase the number of atoms
within the system we have limN→∞ c1∞ = c1(0) so, in the
late time, we return to our initial-state value (minus phase
contributions). Scaling the numbers of atoms effectively in-
creases the speed of the relaxation of the total polarization
as its coupling to the reservoir

√
Ngλ is dependent on N , so

we can imagine that as N increases we get limited reservoir
dynamics induced on the individual atoms as the changes in
the total polarization are spread amongst all N atoms.

We now present an effective Hamiltonian model to show
how the dynamics we are seeing are similar to that of a
single atomic system with an altered effective Hamiltonian.
To model this behavior we consider a single atomic system
embedded within a bosonic reservoir with an additional self-
interaction term to account for the atom-atom interactions.
The system Hamiltonian is given by

H̃ = ω0σ
+σ− +

∑
λ

ωλa†
λaλ + J (N − 1)σ+σ−

+ i
√

N
∑

λ

gλ(aλσ
+ei(ω0−ωλ )t − a†

λσ
−e−i(ω0−ωλ )t ).

(15)

We note that the coupling to the reservoir of this new aggre-
gated atom is stronger (for N > 1) than in the original system.
This leads to an interaction Hamiltonian of the form

H̃I = J (N − 1)σ+σ−

+ i
√

N
∑

λ

gλ(aλσ
+ei(ω0−ωλ )t − a†

λσ
−e−i(ω0−ωλ )t ),

(16)

and the dynamical equation for the excited-state amplitude c′
+

is given by

ċ′
+ = −iJ (N − 1)c′

+ +
√

N
∑

λ

cλgλei(ω0−ωλ )t , (17)

yielding

ċ′
+ = −iJ (N − 1)c′

+ − N
∫ t

0
G(t − t1)c′

+(t1)dt1, (18)

which is equivalent to Eq. (7). As such we can consider that
the reservoir-atom interaction is being mediated by the ag-
gregated system that has internal couplings that the reservoir
cannot see.

Now we consider how altering the coupling J between
the atoms impacts the steady-state dynamics. In the regime
where J → 0 the steady-state behavior—nonzero excited-
state populations—still occurs, provided that

lim
s→0

G̃(s)

s + NG̃(s)
(19)

exists. To see this we can consider that the memory kernel in
terms of the spectral density is g

lim
s→0+

G̃(s) = lim
s→0+

∫
dω

S(ω)

s − i(ω0 − ω)
. (20)

Utilizing the Sokhotski-Plemelj theorem [42] we obtain

lim
s→0+

G̃(s) = S(ω0)π − iP
∫ ∞

0
dω

S(ω)

ω − ω0
, (21)

where P refers to the Cauchy principal value. As such, we
expect the above to be generally nonzero and thus that we
have nonzero steady-state values. For example, we consider a
generic Ohmic type spectral density with Ohmicity parameter
p given by

S(ω) = λ	
[ ω

	

]p
e−ω/	, (22)

where λ is the coupling strength and 	 the cutoff frequency.
We have

lim
s→0+

G̃(s) = S(ω0){π [1 + i Cot(π p) − i(−1)pCsc(π p)]

− i(−1)p
(1 + p)
(−p,−ω0/	)}, (23)

where 
(·) and 
(·, ·) are the gamma and incomplete gamma
functions, respectively. As this value of the Laplace transform
for the memory kernel is nonzero we do not have issues in
reducing out this term in finding the final value for the excited-
state amplitudes. Thus reservoirs that can be modeled by the
Ohmic types of spectral density would yield the steady states
predicted by Eq. (14).
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These results provide a solid basis for the current ex-
ploration of the non-Markovian dynamics as well as being
amenable to our intuition that the dynamics are controlled by
the total polarization of the system. However, it is often the
case in real physical systems that such an exact symmetry is
not attainable and that local defects in the structure of the envi-
ronment will modulate the dipole-dipole coupling between the
atomic systems. As such in Appendix A2 we have considered
a single defect in the atomic dipole-dipole coupling. We note
that the steady state from the FVT yields

c∞
i = ci(0) + ck (0) − c+(0)

N − 1
.

The steady state of the system excludes the initial condition
of the defect atom ck (0). This is quite remarkable that, de-
spite the introduction of the defect, the only change at the
steady state is the removal of that defect from the total po-
larization. Additionally, by studying the form of the Laplace
space solutions for the excited-state amplitudes in Eq. (A20),
we note that there are now three dynamical terms associ-
ated with the environment. The first is proportional to the
polarization of the symmetric atoms [∝ c+(0) − ck (0)]. The
second is proportional to the polarization of the defect atom
[∝ ck (0)]. Finally, there is a term proportional to the initial
polarization of the entire system [∝ c+(0)]. This means that
for a preferentially selected initial condition we could again
decouple the system from its environment. This is done by
setting these initial polarizations to zero. Furthermore, we
have provided a scheme in Appendix A3 for studying the case
where the ith and jth atoms are coupled with a dipole-dipole
interaction Ji j , accounting for generic dipole-dipole coupling.
In principle, solving this equation is equivalent to inverting an
affine transformation.

B. Nearest-neighbor coupling

In this section, we consider a different model for atomic
systems in dissipative environments—that of an atomic chain,
allowing the atoms to only interact directly with immediate
neighboring atoms. We consider an open chain such that at
the boundaries the first and N th atoms couple only to the
second and (N − 1)th atoms, respectively. This model is much
less restrictive in terms of the symmetry of the dipole-dipole
coupling strength J as we need only to assume that atoms are
equidistant from their nearest neighbors, although more care
is needed in justifying coupling to the same reservoir, i.e., that
the gλ are shared across all atomic systems. However, note
that dipole-dipole interactions occur over short length scales
of less than 10 nm [43]; naturally we would not expect the
electromagnetic field to vary greatly over this length scale
justifying the identical coupling. Alternatively, if considering
coupling to a photonic crystal reservoir, the atoms could be
placed at spatially equivalent positions within the crystalline
structure. The system Hamiltonian in the interaction picture is
given by

H̃I =i
∑
i,λ

gλ(aλσ
+
i ei(ω0−ωλ )t − a†

λσ
−
i e−i(ω0−ωλ )t )

+
N−1∑
j=1

J (σ+
j σ−

j+1 + σ−
j σ+

j+1), (24)

where we note that, as stated above, only the next-neighboring
atoms are coupled to each other. By performing a similar anal-
ysis to the highly symmetric case and keeping only terms up
to second order in the dipole-dipole coupling parameter J—as
the dipole-dipole coupling is weak—we obtain the following
equation for the excited-state amplitude of the first atom in the
chain

c̃1(s) = s2c1(0) − iJsc2(0) − J2c3(0)

(s2 + J2)s

+ c̃+(s)G̃(s)(J2 + iJs − s2)

(s2 + J2)s
. (25)

We can derive a similar expression for the Laplace transform
solution for the excited-state amplitude of the final atom in the
chain:

c̃N (s) = s2cN (0) − iJscN−1(0) − J2cN−2(0)

(s2 + J2)s

+ c̃+(s)G̃(s)(J2 + iJs − s2)

(s2 + J2)s
. (26)

Keeping terms up to second order in the dipole-dipole cou-
pling J effectively allows for the dynamics of the nearest two
atoms to intervene directly in the dynamics of the system.
We note that the reservoir induced dynamics [terms propor-
tional to G̃(s)] are again determined by the total polarization
parameter c+. However, as the atoms are only coupled to their
nearest neighbors, we pick up additional contributions from
the dipole-dipole coupling J .

In contrast to the fully symmetric case, we now pick up
oscillatory terms given by the initial conditions of each of the
two nearest atoms as shown by the terms independent of G̃(s)
(these are simple Laplace transform identities for integrals of
the trigonometric sin and cos functions). This demonstrates
the clear bidirectionality of the energy transfer that was not
present in the previous model.

For convenience we now consider the expansion up to first
order in J and assume only that the first atom is initially
excited, c1(0) = 1, and all other atoms are initially in the
ground state, ci(0) = 0. This yields

c̃1(s) = 1

s
− G̃(s)

[s2 + NG̃(s)s − 2iJG̃(s) + 2iJs]

c̃N (s) = − G̃(s)

[s2 + NG̃(s)s − 2iJG̃(s) + 2iJs]
. (27)

In order to explore the late time dynamics, we consider the
transformation s → s + 2iJ

N . Up to first order in the dipole-
dipole coupling J , we have

c1(∞) = 1 − G̃
(

2iJ
N

)
2iJ

(
1 + 2

N

) + NG̃
(

2iJ
N

) . (28)

Unlike the fully symmetric case explored previously, the late
time dynamics appear to be governed by the value of G̃( 2iJ

N ).
However, for large values of G̃( 2iJ

N ) or large values of N and
with G̃( 2iJ

N ) �= 0 we recover similar dynamics to the fully
symmetric system presented above. Conversely, for smaller
values of N we find that the steady-state character is strongly
determined by the relation between the dipole-dipole coupling
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strength J and the memory kernel G̃(s). In Appendix A5,
we show that even for small perturbations of the transition
energy in the first and final atom in the chain we recover the
same dynamics with a phase shift and frequency shift in these
modified atoms’ amplitudes. Such a correction shows that for
small perturbations in these transition energies we can retain
the dynamics of the combined system ensuring the system is
robust.

This model could also be utilized to study quantum chaotic
chains, as one would need only to add an Ising interaction cou-
pling term (σ z) between the atoms and a modulated transition
energy in a single atom in the chain to induce quantum chaos
(see Refs. [44,45]). Fortunately, such coupling terms (σ z

i σ z
i+1)

also commute with the number operator and thus conserve
the number of excitations in the system allowing for the
formalism developed here to be utilized directly. This opens
the possibility to deploy the current framework to explore
the effects of a quantum chaotic chain within a dissipative
environment.

III. MANY ATOMS IN SEPARATE BOSONIC RESERVOIRS

Here we consider the case wherein each of the atoms are
coupled to independent bosonic reservoirs. This model as-
sumes that the local environment between atomic systems has
varied sufficiently such that there are no correlations between
the local environments of different atoms. Similar models are
utilized in quantum chemistry to model the energy transfer in
light-harvesting complexes [46], and we explore it here in our
formalism merely to contrast it with the single reservoir case.

A. Fully symmetric coupling

For independent reservoirs interacting with each of the
atoms we need to introduce separate creation and annihilation
operators for the different reservoirs. The interaction Hamil-
tonian in the Dirac picture in this regime then becomes

H̃I = i
∑

iλ

gλ(aiλσi+ei(ω0−ωλ )t − a†
iλσi−e−i(ω0−ωλ )t )

+
∑
j �=i

Jσ+
i σ−

j , (29)

where we have an additional index on the annihilation and
creation operators for the bosonic reservoir to denote each of
the independent reservoirs associated to each atom. This leads
to the Laplace transform of the excited state populations c̃i(s):

c̃i(s) = ci(0)

s − iJ + G̃(s)

− iJc+(0)

[s + iJ (N − 1) + G̃(s)][s − iJ + G̃(s)]
. (30)

In contrast to the previous section here we note that, while
there is a collective effect governed by the total polarization
c+, we have also a decaying in the individual systems gov-
erned by ci(0). This behavior is apparent from the fact that
we can transform the first term into the single atom dynamics
by way of taking s → s + iJ (simply introducing a phase pa-
rameter in the time domain), effectively shifting the transition
energy of the atomic system by J . Furthermore, we note that

the denominator for the term associated with the total polar-
ization no longer has a NG̃(s) term, showing that superradiant
effects no longer play a role as the effective coupling strength
no longer scales with the number of atoms. If we utilize the
final value theorem as before we can see that, even with the
removal of the phase parameter eiJt , the amplitudes vanish
in steady-state conditions due to the nonzero nature of the
Laplace transform of the memory kernel:

lim
s→∞ sc̃i(s) = 0. (31)

As such we no longer observe the steady-state character we
saw in the previous section. We can also note that the col-
lective dynamics is a convolution of two systems undergoing
decay into a reservoir as we now have multiple pathways for
the excitation to leave the system and if the excitation enters
another atom’s reservoir it is now much more difficult for it to
be retrieved by the other atoms; whereas previously all of the
atoms may take the excitation from the same unique reservoir,
now only one atom may do so, which is that corresponding to
the reservoir the excitation is in.

B. Nearest-neighbor coupling

Similar to the previous section we now consider the system
wherein the atoms can only couple to adjacent atoms in a
line. For this system the appropriate interaction Hamiltonian
is given by

H̃I = i
∑
i,λ

giλ(aiλσ
+
i ei(ω0−ωiλ )t − a†

iλσ
−
i e−i(ω0−ωiλ )t )

+
N−1∑
j=1

J (σ+
j σ−

j+1 + σ−
j σ+

j+1). (32)

Similar to the previous approach, we can evaluate the Laplace
transform of the excited-state amplitudes for the central atoms
in the chain, i.e., for c̃i, i �= 1, N ,

c̃i(s) = ci(0)[s + G̃(s)] − iJ[ci−1(0) + ci+1(0)]

[s + G̃(s)]2 + 2J2

+ J2[ci−2(0) + ci+2(0)]

[s + G̃(s)]{[s + G̃(s)]2 + 2J2} , (33)

for i �= 1, N which leads to the Laplace solutions for the first
and final atom in the chain

c̃1,N = c1,N (0)

s + G̃(s)
− iJc̃i(s)

s + G̃(s)
. (34)

Note that all terms contain the Laplace transform of the mem-
ory kernel G̃(s) in the denominator; as such we expect them
each to decay away into the reservoir and that there is not
any observable shielding of these amplitudes. Again, utilizing
the final value theorem we find that—typically—we do not
have nonzero steady states. Thus it is apparent that to maintain
these nonzero steady states irrespective of the specific form of
the memory kernel we must ensure that the atomic systems are
all coupled to the same local reservoir. This is akin to stating
that these atomic systems need to be highly localized.
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IV. PHOTONIC CRYSTAL RESERVOIR

In this section, we consider a specific model for the bosonic
reservoir, that of the electromagnetic field around the pho-
tonic band gap of a photonic crystal. The photonic crystal
is well suited for the model proposed as due to its screening
of modes of the electromagnetic fields the low-temperature
approximation is well justified. Additionally, as photonic crys-
tals can have band-gap frequencies in the optical spectral
range, the rotating wave approximation is also well justified.
Furthermore, experimental setups [25,27] have already been
developed for studying atomic systems embedded within pho-
tonic crystals and, as such, we can validate our approach
against experimental data. The photonic crystal also has the
additional useful quality that as we increase the dephasing
value � (the difference between the atomic transition energy
ω0 and the photonic band edge ωI ) to large positive values we
effectively see an unstructured vacuum and for large negatives
values we see little of the electromagnetic field modes making
the atoms act as free (no reservoir) coupled atoms. Thus, by
varying the dephasing, we can inspect a variety of different
environment configurations and regimes to properly test our
models. The model for the photonic crystal we have chosen
is that of the isotropic one-dimensional photonic crystal band
edge [15,47]. Such a system can be constructed in the form of
a photonic crystal waveguide [48]. This model is particularly
interesting due to a divergence in the local density of states
of the electromagnetic field modes around the band edge fre-
quency ωI [ρ(ω) ∝ θ (ω − ωI )(ω − ωI )−

1
2 ], generating strong

atom-photon coupling and leading to localization of photons
around atoms.

A. Fully symmetric coupling

To perform our analysis we need only derive the memory
kernel for the isotropic band-gap model and then perform the
inverse Laplace transforms required.

In Appendix C1, we have derived the excited-state ampli-
tude for a memory kernel defining a photonic crystal band-gap
material. Such a memory kernel has the form

G̃(s) = β3/2e−iπ/4(s − i�)−
1
2 . (35)

Note that this has a divergence at s = i�; this is a direct
consequence of the strong coupling to the band-gap mode
of the local electromagnetic field. For convenience, we will
assume that β = 1 and use the dimensionless time parameter
τ = βt .

From Eq. (C4) we note that if we remove the dipole-dipole
coupling by taking J → 0 then the exponential relaxation of
the system has a decay rate γ ∝ N

2
3 , which reproduces the

result found in [36] for uncoupled atomic systems inside a
1D photonic crystal, thus demonstrating superradiant behavior
even in the single-excitation regime. Conversely, if we con-
sider nonzero values for the dipole-dipole coupling J , then
for large numbers of atomic systems N or small values of the
dephasing �, we find that the decay rate γ ∝ N effectively in-
creases the rate of superradiance by introducing dipole-dipole
coupling. Remarkably this relationship has been observed for
trapped atoms inside of 1D photonic waveguides where the

FIG. 1. Population dynamics for the excited state of a single
atom coupled to four other atoms, with the atom initially excited
[c1(0) = 1], inside of a photonic crystal reservoir, with varying val-
ues of the dephasing parameter � = ω0 − ωI between the atomic
transition energy and the photonic crystal band edge; the dipole-
dipole coupling J = 0.1.

decay rate was found to be proportional to the number of
atoms N [49], hence validating our approach.

Resolving the time evolution of the system in Figs. 1, 2,
and 3 (here atom 1 is initially excited), we note the predicted
steady-state values (minus oscillations) of 1/N2 are present.
As we increase the value of the dephasing �, we move
closer to a vacuum state and so would traditionally expect the
atoms to deexcite into the ground state. Additionally, due to
the nature of the photonic crystal, we have nonzero steady
states associated with the total polarization (acting as the

FIG. 2. Population dynamics for the excited state of a single
atom coupled to four other atoms, with another atom initially ex-
cited [c1(0) = 1, i �= 1], inside of a photonic crystal reservoir, with
varying values of the dephasing parameter � = ω0 − ωI between
the atomic transition energy and the photonic crystal band edge; the
dipole-dipole coupling J = 0.1.
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FIG. 3. Population dynamics for the excited state of a single
atom coupled to 99 other atoms, with the atom initially excited
[c1(0) = 1], inside of a photonic crystal reservoir, with varying val-
ues of the dephasing parameter � = ω0 − ωI between the atomic
transition energy and the photonic crystal band edge; the dipole-
dipole coupling J = 0.1.

single atom system from [13]) of the system. As such, we
still have oscillations as the excitation is transferred between
the different atoms. These amplitudes become damped as we
increase the dephasing value, due to a monotonic reduction
in the total polarization in �, or, equivalently, the increased
dephasing makes it more difficult to transfer excitations to the
band-gap mode. We also note that in Fig. 3 as the number of
atoms increases the atoms move closer and closer in phase as
� + J (N − 1) → JN .

Figure 4 shows that, when the excited-state amplitudes
for all atoms are initially prepared in a symmetrical excited

FIG. 4. Population dynamics for the excited state of a single
atom coupled to nine other atoms, with all atoms symmetrically
initially prepared [ci(0) = 1/

√
10], inside of a photonic crystal reser-

voir, with varying values of the dephasing parameter � = ω0 − ωI

between the atomic transition energy and the photonic crystal band
edge; the dipole-dipole coupling J = 0.1.

state [ci(0) = 1/
√

10 for all i], we return to the single atom
(N = 1, J = 0) excited-state amplitude’s dynamics multiplied
by 1/N with a Lamb shifted transition energy given by

� → � + J (N − 1)

N2/3
, (36)

as predicted. As such we no longer see any transfer of ex-
citations between respective atoms as each atom loses as
much polarization as it gains from the other atoms in the
system reaching an equilibrium. Additionally, as we increase
the number of atoms N we effectively shift the atoms outside
of the band gap as

N � �/J, κ = � + J (N − 1)

N2/3
→ JN1/3. (37)

Next, we analyze the coherences between the energy eigen-
states of the atomic systems. This is done by exploring the
dynamics of the canonical Bell states. Typically, the environ-
ment causes decoherence in quantum systems. If we could
identify environments that better preserve the coherences in
atomic systems we may be able to engineer more robust quan-
tum computing systems. The pair of Bell states accessible in
this regime are

�+ = 1√
2

(|0〉 |1〉 + |1〉 |0〉),

�− = 1√
2

(|0〉 |1〉 − |1〉 |0〉). (38)

If we consider a system of N atoms and we consider only two
such atoms, we may choose to prepare the system in such a
way that the two atoms have initial amplitudes c1(0) = ± 1√

2

and c2(0) = 1√
2

such that the atoms are initialized in either of
the two Bell states and the other N − 2 atoms and environment
in the ground state (with respect to their free Hamiltonians).
From Eq. (C3) we can see that for the �− state—as the total
initial polarization c+(0) = c1(0) + c2(0) = 0—the system is
decoupled from its environment and is well conserved. How-
ever, for the initial condition such that the two atoms are in the
�+ state c+(0) = √

2, and thus we expect nontrivial reservoir
induced dynamics. Although, as previously discussed, by in-
creasing the number of atoms in the system we can reduce the
effects of the reservoir on individual atoms. From Fig. 5 note
that as we increase the number of atoms N in the system the
amplitude of the oscillations away from the initial condition
of the system is reduced, suggesting that increased auxiliary
atoms may provide better conservation of the Bell state of the
two atom system.

In addition to being able to preserve the entanglement
between two atomic systems, we are also considering the
generation of entanglement between atomic systems that are
initially unentangled. It has been shown that non-Markovian
bidirectional flow of information from system to the en-
vironment can generate entanglement between previously
unentangled states [19,20], thus generating quantum correla-
tions between atoms. The photonic crystal band-gap system
is a natural candidate for this interaction as strong coupling
to the band-gap mode between all of the atomic systems will
effectively accommodate the transfer of information between
atomic systems, even when the interatomic coupling J = 0,
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FIG. 5. Dynamics of the Bell state �+ for varying numbers of
atoms N with value of the dephasing parameter � = ω0 − ωI = −5
between the atomic transition energy and the photonic crystal band
edge.

hence generating quantum correlations associated with the
entanglement. This stark backflow of information is charac-
teristic of the non-Markovian nature of the photonic band-gap
system.

The results presented in Fig. 6 show that this is the case.
The concurrence between the initially excited atom and the
other atoms in the system is nonzero even into the late-time
dynamics, hence demonstrating the spontaneous generation of
entanglement between the subsystems, which is mediated ex-
clusively by the highly structured local electromagnetic field.
Furthermore, the strength of the entanglement (the magnitude
of the concurrence) is suppressed as we increase the number
of atoms within our system. This is to be expected as we are
considering only the single-excitation regime and, as the atom

FIG. 6. Mean value of late-time concurrence C of atom 1 and
atom i �= 1 (blue circles) and total concurrence (N − 1)C (orange
crosses) in a photonic crystal where the excitation is initially lo-
calized in atom 1 against the number of atoms in the system. The
dipole-dipole coupling J = 0 and dephasing is � = −5.

FIG. 7. Non-Markovian measure N against the number of atoms
N in a photonic crystal, with transition energy of the atomic systems
close to the band gap such that the dephasing with respect to the band
edge frequency is � = −5. The dipole-dipole coupling between
atoms is J = 0.

becomes less localized around the initially excited atom, we
naturally expect a decrease in the localization in each other
atom that is limited by the number of atoms. However, we
note that this decays at a rate slower than 1

N and so, although
the entanglement between pairwise atoms is lowered, the total
entanglement of atom 1 and all others increases with atom
number.

To justify whether this observed effect is due to the
non-Markovianity in the system we need a way to quantify
non-Markovianity. We utilize the metric introduced in [50],
and consider the two trajectories to be the ground state and
the time evolution of the reduced dynamics with atom 1 ini-
tially excited, to capture the system used in the generation
of entanglement. Utilizing this metric we have studied the
non-Markovianity in our system, the results of which are
shown in Fig. 7. It is clear to see that the non-Markovianity
reaches a maximum value around N = 8 atoms; this is a
surprising fact as one would expect that the non-Markovianity
would increase with the number of auxiliary atoms that atom 1
couples to. However, if we return to our previous analysis of
the effective Lamb shift induced by increasing the number
of atoms, the influence of the factors driving the dynamics
of the system becomes clear. There is a discord between the
non-Markovianity induced by the additional atoms that are
resonant with atom 1 and with the Lamb shifting of the atomic
frequency outside of the photonic band gap, the latter of which
will lead to a more Markovian dynamics. As we increase the
number of atoms, this Lamb shifting dominates and causes
the system to appear more Markovian. Thus the apparent
plateau in Fig. 6 can be associated with the reduction of the
non-Markovianity of the system.

B. Nearest-neighbor coupling

We now consider the nearest neighbor coupling of a chain
of atoms embedded within a photonic crystal. Similar to the
previous approach we derive the excited-state amplitudes in
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FIG. 8. Population dynamics for the excited state of the first
atom in a chain of five atoms coupled to their nearest neighbor,
with the first atom initially excited [c1(0) = 1], inside of a photonic
crystal reservoir, with varying values of the dephasing parameter
� = ω0 − ωI between the atomic transition energy and the photonic
crystal band edge; the dipole-dipole coupling J = 0.1.

Appendix C2. For the dynamics of the first atom in the chains’
excited-state amplitude we have

c1(τ ) = c1(0) + cN (τ ). (39)

Figures 8 and 9 depict the dynamics of the excited-state pop-
ulation of the first and fifth atom in a five-atom chain and
we note that the results for this nearest-neighbor configuration
are very similar to the dynamics of the fully coupled system.
It becomes advantageous to explore as much as possible the
fully coupled system, which has analytical solutions and ex-
trapolate the results to the nearest-neighbor coupled system.

FIG. 9. Population dynamics for the excited state of the final
atom in a chain of five atoms coupled to their nearest neighbor,
with the first atom in the chain initially excited [c1(0) = 1], inside
of a photonic crystal reservoir, with varying values of the dephasing
parameter � = ω0 − ωI between the atomic transition energy and
the photonic crystal band edge; the dipole-dipole coupling J = 0.1.

This behavior also suggests that the dynamics of the atomic
system is being more significantly driven by the reservoir than
the dipole-dipole coupling.

V. CONCLUSION

In this article, we have analyzed many-body atomic sys-
tems coupled to non-Markovian reservoirs and explored the
emergent features. We have shown that the dynamics of sym-
metrically coupled atomic systems is controlled by the total
polarizations of all atomic systems not uniquely by each.
We have also studied the steady-state character of the atomic
dynamics and have shown that it is determined by the number
of atoms within the system. This effect was also shown to
be independent of the specific structure of the reservoir the
atoms are interacting with as well as the interatom dipole-
dipole coupling strengths. We further expanded our analysis
to the case of nearest-neighbor coupling between atoms to
model an atomic chain and identified a similar steady state,
that was less trivially determined by the dipole-dipole cou-
pling. This is in contrast to coupling to independent reservoirs,
wherein no such steady state can, in general, be achieved;
this is due to there being multiple channels for the system
to dissipate into without retrieval. Finally, we have explored
the isotropic photonic band-gap model and have shown that it
is possible to observe both the late time dynamics predicted
as well as superradiant behavior. This superradiance can be
enhanced by the dipole-dipole coupling between the atomic
systems and both reproduced previous theoretical results,
in the absence of dipole-dipole coupling, as well as found
agreement with experimental results when reintroducing the
dipole-dipole coupling [49], suggesting the necessity of this
interaction in understanding the physical system. Our results
demonstrate the viability of the approach introduced and sug-
gest that such models may have physical constructions that
could be of practical interest as they can effectively manip-
ulate the localization of excitations across atoms simply by
having more atoms supporting them [25]. Furthermore, we
have shown that in this paradigm the single excitation Bell
states �± can be well preserved—a result that may prove
useful for quantum computational systems. The generation
of entanglement between atomic systems was explored by
utilizing the photonic reservoir as an intermediary to transfer
quantum correlations and we have shown that global entan-
glement increased with atomic number, suggesting a possible
mechanism for preparing systems in entangled states. Finally,
we studied the non-Markovianity of the system with a varying
number of atoms and noticed a stark conflict between the in-
fluence of the Lamb shifting of the atomic transition frequency
and the total number of atoms.

The data underlying the findings of this study are available
without restriction [51].
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APPENDIX A: SINGLE RESERVOIR

1. Fully symmetric coupling

We start with the (RWA) Hamiltonian

H =
N∑

i=1

ω0σ
+
i σ−

i +
∑

λ

ωλa†
λaλ

+ i
∑
i,λ

gλ(aλσ
+
i − a†

λσ
−
i ) +

∑
i �= j

Jσ+
i σ−

j , (A1)

where σ+
i and σ−

i are the excitation and deexcitation operators
for the ith atomic system, respectively, aλ and a†

λ are the
bosonic field annihilation and creation operators, ω0 and ωλ

are the atomic transition and the λ-boson mode frequencies,
and gλ is the coupling strength of the atomic system and the
λ-boson mode.

By changing to the interacting picture we can consider the
interaction Hamiltonian

H̃I = i
∑
i,λ

gλ(aλσ
+
i ei(ω0−ωλ )t − a†

λσ
−
i e−i(ω0−ωλ )t )

+
∑
j �=k

Jσ+
j σ−

k . (A2)

Such a Hamiltonian is convenient as it conserves the excita-
tion number of any wave function. As such if we consider the
single excitation wave function given by

φ(0) = c0ψ0 +
N∑
i

ci(0)ψi +
∑

λ

cλ(0)ψλ, (A3)

its time evolution is given by

φ(t ) = c0ψ0 +
N∑
i

ci(t )ψi +
∑

λ

cλ(t )ψλ, (A4)

where for ψi = |i〉A |0〉B the ith atom is in its excited state and
ψλ = |0〉A |λ〉B the atoms are all in their ground state and the
bosonic system has its λ mode excited. By simply plugging
this into the Schrödinger equation and determining the cou-
pled differential equations of motion for the state amplitudes
we get

H̃Iφi = −i
∑

λ

gλψλe−i(ω0−ωλ )t +
N∑
j

Jψ j (1 − δi j ), (A5)

H̃Iφλ = igλei(ω0−ωλ )t
∑

i

ψi. (A6)

By introducing the parameter

c+(t ) =
∑

i

ci(t ), (A7)

we have

ċi = − iJ (c+ − ci ) +
∑

λ

cλgλei(ω0−ωλ )t ,

ċ+ = − iJ (N − 1)c+ + N
∑

λ

cλgλei(ω0−ωλ )t ,

ċλ = − gλe−i(ω0−ωλ )t c+. (A8)

Assuming the bosonic field is initially in its vacuum con-
figuration [cλ(0) = 0] we can formally integrate up the last
equation to get

cλ(t ) = −
∫ t

0
gλe−(ω0−ωλ )t1 c+(t1)dt1, (A9)

and by introducing the memory kernel G(t ) = ∑
λ g2

λei(ω0−ωλ )t

we can rewrite the above equations as

ċi = − iJ (c+ − ci ) −
∫ t

0
G(t − t1)c+(t1)dt1,

ċ+ = − iJ (N − 1)c+ − N
∫ t

0
G(t − t1)c+(t1)dt1. (A10)

It is notable that our memory kernel G(t ) is related to the
spectral density S(ω) = ∑

λ g2
λδ(ω − ωλ) associated to the

reservoir by the relation

G(t ) =
∫

dω S(ω)ei(ω0−ω)t . (A11)

In order to solve these equations we utilize the Laplace trans-
form. Transforming the differential equations into algebraic
ones,

sc̃i(s) − ci(0) = −iJ[c̃+(s) − c̃i(s)] − c̃+(s)G̃1,

sc̃+(s) − c+(0) = −iJ (N − 1)c̃+(s) − Nc̃+(s)G̃1, (A12)

where we have used that f̃ (s) = L{ f (t )}. We can see that we
can solve for c̃+(s) getting

c̃+(s) = c+(0)

s + iJ (N − 1) + NG̃
. (A13)

From this we can solve for the single atom amplitude Laplace
solution

c̃i(s) = ci(0)

s − iJ
− c+(0)(G̃ + iJ )

(s − iJ )[s + iJ (N − 1) + NG̃]
. (A14)

If we consider the form of G̃(s) with respect to the spectral
density we can see that

G̃(s) =
∫

dω
S(ω)

s − i(ω0 − ω)
. (A15)

2. Single defect

For a fully symmetrically coupled system with a single
defect at the kth atom, the atom has interspin coupling J + δ

with all other atoms.

062207-11



ADAM BURGESS AND MARIAN FLORESCU PHYSICAL REVIEW A 105, 062207 (2022)

The interaction Hamiltonian associated with this system is
given by

H̃I = i
∑
i,λ

gλ(aλσ
+
i ei(ω0−ωλ )t − a†

λσ
−
i e−i(ω0−ωλ )t )

+
∑
j �=l

Jσ+
j σ−

l +
∑
j �=k

δ(σ+
j σ−

k + σ+
k σ−

j ). (A16)

We have the Schrödinger equation evolution for the state
amplitudes given by

sc̃i = ci(0) − iJ[c̃+(s) − c̃i] − iδc̃k − G̃c̃+, (A17)

sc̃k = ci(0) − i(J + δ)[c̃+(s) − c̃k] − G̃c̃+, (A18)

sc̃+ = c+(0) − i[(N − 1)J + δ]c̃+

− (N − 2)δc̃k − G̃c̃+. (A19)

We can solve the algebraic equations above to solve for the
Laplace transform solutions for the excited-state amplitudes
given by

c̃i(s) = 1

N − 1

(
ci(0)(N − 1) + ck (0) − c+(0)

s − iJ

+ s[c+(0) − ck (0)] + ick (0)[−N (δ − iG̃ + J ) + δ + J] + c+(0)G̃

δ2(N − 1) + 2δ(N − 1)(J − iG̃) + (J + is)[J (N − 1) − i(G̃N + s)]

)
, (A20)

c̃k (s) = ck (0){i[δ + J (N − 1)] + G̃N + s} − c+(0)[G̃ + i(δ + J )]

[s − i(δ + J )]{i[δ + J (N − 1)] + G̃N + s} − iδ(N − 2)(iδ + G̃ + iJ )
, (A21)

c̃+(s) = − i[ck (0)δ(N − 2) + c+(0)(δ + J + is)]

δ2(N − 1) + 2δ(N − 1)(J − iG̃) + (s − iJ )[iJ (N − 1) + (G̃N + s)]
. (A22)

By utilizing the final value theorem as before by taking
lims→iJ (s − iJ )c̃i(s) we gain

c∞
i = ci(0) + ck (0) − c+(0)

N − 1
. (A23)

From this we can see that the defect mode reduces the steady-
state contribution from the total polarization and in fact this
term is entirely governed by the total symmetric part of the
polarization c+ − ck . This, however, is not surprising as the
defect atom will have a characteristic dynamical frequency
that differs from the symmetric dipole-dipole coupling in-
duced frequency ∝ J , which the final value theorem we have
invoked is resolving.

3. Generic dipole-dipole coupling

If we consider the Hamiltonian associated with N atoms
that have generic dipole-dipole coupling, it is of the form

H̃I = i
∑
i,λ

gλ(aλσ
+
i ei(ω0−ωλ )t − a†

λσ
−
i e−i(ω0−ωλ )t )

+
∑
i, j �=i

Ji jσ
+
i σ−

j , (A24)

where we require that Ji j = Jji and Jii = 0 to ensure unitary
evolution. If we solve the Schrödinger dynamical equa-
tions for the state amplitudes we have

sc̃i = ci(0) −
∑

j

iJi j c̃ j − G̃
∑

j

c̃ j, (A25)

and we may rewrite this as a matrix equation in the form

s�̃c = �c(0) − M �̃c, (A26)

where �̃c is the N dimensional vector with �̃ci = c̃i, �ci(0) =
ci(0) and the coupling matrix

Mi j = iJi j + G̃. (A27)

Thus, in order to solve the more generic case, we need only
solve the set of linear equations generated, a scheme that is
amenable to computational approaches.

4. Nearest-neighbor coupling

We start with the interaction Hamiltonian for the nearest-
neighbor coupling, wherein the atoms only couple to those to
either side of them; such an interaction Hamiltonian is of the
form

H̃I = i
∑
i,λ

gλ(aλσ
+
i ei(ω0−ωλ )t − a†

λσ
−
i e−i(ω0−ωλ )t )

+
N−1∑
j=1

J (σ+
j σ−

j+1 + σ−
j σ+

j+1). (A28)

By performing a similar process as for the symmetric case we
find that the coupled differential equations of motion are

ċλ = −gλe−i(ω0−ωλ )t c+, (A29)

ċi = − iJ[(1 − δN,i )ci+1 + (1 − δ1,i )ci−1]

−
∫ t

0
dt1c+(t1)G(t − t1). (A30)

We then integrate up the state amplitudes associated with
environment excitations to determine the total polarization
parameter

ċ+ = −N
∫ t

0
dt1c+(t1)G(t − t1) − iJ (2c+ − c0 − cN ).

(A31)

062207-12



NON-MARKOVIAN DYNAMICS OF A SINGLE EXCITATION … PHYSICAL REVIEW A 105, 062207 (2022)

Substituting ci into itself to second order in the dipole-dipole
coupling J yields

c̃+ = s2c̃+(0) + iJs[c1(0) + cN (0)] + J2[c2(0) + cN−1(0)]

s3 + (NG̃ + 2iJ )s2 − 2iJG̃s + 2J2G̃
(A32)

leading to the equation for the atom 1 excited-state amplitude

c̃1(s) = s2c1(0) − iJsc2(0) − J2c3(0)

(s2 + J2)s

+ c̃+(s)G̃(s)(J2 + iJs − s2)

(s2 + J2)s
, (A33)

and for atom N

c̃N (s) = s2cN (0) − iJscN−1(0) − J2cN−2(0)

(s2 + J2)s

+ c̃+(s)G̃(s)(J2 + iJs − s2)

(s2 + J2)s
. (A34)

5. Nearest-neighbor differential ends

We start with the interaction Hamiltonian for the nearest-
neighbor coupling, wherein the atoms only couple to those
to either side of them; however, the first and last atom in the
chain have a transition energy ω0 + 2δ and ω0, respectively,
with the intermediate atoms having transition energy ω0 + δ.
The interaction Hamiltonian is of the form

H̃I = J

(
σ+

1 σ−
2 eiδt + σ+

N−1σ
−
N eiδt +

N−2∑
n=2

σ+
n σ−

n+1

)

+ i
∑

λ

gλ

(
σ+

1 aλei(ω+2δ−ωλ )t + σ+
N aλei(ω−ωλ )t

+
N−2∑
n=2

σ+
n aλei(ω+δ−ωλ )t

)
+ H.c., (A35)

where H.c. represents the Hermitian conjugate. The associated
coupled differential equations of motion are given by

ċ1 = −ic2J eiδt −
∑

λ

cλgλei(ω+2δ−ωλ )t ,

ċi = −iJ (ci−1 + ci+1) −
∑

λ

cλgλei(ω+δ−ωλ )t ,

ċN = −icN−1J e−iδt −
∑

λ

cλgλei(ω−ωλ )t ,

ċλ = −gλ(c1e−i(ω+2δ−ωλ )t ) +
∑

n

cne−i(ω+δ−ωλ )t

+ cN e−i(ω−ωλ )t ,

cλ = −gλ

∫ t

0
dt1e−i(ω−ωλ )t1

(
c1(t1)e−2iδt

+
N−2∑
n=2

cn(t1)e−iδt + cN (t1)

)
. (A36)

We define cm(t ) = ∑N−2
n=2 cn and moving forward drop order

J2 and higher terms. We also introduce the notation

Gj (t ) = G(t )ei( j−1)δt (A37)

and note that G̃ j (s + iδ) = G̃ j−1(s). We may now consider the
Laplace transform solutions

ċ1 = −iJc2eiδt −
∫ t

0
dt1G3(t − t1)

(
c1(t1)

+
N−2∑
n=2

ci(t1)eiδt1 + cN (t1)e2δit

)
,

sc̃1(s) − c1(0) = −iJc̃2(s − iδ) − G̃3(s)[c̃1(s)

+ c̃m(s − iδ) + c̃N (s − 2iδ)],

sc̃i(s) = −iJ[c̃i−1(s) + c̃i+1(s)] − G̃2(s)[c̃1(s + iδ)

+ c̃m(s) + c̃N (s − iδ)], (A38)

and for convenience we introduce a set of equations to sim-
plify the derivation

p(s) = G̃2(s)(N − 2) + s + 2iJ

(
1 + G̃2(s)

s

)
,

q(s) = iJ

(
2

G̃2(s)

s
+ 1

)
+ (N − 2)G̃2(s),

c̃m(s) = − p(s)

q(s)
[c̃1(s + iδ) + c̃N (s − iδ)],

M(s) = G̃1(s)
( iJ

s + iδ
− 1

)(
1 − p(s + iδ)

q(s + iδ)

)
,

c̃N (s) = M(s)c1(0)

s2 + 2iδs − 2(s + iδ)M(s)

= G̃1(s)(iJ − s − iδ)(s + iδ + iJ )

(s + iδ)[q(s + iδ) + 2G̃1(s)]
. (A39)

If we assume a small value for δ such that the rotating wave
approximation is valid we have (i.e., dropping δ2 terms)

c̃N (s)= −G̃1(s)

(s + iδ)2 + NG̃1(s)(s + iδ) + 2iJ[G̃1(s) + (s + iδ)]
.

(A40)

This is just a phase shifted version of the same transition
energy case we studied previously.

APPENDIX B: INDEPENDENT RESERVOIRS

1. Fully symmetric coupling

We now consider the interaction Hamiltonian for indepen-
dent reservoirs which requires us to index over the various
atoms’ reservoir operators. The interaction Hamiltonian then
becomes

H̃I = i
∑

iλ

gλ(aiλσ
+
i ei(ω0−ωλ )t − a†

iλσ
−
i e−i(ω0−ωλ )t )

+
∑
j �=i

Jσ+
i σ−

j , (B1)
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where we have assumed each reservoir to have the same
spectrum of modes such that they all couple with strength gλ

and aiλ (a†
iλ) are the annhilation (creation) operators for the

λ mode of the ith atom’s reservoir. Now we need to consider
the wave function taking a different form as we must index
the reservoir to which excitations can go; as such we have our
total wave function

φ(t ) = c0ψ0 +
N∑
i

ci(t )ψi +
∑

iλ

ciλ(t )ψiλ, (B2)

where ψiλ denotes the excitation being in the λ mode of the ith
atom’s reservoir. The coupled differential equations of motion
are then

ċi = −iJ (c+ − ci ) +
∑

λ

ciλgλei(ω0−ωλ )t ,

ċ+ = −iJ (N − 1)c+ +
∑

iλ

ciλgλei(ω0−ωλ )t ,

ċiλ = −gλe−i(ω0−ωλ )t ci. (B3)

Formally integrating up ciλ with ciλ(0) = 0 and substituting
back in

ċi = −iJ (c+ − ci ) −
∫ t

0
G(t − t1)ci(t1)dt1,

ċ+ = −iJ (N − 1)c+ −
∫ t

0
G(t − t1)c+(t1)dt1. (B4)

Then from this we can determine the Laplace transform solu-
tions,

sc̃i(s) − ci(0) = −iJ[c̃+(s) − c̃i(s)] − c̃i(s)G̃(s),

sc̃+(s) − c+(0) = −iJ (N − 1)c̃+(s) − c̃+(s)G̃(s), (B5)

which gives

c̃+(s) = c+(0)

s + iJ (N − 1) + G̃(s)
. (B6)

Solving then for c̃i(s) yields

c̃i(s) = ci(0)

s − iJ + G̃(s)

− iJc+(0)

[s + iJ (N − 1) + G̃(s)][s − iJ + G̃(s)]
. (B7)

APPENDIX C: PHOTONIC CRYSTAL MODEL

1. Single reservoir

For the memory kernel of the reservoir we have [13]

G̃(s) = β3/2e−iπ/4(s − i�)−
1
2 , (C1)

with the dephasing � defined by � = ω0 − ωI , where ωI is
the band edge frequency associated with the photonic band
gap and β is the coupling strength of the system-reservoir
interaction which provides a canonical timescale for the dy-
namics. Substituting the photonic crystal memory kernel into

Eq. (12) yields for the excited-state populations

c̃i(s) = ci(0)

s − iJ

− c+(0)[β3/2e−iπ/4(s − i�)−
1
2 + iJ]

(s − iJ )[s + iJ (N − 1) + Nβ3/2e−iπ/4(s − i�)−
1
2 ]

.

(C2)

Then by means of the inverse Laplace transform we deter-
mine that the full time dynamics are given by

ci(τ ) = ci(0)eiJ ′τ − c+(0)ei�′τ
5∑

i=1

aixie
x2

i τ

× [
1 + ri − riErfc

(√
x2

i τ
)]

, (C3)

where x1,2 = ±eiπ/4
√

J ′ − �′ with J ′ = J/β, �′ = �′/β, and
τ = tβ being rescaled by the canonical timescale 1/β and
dimensionless. Erfc is the complementary error function with
Erfc(z) = 1 − 2√

π

∫ z
0 e−t2

dt . We have the coefficients

x3 = (A+ + A−)eiπ/4,

x4 = (A+e−iπ/6 − A−eiπ/6)e−iπ/4,

x5 = (A+eiπ/6 − A−e−iπ/6)e3iπ/4,

A± = N1/3

[
1

2
± 1

2

(
1 + 4κ̃3

27N2

) 1
2
] 1

3

,

κ̃ = [�′ + J ′(N − 1)],

ai = (e−iπ/4 + iJ ′xi )
N∏

j �=i

1

xi − x j
,

ri = csgn(xi ), (C4)

with csgn(xi ) denoting the complex sign function defined as

csgn(x) = x√
x2

. (C5)

2. Nearest-neighbor coupling

Substituting the 1D photonic crystal memory kernel from
Eq. (35) into Eq. (26) and performing the inverse Laplace
transform yields

cN (τ ) = −ei�τ

N∑
i=1

aixie
x2

i τ
[
1 + ri − riErfc

(√
x2

i τ
)]

, (C6)

where xi are the five complex roots of the equation

x5 + x3(2i� + 2iJ ) + x2N e−iπ/4 − x(�2 − 2J�)

+ 2iJ e−iπ/4 + i�N e−iπ/4

= 0, (C7)

ri = csgn(xi ), and

ai = e−iπ/4
N∏
j �=i

1

xi − x j
. (C8)
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