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Observation of quantum phase synchronization in a nuclear-spin system
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We report an experimental study of phase synchronization in a pair of interacting nuclear spins subjected to
an external drive in nuclear magnetic resonance architecture. A weak transition-selective radio-frequency field
applied on one of the spins is observed to cause phase localization, which is experimentally established by mea-
suring the Husimi distribution function under various drive conditions. To this end, we have developed a general
interferometric technique to directly extract values of the Husimi function via the transverse magnetization of the
undriven nuclear spin. We further verify the robustness of synchronization to detuning in the system by studying
the Arnold tongue behavior.
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I. INTRODUCTION

Motivated by the stability and ubiquity of classical syn-
chronization [1], quantum synchronization has been a field
of intense study. Platforms that exhibit quantized dynamics
have inspired theoretical studies in systems such as trapped
ions [2,3], superconducting circuits [4], atomic ensem-
bles [5], optomechanical systems [6–9], and nanomechanical
systems [10,11]. Theoretical studies have shown fundamen-
tal implications of synchronization to other fields such as
entanglement generation [12,13], thermodynamics [14,15],
quantum networks [16], and continuous-time crystals [17].

Following the definition of classical synchronization [1],
quantum synchronization can be understood as the adjustment
of rhythms of quantum limit cycle oscillators under the ef-
fect of weak coupling or an external drive [13,15,18,19]. For
detailed discussion on other existing definitions of quantum
synchronization, we refer to [15]. Quantum synchronization
proceeds by first considering the quantum analog of phase
space, which is one of many quasiprobability distributions
such as the Husimi function and Wigner function [20]. A valid
limit cycle requires robustness against external perturbations
and a neutral free phase [1]. Thermal states were shown to be
examples of such limit cycle states, showing an equiprobable
distribution of phases in phase space [14]. Such phase-space
distribution functions have been used to construct measures of
synchronization [7,21–24]. Following several studies of syn-
chronization in specific systems, unified measures of quantum
synchronization based on relative entropies have also been
formulated [19]. They used information-theoretic measures
based on quantum correlations, which have been shown to
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measure synchronization [13,25,26]. These measures reduce
to the phase-space-based measures under the system-specific
conditions [19].

Following this theoretical interest [7,8,13–15,18,19,27–
33], quantum synchronization has been experimentally
demonstrated recently in the IBM quantum computer [34]
and spin-1 cold atoms [35]. The experimental demonstra-
tion of quantum synchronization is in general a challenging
task owing to the difficulty in extracting required parameters.
Quantum synchronization measurements typically require the
system to settle into a steady state, which necessitates the need
for long waiting times. Such long wait times allow for other
experimental noise sources to interfere with the signal. Be-
sides this, tomographic reconstruction of the state scales with
the system size, requiring O(n2) measurements for a system
of dimension n [36]. Thus, the steady-state characteristics of
the system are inferred by extrapolating transient dynamics or
by devising complicated measurement schemes.

Here we resolve the aforementioned issues and report the
observation of synchronization in nuclear spins. Nuclear mag-
netic resonance (NMR) architecture allows convenient control
and manipulation of multispin systems using radio-frequency
(rf) pulses. These, in addition to inherent relaxation mecha-
nisms, which cause the system to thermalize, offer an ideal
platform to observe synchronization. Our experiment involves
a pair of interacting spin-1/2 nuclei and a weak transition-
selective rf field applied on one of the spins. The resulting
phase localization is characterized using Husimi distribution,
which typically needs quantum state tomography (QST) [37].
However, QST after a long external drive proved to be highly
inefficient because, as the steady state is approached, the ir-
radiated levels saturate and relevant transitions become too
faint. We overcome this by introducing an interferometric
technique that can experimentally capture the Husimi Q func-
tion directly. In addition, this method can be adapted beyond
synchronization to other studies that rely on coherence mea-
surements, even weak ones. By measuring the NMR system
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FIG. 1. (a) Sodium fluorophosphate molecular structure with its
Hamiltonian parameters and the spin-lattice relaxation time constants
T1 shown in the table. The diagonal elements represent the offset,
while off-diagonal element represents the scalar J coupling constant.
(b) Energy levels of the two-qubit system with four nondegenerate
energy eigenstates. The numerical model presented here considers
only the single-quantum relaxation pathways (yellow curved arrows)
and ignores the zero- and double-quantum pathways (dashed gray
arrows). Also shown are reference NMR spectra of (c) 31P and (d) 19F
spins, each obtained with a 90◦ pulse on the thermal equilibrium
state, and (e) the 31P NMR signal after a 100 s drive on the |2〉 ↔ |4〉
transition. The intensity of the ρ42 element is indicated in the dashed
box, which is used for the Arnold tongue analysis. (f) The 19F NMR
spectrum at the end of the interferometric circuit from which we can
directly extract the Husimi distribution at particular θ and φ values.

in the process of reaching the steady state, we investigate
transient as well as steady-state behavior of the system under
the influence of the external drive. We also explore the robust-
ness of synchronization against detuning frequency and drive
strength via the Arnold tongue.

This article is organized as follows. In Sec. II we introduce
the spin system and outline the theory as well as measures
of quantum synchronization. In Sec. III we explain the NMR
architecture, the experimental setup, and the numerical model.
The interferometric measurement of the Husimi distribution
(IMHD) is described in Sec. IV. Following this, we discuss the
corresponding experimental results in Sec. V. We summarize
in Sec. VI.

II. SYNCHRONIZATION OF A FOUR-LEVEL SYSTEM

We consider a nondegenerate four-level system composed
of 19F and 31P nuclei in sodium fluorophosphate molecule, as
shown in Figs. 1(a) and 1(b), and study the phase synchroniza-

tion of the system with an external drive. The extent of phase
localization of the system in a state ρ can be quantified using
the Husimi-Kano Q representation function [38,39]. For the
given four-level system it can be defined as

Q(θ1, θ2, θ3, φ1, φ2, φ3) = 24

π3
〈n̂4|ρ|n̂4〉, (1)

where

|n̂4〉 = (
Cθ1 , eiφ1 Sθ1Cθ2 , eiφ2 Sθ1 Sθ2Cθ3 , eiφ3 Sθ1 Sθ2 Sθ3

)T

is the SU(4) coherent state [40–42] with Cθi = cos(θi/2) and
Sθi = sin(θi/2). A brief review of spin coherent states is pre-
sented in Appendix A. The normalization of the Q function
arises from the completeness relation of coherent state |n̂4〉
defined as ∫

|n̂4〉〈n̂4|dμ = π3

24
1, (2)

where the integration is taken over the Haar measure and
volume element given by [41]

dμ = dθ1dθ2dθ3dφ1dφ2dφ3C2θ1 S5
2θ1

C2θ2 S3
2θ2

C2θ3 S2θ3 .

For a system with internal Hamiltonian H0 = ∑4
i=1 ωi|i〉〈i|

having characteristic frequencies ωi, the spin coherent state
evolves as

e−iH0t |n̂4〉 →

⎛
⎜⎜⎝

Cθ1

ei(φ1−ω21t )Sθ1Cθ2

ei(φ2−ω31t )Sθ1 Sθ2Cθ3

ei(φ3−ω41t )Sθ1 Sθ2 Sθ3

⎞
⎟⎟⎠, (3)

where ωi1 = ωi − ω1. Under the free evolution of the internal
Hamiltonian, the φi represent the free phases oscillating with
the respective frequencies ωi1, while the θi govern the popu-
lations of the system which remains fixed. In the absence of
any external perturbation, the steady state reached by the ther-
malization has a uniform phase distribution and the Husimi
Q function remains independent of (φ1, φ2, φ3). This points
to the fact that the given system has free phases available.
Along with the existence of free phases, a system needs to be
nonlinear in nature to exhibit limit cycle behavior. Since the
dynamics of a multilevel quantum system is generally nonlin-
ear, the availability of free phases makes it a perfect candidate
to study synchronization. On application of a weak external
drive, the system may develop a definite phase relationship
with the drive, thus resulting in a localized phase distribution.
This phenomenon, known as phase synchronization, is cap-
tured and quantified by

S(φ1, φ2, φ3) =
∫

d� Q(θ1, θ2, θ3, φ1, φ2, φ3) − 1

(2π )3
,

(4)

where d� = dθ1dθ2dθ3C2θ1 S5
2θ1

C2θ2 S3
2θ2

C2θ3 S2θ3 . For the four-
level system considered here, the expression (4) leads to

S(φ1, φ2, φ3) = 1

16π2
Re(ρ43eiφ1 + ρ42eiφ2 + ρ41eiφ3

+ ρ32ei(φ2−φ1 ) + ρ31ei(φ3−φ1 ) + ρ21ei(φ3−φ2 ) ),
(5)

062206-2



OBSERVATION OF QUANTUM PHASE SYNCHRONIZATION … PHYSICAL REVIEW A 105, 062206 (2022)

where ρi j = 〈i|ρ| j〉. Under the effect of thermal baths and
in the absence of external perturbations or drive, the system
reaches its thermal equilibrium state, which is diagonal in the
energy eigenbasis of the internal Hamiltonian. The Husimi Q
function for a diagonal state reduces to a uniform distribution
showing no phase localization. Therefore, the thermal state
constitutes a valid limit cycle state which is stable to external
perturbation and has free phases [14,19]. Furthermore, the
synchronization measure S(φ1, φ2, φ3) registers zero for such
a limit cycle state.

System with a drive. Let us now study the entrainment of
the given limit cycle oscillator with an external drive. A drive
having strength � and frequency ωd is applied to the |2〉 ↔
|4〉 transition [see Fig. 1(b)]. The Hamiltonian describing the
system with the drive is given by

H =
4∑

i=1

ωi|i〉〈i| + �(|2〉〈4|eiωd t + |4〉〈2|e−iωd t ). (6)

In the rotating frame of the drive described by the unitary
transformation

exp{i[(ωd + ω2)|4〉〈4| + ω3|3〉〈3| + ω2|2〉〈2| + ω1|1〉〈1|]t},
the total Hamiltonian becomes HR = 	|4〉〈4| + �(|2〉〈4| +
|4〉〈2|), where 	 = (ω4 − ω2) − ωd . For the |2〉 ↔ |4〉 drive
considered here, the only surviving coherence under steady
state is ρ42 (and its adjoint ρ24). Therefore, dropping all other
coherence terms and relabeling φ2 as φ, the Q function defined
in Eq. (1) can be expressed as

Q(θ1, θ2, θ3, φ) = Re(ρ42eiφ )Sθ1 Sθ2Cθ3 + ρ11S2
θ1

S2
θ2

S2
θ3

+ ρ22S2
θ1

S2
θ2

C2
θ3

+ ρ33S2
θ1

C2
θ2

+ ρ44C
2
θ1
. (7)

Since the drive is not sensitively affecting the levels |1〉 and
|3〉, without any loss of generality we can effectively set θ2 =
π and θ3 = 0 and replace θ1 with θ in Eq. (7), which further
simplifies the Husimi function to

Q(θ, φ) = ρ44C
2
θ + Re(ρ42eiφ )S2θ + ρ22S2

θ . (8)

From this equation it is clear that nonzero ρ42 leads to the lo-
calization of the corresponding phase variable φ in the Husimi
Q function. Such a state corresponds to the synchronized state.
The synchronization measure S(φ1, φ2, φ3) corresponding to
Eq. (5) also reduces to

S(φ) = Re(ρ42eiφ )

16π2
, max[S(φ)] = |ρ42|

16π2
, (9)

which is nonzero only for ρ42 �= 0, similar to [14].

III. NMR METHODOLOGY

A. Spin system and drive

In this work we consider a two-qubit system formed by
the spin-1/2 nuclei 19F and 31P of sodium fluorophosphate
molecule dissolved in D2O solvent (5.3 mg of solute in 600
μl of solvent) and maintained at an ambient temperature of
298 K. All experiments were performed on a high-resolution
Bruker 500-MHz NMR spectrometer operating at a magnetic
field strength of B0 = 11.4 T. Figure 1(a) displays the spin

system and its Hamiltonian parameters including scalar spin-
spin coupling constant (J coupling), as well as the rf offsets νP

and νF with respect to the Larmor frequencies ωP = −γPB0

and ωF = −γF B0, respectively, where γi are the gyromagnetic
ratios. Note that νP is set to −J/2, while νF is set to zero.
Figure 1(b) shows the Zeeman energy-level diagram of this
two-qubit system. The laboratory-frame Hamiltonian is of the
form

HNMR = ωPIP
z + ωF IF

z + 2πJIP
z IF

z . (10)

In NMR systems, at ambient temperatures, the thermal energy
is much greater than the Zeeman energy splitting. Hence, an
n-qubit system at thermal equilibrium is in a highly mixed
state given by

ρeq = exp
(−H0

kBT

)
= 1

2n
+

∑
i

εiI
i
z, (11)

where ε = h̄γiB0/(2nkBT ) ∼ 10−5 is the purity factor. The
population distribution in the high-temperature limit fol-
lows the Boltzmann distribution. The inherent relaxation (T1)
mechanism facilitates dissipation and helps establish an equi-
librium population distribution, which forms a stable limit
cycle with free phases as discussed in the preceding section.
The thermal equilibrium spectra of 31P and 19F spins are
shown in Figs. 1(c) and 1(d), respectively.

To realize synchronization, we apply a weak drive of am-
plitude � ≈ 0.1 Hz (explained in further detail in Sec. III C)
selectively to the |2〉 ↔ |4〉 transition as indicated in Fig. 1(b).
The total Hamiltonian in the doubly rotating frame is given by

Htot = H0 + V where,

H0 = −2πνPIP
z + 2πJIP

z IF
z , and V = 2π�IP

y . (12)

The first term with νP = −J/2 makes the drive on-resonance
with the |2〉 ↔ |4〉 transition of the 31P qubit that prepares
ρ42 coherence [see Fig. 1(e)], while the dissipation mechanism
redistributes the populations of the system.

B. Steady-state dynamics

We now describe a simple model to estimate the instan-
taneous state of the two-qubit system under different drive
conditions. The time evolution of a quantum system is given
by the master equation [43]

dρ

dt
= −i[H0 + V, ρ] + D[Ô+]ρ + D[Ô−]ρ, (13)

where H0 is the internal Hamiltonian of the system and V
represents the external drive. The thermal bath at a tempera-
ture T is modeled by the Lindblad superoperators D[Ô+]ρ +
D[Ô−]ρ. The single quantum upward transitions [indicated by
yellow curves in Fig. 1(b)] are described by the jump operator
D[Ô+]ρ accompanied by their corresponding transition prob-
abilities and rates. The equivalent downward transitions are
described by the Hermitian conjugate D[Ô−]ρ. The transition
probabilities pkl

i j can be identified with upward or downward
transitions of a particular spin. We estimate these probabilities
via the fermionic bath model [44]. Relabeling the upward and
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downward transitions of the nth spin as pn±, we may write

pn+ = 1

e4εn + 1
, pn− = 1 − pn+, (14)

which help maintain detailed balance. The transition rate of
each spin is related to the bath temperature T via its spin-
lattice relaxation time T i

1 as gi = 2π/T i
1 [see Fig. 1(a) for T1

values]. The explicit forms of the Lindblad superoperators are
given in Appendix B.

The master equation (13) is linear in ρ and can be
written as

|ρ̇〉〉 = L|ρ〉〉 = (L0 + LV )|ρ〉〉, (15)

where L represents the Liouvillian superoperator describing
the open system dynamics and |ρ〉〉 is the vectorized form
of the density matrix in Liouville space. The mathematical
form of L can be obtained by applying the transformation
BρC → C∗ ⊗ B|ρ〉〉 to the master equation, where |ρ〉〉 is ob-
tained by vertically stacking the columns of the density matrix
[15,45–47].

The Liouvillian superoperator L can be decomposed into
two parts as shown in Eq. (15). The first part L0 defines the
dynamics of the system in the absence of an external drive
(V = 0) and is given by

L0 = −i(I ⊗ H0 − H∗
0 ⊗ I ) +

∑
j=+,−

OT
j ⊗ Oj

− 1

2

(
I ⊗ O†

j O j + OT
j O∗

j ⊗ I
)
. (16)

The second term LV represents the superoperator correspond-
ing to an external perturbation V , which is given by

LV = −i(I ⊗ V − V ∗ ⊗ I ). (17)

The instantaneous state ρ(t ) after solving Eq. (15) is given
by

ρ(t ) = eLtρ0, (18)

where ρ0 represents the initial state of the system. The steady
state is given by the converging solution of Eq. (15), defined as
ρSS = limt→∞ eLtρ0. Therefore, the steady state corresponds
to the eigenstate of the Liouvillian superoperator having zero
eigenvalue [48]. In the absence of an external drive, one
obtains a diagonal steady state ρeq = diag{ρeq

44, ρ
eq
33, ρ

eq
22, ρ

eq
11},

with elements following the thermal distribution. In the pres-
ence of an external drive V , the steady state corresponds to the
eigenstate of L having zero eigenvalue and is of the form

ρSS =

⎡
⎢⎢⎢⎣

ρSS
44 0 ρSS

42 0
0 ρSS

33 0 0
ρSS

24 0 ρSS
22 0

0 0 0 ρSS
11

⎤
⎥⎥⎥⎦. (19)

Here the basis states are ordered according to decreasing
energy eigenvalues. Also note that since the external drive is
very weak, the steady state attained is close to the limit cycle,
i.e., ρSS

ii ≈ ρ
eq
ii .

We would like to emphasize that it is a highly nontrivial
task to measure all the Lindblad dissipation operators for the
NMR system [49]. The dynamics in the system is vastly more
complex than the model considered here can capture. The

10-3 10-2 10-1 100 101 102 103

Drive strength  (Hz)

0

0.1

0.2

0.3

v(
)

FIG. 2. Dependence of visibility of phase localization versus
drive amplitude �, showing an optimum strength at around 0.1 Hz.

set of operators comprising this model is very minimal and
intended only to capture the effective dissipation effects. We
note that a full description of the NMR system involves many
more terms not considered in our minimal model.

C. Optimum drive amplitude

The strength of the drive is crucial to realizing synchroniza-
tion in any system. A very weak drive will barely perturb the
system, while a very strong drive will induce forced behavior
and alter the limit cycle. It is hence vital to limit the drive
strength within an appropriate regime to achieve synchroniza-
tion. For our system, we estimate the optimum drive strength
using the numerical model described in Sec. III B. We vary
the drive strength and numerically obtain the corresponding
steady state, for which we estimate the visibility of the Husimi
distribution

v(φ) = max(Qφ ) − min(Qφ )

max(Qφ ) + min(Qφ )
, (20)

where Qφ = ∑
θ Q(θ, φ). Note that visibility quantifies the

extent of phase localization. The result is shown in Fig. 2.
The drive amplitude was varied from 10−3 Hz to 103 Hz. We
can see that the visibility function is negligible for very low
powers and then peaks at around 10−1 Hz before dropping to
zero at higher drive amplitudes. We thus chose a drive strength
of 0.1 Hz for our subsequent Husimi distribution experiments.
The experimental method to calibrate the low-amplitude drive
pulse is explained in Appendix C.

IV. INTERFEROMETRIC MEASUREMENT
OF THE HUSIMI DISTRIBUTION

Theoretically, the instantaneous state can be directly pre-
dicted by solving the master equation, following which the
Husimi function can be evaluated using Eq. (1). Experimen-
tally, the standard way to extract the Husimi distribution is by
using Eq. (1) after carrying out QST to estimate the steady-
state density matrix ρ [37]. However, there are two unrelated
issues that plague tomographic measurements in quantum sys-
tems. One relates to the fact that the experimental complexity
of QST scales exponentially with the system size [50,51],
each component of which has to be measured repeatedly. This
introduces deleterious noise sources when multiple experi-
ments are needed to perform QST. Nevertheless, for small
quantum systems such as a four-level system, full tomography
is routine. This leads us to the second issue, which is that
even in the small system sizes considered here, QST of steady
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(a) Thermal bath

19F • H •
σx

31P |2〉 ↔ |4〉 drive U†
θ,φ Z

︸ ︷︷ ︸ ︸ ︷︷ ︸

ρ(0) = ρeq t ρ(t) τ << t

(b)

FIG. 3. (a) IMHD circuit for direct measurement of the Husimi
distribution where the drive duration t is much longer than the
measurement sequence time τ and (b) corresponding NMR pulse
sequence.

states turns out to be highly inefficient. The reason is that
QST relies on determining each element of the density matrix
via a linear combination of expectation values of a set of
observables. If the expectation values vary over large mag-
nitudes, the dynamic range problem prevents the estimation
of the faintest elements. The IMHD method described here
avoids the dynamic range problem and directly extracts the
Husimi function at each (θ, φ) value in a single experiment
without requiring the elaborate QST protocols. This allows us
to efficiently observe and quantify synchronization even after
a very long drive, as explained below.

The circuit diagram representing the experiment to read the
Husimi Q-function values is shown in Fig. 3(a). Here the 19F
qubit acts as the ancillary system, which along with the 31P
qubit begins from a thermal equilibrium state ρeq. The long
weak drive responsible for synchronization is applied to the
|2〉 ↔ |4〉 transition of the 31P qubit. As part of the interfer-
ometer, we now apply a Hadamard operator on 19F qubit and
prepare its superposition. Meanwhile, we apply the gate U †

θ,φ

on the 31P qubit. Subsequently, we apply a controlled phase
gate 1P ⊗ |0〉〈0|F + σ P

z ⊗ |1〉〈1|F .
Starting from the extremal state |0, 0〉 = |θ = 0, φ = 0〉,

we can generate the spin coherent state

|θ, φ〉 = Uθ,φ |0, 0〉 = [e−iφSz e−iθSy ⊗ 1F ]|0, 0〉. (21)

The corresponding IMHD reading is

QIF(θ, φ) = 〈θ, φ|ρSS|θ, φ〉 = Tr(ρSS|θ, φ〉〈θ, φ|)
= Tr(ρSSUθ,φ |0, 0〉〈0, 0|U †

θ,φ )

= Tr(U †
θ,φρSSUθ,φ|0, 0〉〈0, 0|)

= 〈|0, 0〉〈0, 0|〉ρθ,φ
, (22)

where ρθ,φ = U †
θ,φρSSUθ,φ .

The NMR pulse sequence for the IMHD is shown in
Fig. 3(b). After the |2〉 ↔ |4〉 drive, we implement a pseudo-
Hadamard operator using a 90y

◦ pulse on the 19F spin. While
U †

θ = eiθIy can be realized by a single θȳ pulse, U †
φ = eiφIz =

e−i(π/2)Iy e−iφIx ei(π/2)Iy is realized by a sequence of three pulses.
The measurement of the |0, 0〉〈0, 0| projector can be realized
via a controlled phase gate, which can be implemented, up to
a phase factor, by a simple free evolution under the system
Hamiltonian 2πJIP

z IF
z for a time duration of 1/2J . A sub-

sequent measurement of transverse magnetization of the 19F
spin yields the NMR signal

s = Re
〈
σ F

x

〉 = 1
2

{
C2θ

[
ρSS

11 − ρSS
22 − ρSS

33 + ρSS
44

]
+ S2θ Re

(
e−iφρSS

24 + eiφρSS
42

)}
. (23)

One can verify from Eqs. (7) and (23) that

QIF(θ, φ) = 24

π3

[
1 + 2s

2
− (

ρSS
11 C2

θ + ρSS
33 S2

θ

)] = Q(θ, φ).

(24)

Here ρSS
11 
 ρ

eq
11 and ρSS

33 
 ρ
eq
33 are the populations of undriven

levels and can be estimated from the thermal equilibrium
population distribution. For the highly mixed NMR systems,
ρ11 
 ρ33 
 1/4, so

QIF(θ, φ) = 24

π3

[
1 + 2s

2
− 1

4

]
= 24

π3

[
s + 1

4

]
. (25)

Thus, the 19F signal after the IMHD circuit of Fig. 3 can
directly measure the Husimi distribution values. One such
spectrum for a particular drive duration and (θ, φ) values
is shown in Fig. 1(f). Note that one may use a third spin
as an ancilla qubit for the interferometer circuit, but it will
open up additional dissipation pathways. To minimize such
decoherence channels, we have used one of the system spins
itself as an ancilla qubit.

V. RESULTS

The experimental IMHD results at thermal equilibrium as
well as at various drive durations are shown in Fig. 4. The
signal measured at the end of the IMHD circuit (Fig. 3) is di-
rectly used to estimate the Husimi distributions using Eq. (25).
Indicated above each panel is the value of the corresponding
visibility factor of the Husimi distribution.

Limit cycle. In the absence of drive, the system is in thermal
equilibrium with the environment. Husimi distribution of the
thermal equilibrium state ρeq is shown in Fig. 4(a), which is
uniform throughout the phase space with no phase localization
and an accordingly vanishingly small visibility factor. There-
fore, ρeq is a valid limit cycle with free phase, as is expected.

Onset of synchronization. To study synchronization in the
system, we apply a weak transition-selective drive of strength
� = 0.1 Hz on-resonant with the |2〉 ↔ |4〉 transition as
shown in Fig. 1(b). The equilibration time of the quantum
system is approximately 10 s, which means that the dynamics
captured under 10 s can be considered transient whereas for
timescales much larger than 10 s we observe steady states
of the system. The drive is applied for different durations,
which enables us to investigate the transient and steady-state
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FIG. 4. Full phase-space Husimi distribution values for different drive durations to capture transient and steady-state behavior in the
subspace of interest obtained by (a) experiments and (b) the numerical model. The values above each panel indicate the visibility factors of
the Husimi distributions. We can see that in the absence of a drive, there is no localization in the phase space. Upon applying the drive, in the
transient regime (up to 10 s), the phase begins to localize gradually, showing the strongest localization experimentally at a drive duration of 1 s
and saturating after 10 s.

dynamics in the subspace of interest. The experimentally
measured Husimi distributions for various drive durations are
shown in Fig. 4(a). The corresponding distributions for the
instantaneous states predicted by the numerical model (de-
scribed in Sec. III B) are shown in Fig. 4(b). We can see
that the system gradually develops phase localization with
the drive before reaching a steady state. For short drive du-
rations, i.e., for 50 and 100 ms, we observe a weak phase
localization, which captures the transient dynamics. In this
transient regime, the experimental phase distribution reaches
a peak localization strength at 1 s drive duration. The sys-
tem then reaches a steady state with the phase localization
stabilizing for drive durations roughly above 10 s. It remains
synchronized even up until 100 s, which is more than ten times
the drive period as well as ten times the T1 relaxation time
constants of the system spins.

The experimental phase localization pattern and visibility
factors match fairly well with those predicted by the numerical
model. While an elaborate relaxation model, accounting for
all the Lindblad dissipation operators and other experimental
imperfections such as rf inhomogeneity might explain the
observed deviations, the current minimal model nonetheless
captures the essential signatures of synchronization.

Arnold tongue. The Arnold tongue is a quintessential test
of synchronization that probes robustness of phase local-
ization against small changes in drive strengths and drive
detuning [1]. As the drive strength is increased, the region
of synchronization can be shown to be wider, leading to
the familiar tongue shape. Here we vary the drive strength
of the 100 s weak drive and its resonance offset by 3 Hz about
the resonance value. The Arnold tongue is quantified using
the maximum of the synchronization measure max[S(φ)] and
in the present case it is only dependent on the ρ42 element of
the density matrix, as evident from Eq. (9). Experimentally,

this can be directly measured from the intensity of the 31P
NMR spectrum [see Fig. 1(e)]. Figure 5 compares the result
of the Arnold tongue experiments with that of the numerical
prediction (from the model described in Sec. III B). For strong
drive strength and near-resonance conditions, the degree of
synchronization is higher since the drive has a more efficient
perturbative effect on the system. On the other hand, for larger
detuning and weaker drives, the extent of synchronization is
weaker. The experimental data show pixelation since the drive
strength is varied in a discrete fashion. Moreover, in the limit
of vanishing drive strength, we expect no synchronization,
which could not be captured experimentally since the rf pulse
calibration is reliable only until a certain lower threshold, as
elaborated in Appendix C. Despite an overall correspondence
between the experimental and the predicted profiles, we see
a higher spread along the detuning axis in the experimental
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FIG. 5. Arnold tongue behavior of the system. The system shows
strongest synchronization for on-resonant drive and strong drive
strengths, while off-resonant drives are unable to synchronize with
the transition of interest even for large driving strengths.
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data, which can be attributed to the limitations of the minimal
numerical model and experimental imperfections.

VI. SUMMARY AND OUTLOOK

Recently, there has been an increasing interest in studying
the synchronization of quantum systems with external drives
under suitable conditions. In this work we experimentally
demonstrated synchronization in a two-qubit system using
NMR architecture. We used the Husimi distribution func-
tion as a witness for synchronization. We applied a weak
transition-selective drive on one of the spins and observed the
gradual onset of phase localization via the Husimi distribu-
tion. In the absence of any external drive, the system evolves
under its internal Hamiltonian as well as inherent relaxation
mechanisms, thereby settling to its thermal equilibrium state.
The corresponding Husimi distribution pattern has no phase
preference, and hence the thermal equilibrium state forms the
valid limit cycle of the system.

An interesting issue that arises with the study of the steady-
state dynamics of open quantum systems relates to the fact
that NMR signals are proportional to the population differ-
ences. Since the populations are in a pseudospin state, their
effective difference dips below the noise threshold, rendering
steady-state population tomography difficult in such systems
until now. Here we reported an interferometric technique to
directly extract the Husimi distribution values by reading the
signal of the undriven spin. The interferometric method is
significantly more efficient compared to the standard method
based on quantum state tomography.

To establish the robustness of synchronization, we investi-
gated the response of the system to changes in drive strengths
and drive detuning. The resulting phase-localization measure
of the system exhibited the expected Arnold tongue behavior.
We compared the experimental results with a minimalistic T1

relaxation model of the two-qubit nuclear-spin system, which
could capture the general features of the experimental data.

This work demonstrates the suitability of NMR architec-
ture for quantum synchronization studies and also opens up
avenues for further exploration of the phenomenon in larger
spin systems as well as under a variety of interactions and
drive conditions. One can envisage NMR systems being useful
for studying the implications of synchronization in areas such
as spectroscopy, quantum computing, and quantum thermody-
namics.
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APPENDIX A: SPIN COHERENT STATES

Spin coherent states are routinely used to study syn-
chronization since their evolutions are closest to classical
trajectories [52]. Furthermore, coherent states exhibit stable

oscillations as explained below. For a spin-1/2 particle, the
z projection of the spin angular momentum Sz is quantized
into 2s + 1 levels |S, ms〉 with eigenvalues ms = −1/2, 1/2.
The spin coherent state for this spin in the SU(2) group can
be described as a rotation of the extremal state |S, S〉 such
that [41,53,54]

|n̂2〉 = |θ, φ〉 = e−iφSz e−iθSy |S, S〉 =
(

Cθ1

eiφSθ1

)
, (A1)

where θ ∈ [0, π ], φ ∈ [0, 2π ], Cθ = cos(θ/2), and Sθ =
sin(θ/2). It is obvious that spin-1/2 coherent states can be
mapped to points on the surface of the Bloch sphere. The
recursive construction of spin coherent state vectors for an
n-level nondegenerate system is [40,41]

|n̂n〉 =

⎛
⎜⎜⎝

Cθ

0
...

0

⎞
⎟⎟⎠ + eiφSθ

⎛
⎜⎝

0

|n̂n−1〉

⎞
⎟⎠. (A2)

Note that each lower-level vector |n̂n−1〉 is made up of a new
pair of angular variables. From the above, we obtain the SU(4)
coherent states in the form

|n̂4〉 =

⎛
⎜⎜⎝

Cθ1

eiφ1 Sθ1Cθ2

eiφ2 Sθ1 Sθ2Cθ3

eiφ3 Sθ1 Sθ2 Sθ3

⎞
⎟⎟⎠. (A3)

From the above definition, we can see that populations are
governed by the parameters (θ1, θ2, θ3) and phases by the
parameters (φ1, φ2, φ3).

APPENDIX B: LINDBLAD RELAXATION OPERATORS

The explicit form of the single-quantum jump operators
considered for the four-level system shown in Fig. 1(b)
are explained here. The single-quantum transition of
the first qubit implies that the system in a state |i〉| j〉
goes to the state |k〉|l〉, where k = i ± 1 and l = j. The
same can be extended to the single-quantum transition
of the second qubit. The Lindblad superoperator for
upward transitions of the combined two-qubit system
is hence given by D[Ô+]ρ = ∑

(k−i=1,l= j) D[Okl
i j ]ρ +∑

(k=i,l− j=1) D[Okl
i j ]ρ, where D[Ô]ρ = ÔρÔ† − {Ô†Ô, ρ}/2

and the jump operator Okl
i j is defined as Okl

i j =√
gkl

i j pkl
i j |k〉|l〉〈i|〈 j|. Similarly, we can write D[Ô−]ρ =∑

(k−i=1,l= j) D[Oi j
kl ]ρ + ∑

(k=i,l− j=1) D[Oi j
kl ]ρ, where Oi j

kl =
(Okl

i j )†. The coefficients of the jump operators corresponding
to each qubit determine the transition rate given by gkl

i j and
the transition probability given by pkl

i j . The transition rate
is dependent on the bath temperature via the spin-lattice
relaxation time constant T1, and the transition probabilities
are derived from a fermionic bath model, as explained in the
main text.

APPENDIX C: VERY-LOW-POWER RF CALIBRATION

As discussed in Sec. III C, observation of phase syn-
chronization requires a drive of amplitude 10−1 Hz. The
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FIG. 6. TMP molecule and Hamiltonian parameters.

calibration of such very weak radio frequency is nontrivial,
since the signal-to-noise ratio is negligibly small. For this
purpose, we used another spin system trimethylphosphite dis-
solved in dimethylsulphoxide solvent. We specifically chose
this sample because of its star topology with 31P at the center
coupled to nine identical 1H nuclei with a scalar J coupling
constant of 11 Hz, as shown in Fig. 6. Such geometry is highly
preferable since the magnetization of the nine high γ proton
nuclei can be easily transferred to the central 31P nucleus
via insensitive nuclei enhanced by the polarization transfer
(INEPT) and further algorithmic cooling, thus boosting its
signal [55]. This gives a better signal-to-noise ratio and hence
more accurate calibration values. For very low amplitudes,
the signal is proportional to sin(�t ) � �t and therefore we
expect a linear dependence. The calibration results are shown
in Fig. 7. As we can see, the intensity of the 31P spectrum
after decoupling protons varies linearly with time for the
low-amplitude pulses. Thus, by fitting a linear function to the
resulting curve, we can backcalculate the exact amplitude of
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FIG. 7. Low-power calibration using trimethylphosphite. The in-
tensity of the 31P spin after decoupling protons is shown as a function
of time for various low-amplitude pulses. We can see that the re-
sponse is linear in this regime. The expected and exactly obtained
values from backcalculation of the linear fit are shown in the legend.

the pulse. The estimated and exact values from backcalcula-
tion of the linear fit are shown in the legend. Radio-frequency
fields with amplitudes lower than 0.03 Hz could not be cali-
brated as the power corresponding to such pulses was below
the threshold of the hardware. These low-power pulses were
used in the Husimi distribution estimation and Arnold tongue
experiments.
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