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The continuous-time differential Lyapunov equation is widely used in linear optimal control theory, a branch
of mathematics and engineering. In quantum physics, it is known to appear in Markovian descriptions of linear
(quadratic Hamiltonian, linear equations of motion) open quantum systems, typically from quantum master
equations. Despite this, the Lyapunov equation is seldom considered a fundamental formalism for linear open
quantum systems. In this work we aim to change that. We establish the Lyapunov equation as a fundamental
and efficient formalism for linear open quantum systems that can go beyond the limitations of various standard
quantum master-equation descriptions, while remaining of much less complexity than general exact formalisms.
This also provides valuable insights for non-Hermitian quantum physics. In particular, we derive the Lyapunov
equation for the most general number-conserving linear system in a lattice of arbitrary dimension and geometry,
connected to an arbitrary number of baths at different temperatures and chemical potentials. Three slightly
different forms of the Lyapunov equation are derived via an equation-of-motion approach, by making increasing
levels of controlled approximations, without reference to any quantum master equation. Then we discuss their
relation with quantum master equations, positivity, accuracy, and additivity issues, the possibility of describing
dark states, general perturbative solutions in terms of single-particle eigenvectors and eigenvalues of the system,
and quantum regression formulas. Our derivation gives a clear understanding of the origin of the non-Hermitian
Hamiltonian describing the dynamics and separates it from the effects of quantum and thermal fluctuations.
Many of these results would have been hard to obtain via standard quantum master-equation approaches.

DOI: 10.1103/PhysRevA.105.062204

I. INTRODUCTION

General background. As we go towards the age of quantum
technology, it has become crucial to formulate the theory to
describe microscopic (i.e., containing finite number of degrees
of freedom) quantum systems coupled to multiple macro-
scopic (i.e., containing infinite number of degrees of freedom)
thermal environments (baths) which can all be at different
temperatures and chemical potentials. This is relevant across
quantum optics [1], thermodynamics [2], chemistry [3], biol-
ogy [4], and engineering [5]. However, this is an extremely
challenging problem in general because the dimension of
Hilbert space scales exponentially with the number of degrees
of freedom.

In absence of coupling to any macroscopic bath, the sit-
uation can be considerably simplified if the Hamiltonian is
quadratic in fermionic or bosonic creation and annihilation
operators. In that case, many properties of the system can
be obtained by calculating the so-called single-particle den-
sity matrix or the correlation matrix, whose elements are the
equal-time two-point correlation functions of the system [6].
The dynamics of the correlation matrix is governed by the
so-called single-particle Hamiltonian of the system, whose
dimension scales linearly with the number of degrees of free-
dom in the system. This therefore leads to an exponential
simplification of the problem.
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However, in presence of coupling to multiple macroscopic
thermal baths, describing even dynamics of systems gov-
erned by quadratic Hamiltonians in generality becomes quite
complicated because of the baths having infinite degrees of
freedom. In this case, standard technique in all open-system
formalisms, like nonequilibrium Green’s functions (NEGF)
[7,8], Feynman-Vernon influence functional approach [9],
quantum Langevin equations [10–17], and quantum master
equations (QME) [18,19], is to derive effective equations for
dynamics of the system after analytically integrating out
the baths. For quadratic Hamiltonians, this can be done in
generality, and leads to non-Markovian equations of motion
[16,17,20–26]. Due to this non-Markovianity, for a system
with large (but finite) number of degrees of freedom, obtaining
the full dynamics again becomes quite challenging. If the
long-time nonequilibrium steady state (NESS) is unique, and
only the NESS properties are desired, they can be relatively
easily found via a Fourier transform. But obtaining full dy-
namics requires a Laplace transform that needs to be finally
inverted. Inverting a Laplace transform can become difficult
depending on the number of degrees of freedom and the spec-
trum of the system. As a result, to obtain the full dynamics, in
many cases it becomes useful to make further approximations
to have a much simpler effective Markovian description.

Weak-coupling Markovian descriptions and their lim-
itations. The standard approach to obtain a Markovian
description is to assume weak coupling between the sys-
tem and the baths and implement the so-called Born-Markov
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secular approximations to obtain a QME in the so-called
Lindblad form [18]. But, several drawbacks of Born-Markov
secular approximations have been pointed out, in particular,
for describing a system coupled to multiple thermal baths
[27–47]. It has been shown that not implementing the sec-
ular approximation, thereby obtaining a QME in so-called
Redfield form [48], can be more accurate (for example,
[34,41,47,49]). On the other hand, it is known that the Red-
field equation violates complete positivity [36,41,49–55]. This
means it can lead to having unphysical negative eigenvalues
of the system density matrix. But, such negative eigenvalues
will be quite close to zero, and can be shown to be below
accuracy level of the Redfield equation [41,47,49,56]. Several
more-refined Lindblad equations have been proposed to cir-
cumvent these drawbacks [57–62]. Nevertheless, it has been
shown that all of these approaches have inherent limitations
even to the leading order in the system-bath coupling strength
when describing a system coupled to multiple thermal baths
[47].

The Lyapunov equation from weak-coupling Markovian
descriptions. Regardless of the several limitations, because
of their simplicity and the valuable insight they provide,
weak-coupling QME descriptions of thermal baths remain
of wide use. Interestingly, for systems governed by time-
independent quadratic Hamiltonians, the weak system-bath
coupling QMEs referred to above give an amazing con-
nection to seemingly unrelated fields in mathematics and
engineering. It turns out that the equation of motion for
the correlation matrix as obtained from such QMEs has the
form of a continuous-time Lyapunov equation (see, for ex-
ample, [63–74]). The Lyapunov equation is an extremely
well-studied equation in mathematics and engineering, where
it appears extensively in the field of linear optimal control
theory [75–77]. It is surprising that the same equation ap-
pears in a completely different context, that of linear (i.e.,
governed by quadratic Hamiltonians) open quantum systems.
Further, efficient numerical methods for solving Lyapunov
equations already exist in all high-level scientific program-
ming languages, like python, Mathematica, Matlab, etc.

Summary of our main results. Although this above fact is
already known and used, Lyapunov equations are not usually
discussed as a fundamental formalism for general linear open
quantum systems. This is presumably due to the various lim-
itations of the underlying QME descriptions. In this paper,
we attempt to change that. We establish the continuous-time
differential Lyapunov equation as a rigorously derived effi-
cient description of linear open quantum systems, that is more
fundamental than many of the existing QME descriptions and
can go beyond their limitations.

To this end, we consider a system governed by a number-
conserving quadratic time-independent Hamiltonian, bosonic
or fermionic, in a lattice of arbitrary dimension and geometry
bilinearly coupled at an arbitrary number of sites to thermal
baths which can all be at different temperatures and chemical
potentials (see Fig. 1). The baths are assumed to be modeled
by an infinite number of bosonic or fermionic modes. By
systematically carrying out various controlled approximations
on bath spectral functions and strength of system-bath cou-
plings, we follow an equation-of-motion approach to obtain
the continuous-time differential Lyapunov equation without

FIG. 1. A system on a lattice of arbitrary geometry and dimen-
sion coupled to at an arbitrary number of sites to thermal baths
which can all be at different temperatures (inverse temperatures, say,
β�, βm, βp, βq, βr) and chemical potentials (say μ�, μm, μp, μq, μr).

referring to any QME. In particular, we derive three slightly
different Lyapunov equations at three different increasing lev-
els of approximations. At the first level of approximation, the
Lyapunov equation does not have any positivity problem at
all times, at the second level of approximation, the Lyapunov
equation does not have a positivity problem at the NESS,
while at the third level of approximation, the Lyapunov equa-
tion has the same positivity problem as the Redfield equation.
This shows that the Lyapunov equation is more fundamental
for describing such setups than the standard QMEs. In fact, the
Lyapunov equations at the first two levels suggest correspond-
ing QMEs, which would be difficult to obtain otherwise. For
fermionic systems, at the first two levels of approximations,
even the weak system-bath-coupling approximation is not re-
quired, but rather a so-called wide-band-limit approximation
on the bath spectral functions suffices. The controlled micro-
scopic derivation allows us to specify the validity regime of
the Lyapunov equations and the accuracy of the solutions. A
plethora of semianalytical results follow, some of which re-
duce the complexity of the problem of simulating dynamics of
this nonequilibrium open quantum system to the same level as
simulating dynamics of the isolated system. We also give gen-
eralized regression formulas for two-time correlations, which
can be easily obtained via our operator equation-of-motion
approach. These formulas do not correspond to those that
would be obtained by naively applying the standard quantum
regression formula [18] at the level of the associated QMEs.

The Lyapunov equation and non-Hermitian quantum
physics. The continuous-time differential Lyapunov equa-
tion is a specific form of a linear differential equation with a
homogeneous and an inhomogeneous part. In our microscopic
derivation, it becomes completely clear that the homogeneous
part is associated with time evolution via a non-Hermitian
Hamiltonian, while the inhomogeneous part is associated with
quantum and thermal fluctuations due to sources of loss. The
Lyapunov equation therefore gives a natural way of identify-
ing the non-Hermitian Hamiltonian governing the dynamics
and study the effect of quantum and thermal fluctuations. Non-
Hermitian physics is an extremely rapidly growing field at
present (see, for example, [78–82]). But, the majority of works
phenomenologically assume a non-Hermitian Hamiltonian,
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which is very often expected to govern a classical system,
and quantum and thermal fluctuations are ignored. Only re-
cently, there has been growing interest in going beyond such
descriptions, and realizing dynamics governed by specific
non-Hermitian Hamiltonians in quantum systems (for exam-
ple, [72,74,83–90]). On the other hand, classifying all kinds
of non-Hermitian Hamiltonians and their relations to topol-
ogy has remained an extremely active direction of research
(for example, [78,91–96]). The Lyapunov equation then gives
the unified way to account for quantum and thermal fluctu-
ations in all such non-Hermitian systems, as long as there
is no source of gain, i.e., for all passive non-Hermitian sys-
tems. (The theory presented here does not describe sources
of gain. See, however, [84].) If, for some physical reason,
the baths can be considered empty initially, then there are no
quantum and thermal fluctuations, perfectly realizing passive
non-Hermitian systems. Interestingly, we find that, at all the
three levels of approximation for the Lyapunov equation, the
non-Hermitian Hamiltonian is the same. The three levels of
approximations only change the inhomogeneous part of the
Lyapunov equation. Thus, they specify at what level of accu-
racy the quantum and thermal fluctuations are considered.

Plan of the paper. In Sec. II we formally introduce the
Lyapunov equation. In Sec. III we give the setup and the exact
equations of motion. In Sec. IV we derive the non-Hermitian
Hamiltonian and the Lyapunov equations. In Sec. V we ob-
tain the associated QMEs. In Sec. VI we discuss positivity,
accuracy, and additivity issues. In Sec. VII, we discuss the
possibility of dark states, give perturbative solutions, and dis-
cuss thermalization. In Sec. VIII we derive the generalized
regression formulas. In Sec. IX, we discuss two insightful
examples. In Sec. X, we summarize and discuss the impli-
cations of our results. A summary of our main results is given
in Table I. Finally, the Appendixes provide details of some
proofs.

II. LYAPUNOV EQUATION

The continuous-time differential Lyapunov equation is an
equation of the form

dC
dt

= −(GC + CG†) + ε2Q, (1)

where C, Q, and G are N × N matrices, for some given N ,
and G† is the conjugate transpose of G. The ε2 is used for
notational convenience to be consistent with that used later in
the paper. Usually, as will also be in our case, C is required to
be Hermitian and positive semidefinite at all times. The nec-
essary and sufficient condition for this Q being Hermitian and
positive semidefinite. The formal solution of the Lyapunov
equation is

C(t ) = e−Gt C(0)e−G†t + ε2
∫ t

0
dt ′e−Gt ′

Qe−G†t ′
. (2)

If the real parts of eigenvalues of G are positive, then are a
unique steady solution in the long-time limit, given by

C(∞) = ε2
∫ ∞

0
dt ′e−Gt ′

Qe−G†t ′
. (3)

Since this is the steady state, this is the solution of

GC(∞) + C(∞)G† = ε2Q, (4)

which is called the algebraic Lyapunov equation. This greatly
simplifies the problem of finding C(∞) numerically. It is
complete set of N2 linear equations. Usually, time taken to
solve such a system of equations scales as N6. However,
for the algebraic Lyapunov equation, standard efficient algo-
rithms (standard packages in Mathematica, python, Matlab,
etc.) are available for which the time taken to solve scales
as N3 [75,97]. Further, recently, even more efficient Krylov
subspace methods for solving Lyapunov equations have been
investigated [97]. In the following, we derive equations of
the above form for dynamics of a very general linear open
quantum system.

III. SETUP AND EXACT EQUATIONS OF MOTION

We consider the most general number-conserving linear
system (quadratic Hamiltonian) in a lattice of N sites in ar-
bitrary dimension and geometry,

ĤS =
N∑

�,m=1

H�mĉ†
� ĉm, (5)

where ĉ� is fermionic or bosonic annihilation operator, and H
is a Hermitian matrix, often called the single-particle Hamilto-
nian. We are interested in the case where an arbitrary number
of sites can be attached to baths (see Fig. 1). However, in de-
riving the theory, for notational simplicity and generality, we
consider that each site of the system is coupled to a bath, each
of which is described by an infinite number of noninteracting
modes,

ĤSB = ε

N∑
�=1

ĤSB�
, ĤSB�

= ε

∞∑
r=1

(κrl ĉ
†
�B̂r� + κ∗

rl B̂
†
r�ĉ�),

ĤB =
N∑

�=1

ĤB�
, ĤB�

=
∞∑

r=1

�rl B̂
†
r�B̂r�. (6)

Here B̂r� is the fermionic or bosonic annihilation operator
of the rth mode of the bath attached to the �th site of the
system. The factor ε is a dimensionless parameter controlling
the strength of system-bath coupling. The initial state of the
whole setup is taken to be

ρ̂tot(0) = ρ̂(0)
N∏

�=1

e−β�(ĤB�
−μ�N̂B� )

ZB�

, (7)

where N̂B�
= ∑∞

r=1 B̂†
r�B̂r� is the operator for total number of

particles in the bath attached at the �th site and ZB�
is the

partition function. So, the system is initially in an arbitrary
state while the baths are all in the thermal states with their
individual temperatures and chemical potentials. The spectral
functions of the baths are defined by

J�(ω) = 2π

∞∑
r=1

|κr�|2δ(ω − �r�). (8)
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For future reference, we also introduce the notation f H (ω) for
the Hilbert transform of any arbitrary function f (ω),

f H (ω) = 1

π
P

∫ ∞

−∞
dω′ f (ω′)

ω − ω′ , (9)

where P denotes the principal value.
The dynamics of the system can be described by an exact

quantum Langevin equation [14,16,17]. This is derived in two
steps. First, the formal solution for annihilation operators of
the baths is written

B̂r�(t ) = e−i�r�t B̂r�(0) − iεκr�

∫ t

0
dt ′e−�r�(t−t ′ )ĉ�(t ′). (10)

Then this solution is used in the equation of motion for the
annihilation operators of the system

dĉ�

dt
= −i

N∑
�,m=1

H�mĉm(t ) − iε
∞∑

r=1

κ∗
r�B̂r�(t ) (11)

to obtain the so-called quantum Langevin equation

dĉ�

dt
= −i

N∑
�,m=1

H�mĉm(t ) − iεξ̂�(t )

− ε2
∫ t

0
dt ′

∫
dω

2π
J�(ω)e−iω(t−t ′ )ĉ�(t ′), (12)

where the integration is over all bath frequencies and ξ̂�(t ) =∑∞
r=1 κr�ei�r�t B̂r�(0) is the noise operator. The noise correla-

tion functions are given by

〈ξ̂�(t )〉 = 0, 〈ξ̂ †
� (t )ξ̂m(t ′)〉 =

∫
dω

2π
F�m(ω)eiω(t−t ′ ), (13)

with

F�m(ω) = J�(ω)nB�
(ω)δ�m, (14)

where

nB�
(ω) = [eβ�(ω−μ� ) ± 1]−1 (15)

is the Fermi or Bose distribution function, δ�m is Kronecker
delta function, and 〈. . .〉 = Tr[. . . ρ̂tot(0)]. Note that the quan-
tum Langevin equation (12) is completely exact for our setup.
It does not require on any further approximation. There is
no Markovian approximation, no weak system-bath coupling
approximation, also no approximation on bath spectral func-
tions, except that they are continuous, and no approximation
on the temperatures and the chemical potentials of the baths.
It also holds for both fermionic and bosonic setups. This
generality and fundamental nature of such quantum Langevin
equations, although known for a long time [10,12–14,16,17],
is often not emphasized in standard textbooks of quantum
optics (for example, [98,99]), where quantum Langevin equa-
tions are instead derived from weak system-bath-coupling
Lindblad equations.

Another point to mention is that the effect of baths is
additive at the level of the exact quantum Langevin equation.
This additivity, which stems from the fact that the system-bath
couplings are bilinear, allows for easy generalization. We have
assumed that each site is coupled to a single bath. It is clear
that if some sites are not connected to a bath, it can be easily

incorporated just by setting the system-bath coupling of those
sites to zero in the quantum Langevin equation. This leads to
dropping the last two terms in Eq. (12) for the corresponding
sites. Further, it can also easily be generalized to the case
one or more sites are coupled to more than one bath. This
can be done just by adding the corresponding terms at the
corresponding sites in the quantum Langevin equation (an
example of this will be given later in Sec. IX A). Keeping this
in mind, for notational simplicity, in derivation of our results,
we stick to the setup of having each site coupled to a single
bath.

Equation (12) can be exactly solved for NESS via a Fourier
transform (assuming the bandwidth of the bath includes all
the system modes, a necessary condition for unique NESS). It
yields exactly the same expressions as obtained via a NEGF
approach [16,17]. However, the dynamics of approach to
NESS requires Laplace transform. This can be difficult be-
cause inverse Laplace transform is hard. Depending on the
number of lattice sites and the spectral properties of H, this
can essentially be intractable.

On the other hand, in absence of the baths, the dynamics of
the system is numerically tractable up to a very large number
of sites in the lattice. The N × N matrix H can be diagonalized

�†H� = D, (16)

where D = diag{ωα} is a diagonal matrix containing the
eigenvalues of the matrix H, which are the single-particle
eigenvalues, � is a unitary matrix whose columns are the
corresponding single-particle eigenvectors, and �† represents
the conjugate transpose. The dynamics of the isolated system
is given in terms of these is given as

ĉ�(t ) =
N∑

α,m=1

��α�∗
mαe−ωαt ĉm(0). (17)

Thus, given the single-particle eigenvectors and eigenvalues,
the isolated system dynamics can be obtained exactly. This is
not true for the exact open system dynamics. In the following,
using various levels of Markov approximations, we simplify
the open-system time evolution greatly, deriving the Lyapunov
equation.

IV. DERIVING THE NON-HERMITIAN HAMILTONIAN
AND THE LYAPUNOV EQUATIONS

Equation (12) is our starting point for further Born-
Markov–type approximations. The non-Markovianity of
Eq. (12) is encoded in two places: (i) the last term of Eq. (12)
and (ii) in the fact that the noise correlation is not a delta
function. Correspondingly, we will do two levels of Markov
approximations, involving two timescales τB1 and τB2 . The
corresponding Markov approximations are valid for times
larger than these timescales. As a corollary, we will also
identify the non-Hermitian Hamiltonian governing the time
evolution of open quantum system under such approxima-
tions.
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A. First Markov approximation

1. Equation of motion and the non-Hermitian Hamiltonian

We call the approximation that deals with the last term in
Eq. (12) the first Markov approximation. The main goal is to
make the last term depend only on ĉ�(t ), and not on its past
history. There can be two different approximations to obtain
this. The first is the so-called wide-band limit, with

J�(ω) = ��. (18)

This directly gives∫ t

0
dt ′

∫
dω

2π
J�(ω)e−iω(t−t ′ )ĉ�(t ′) = ��

2
ĉ�, (19)

where the factor of 1
2 appears because the time integration is

from 0 to t . This approximation does not depend on strength of
system-bath coupling, and �� can be arbitrary. While this ap-
proximation is often used for fermionic systems, it is artificial
for bosonic systems, where J�(ω) must go to zero at ω = 0.
So, in the following, we will focus on the other way of doing
the first Markov approximation, which explicitly depends on
weak system-bath coupling. Later, we will discuss which of
the approximations hold in the wide-band limit for fermionic
systems without assuming weak system-bath coupling, and
which do not.

We will write Eq. (12) correct to O(ε2). The last term of
the equation is already O(ε2). So, following Eq. (17) we use
the result

ĉ�(t ′) =
N∑

α,m=1

��α�∗
mαeωα (t−t ′ )ĉm(t ) + O(ε), (20)

and neglect the O(ε) term. This gives

ε2
∫ t

0
dt ′

∫
dω

2π
J�(ω)e−iω(t−t ′ )ĉ�(t ′)

� ε2
N∑

α,m=1

��α�∗
mα ĉm(t )

∫ t

0
dt ′

∫
dω

2π
J�(ω)e−i(ω−ωα )t ′

.

(21)

The above is essentially a Born approximation. Next, we make
a Markov approximation. Let τB1 be defined via the condition∣∣∣∣∫ dω

2π
J�(ω)e−iωt

∣∣∣∣ < some tolerance, say O(ε), ∀ t > τB1

(22)

for all �. If t 	 τB1 , we can essentially take the upper limit of
the time integral to infinity since this only causes changes in
higher-order terms. This, with a little algebra, leads to

dcvec

dt
= −iHNH cvec(t ) − iεξvec(t ), (23)

where cvec(t ) [ξvec(t )] is a column vector with the �th element
being ĉ�(t ) [ξ̂�(t )], and

HNH = H − iε2v (24)

is the non-Hermitian Hamiltonian governing the open-system
dynamics. The elements of the matrix v are given by

v�m = 1

2

N∑
α=1

��α�∗
mα

(
J�(ωα ) + iJH

� (ωα )
)
, (25)

with JH
� (ω) being the Hilbert transform of J�(ω) [see Eq. (9)].

Thus, the first Markov approximation allows identification
of the (single-particle) non-Hermitian Hamiltonian that gov-
erns the dynamics of the open quantum system. All kinds of
non-Hermitian Hamiltonians with losses can be derived by
changing the relative strengths of system-bath couplings and
choosing the spectral functions. However, baths of this kind
are unable to describe sources of gain. So, this gives a micro-
scopic way of generating all kinds of passive non-Hermitian
systems. In accordance with fluctuation-dissipation theorem,
the sources of loss also give sources of noise, embodied in
the term ξvec(t ). Thus, the effects of quantum and thermal
fluctuations on all the classes of passive non-Hermitian sys-
tems, as well as possible transitions between them [78,92–
94], can be studied in this setup. It can also be seen that if
temperatures and chemical potentials of the baths are such
that they can be considered empty, i.e., nB�

(ω) = 0, then there
will be no noise, thereby perfectly realizing quantum passive
non-Hermitian systems.

Note that the matrix v in Eq. (25) is not diagonal in the
site basis in general. However, for fermionic wide-band baths,
Eq. (18), v is diagonal in the site basis:

v�m = ��

2
δ�m for wide-band limit. (26)

As mentioned, this case does not require weak system-bath-
coupling approximation (i.e., holds with ε = 1).

Having derived the non-Hermitian Hamiltonian, we now
derive the Lyapunov equations.

2. Correlation matrix and the Lyapunov-type form

The formal solution of Eq. (23) can be written as

cvec(t ) = e−iHNHt cvec(0) − iε
∫ t

0
dt ′e−iHNH(t−t ′ )ξvec(t ′). (27)

We will be interested in the the correlation matrix C whose
elements are

C�m(t ) = 〈ĉ†
� (t )ĉm(t )〉. (28)

This matrix is Hermitian and positive semidefinite by con-
struction. The expression for C(t ) can be obtained from
Eq. (27) after some algebra (see Appendix A for explicit
steps):

C(t ) = e−Gt C(0)e−G†t

+ ε2
∫

dω

2π

(
1 − e−(G+iωI)t

G + iωI
F(ω)

1 − e−(G†−iωI)t

G† − iωI

)
,

(29)

where I is N-dimensional identity matrix,

G = −iH∗
NH, (30)

with H∗
NH representing the complex conjugate of HNH and

F(ω) is an N × N matrix defined in Eq. (14). Since F(ω) is
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a positive-semidefinite diagonal matrix by construction, the
structure of Eq. (29) ensures Hermiticity and positive semidef-
initeness of C(t ) at all times. If the NESS is unique, i.e., if the
real parts of eigenvalues of G are positive, C(∞) is given by

C(∞) = ε2
∫

dω

2π

(
1

G + iωI
F(ω)

1

G† − iωI

)
. (31)

This equation could also be obtained by solving Eq. (23) by a
Fourier transform and then obtaining the correlation matrix.

While Eq. (29) can be directly used to numerically obtain
the correlation matrix, it does not reveal the relation to the
Lyapunov equation. To see this, we write the equation of
motion for the correlation matrix directly from Eq. (23). After
some simplification, this can be written as

dC
dt

= −(GC + CG†) + ε2Q(t ),

Q(t ) = i(Cξ (t ) − C†
ξ (t )), (32)

where elements of the matrix Cξ (t ) are given by Cξ�m (t ) =
〈ξ̂ †

� (t )ĉm(t )〉. Using Eq. (27), Cξ (t ) is obtained as

Cξ (t ) = −i
∫ t

0
dt ′

∫
dω

2π
F(ω)eiωt ′

e−G†t ′
. (33)

Equation (32) is exactly of the Lyapunov equation form,
except for a time-dependent inhomogeneous part. It can be
checked that Eq. (29) is the solution of this equation (see
Appendix B). Therefore, this Lyapunov-type form preserves
the positive semidefiniteness of C(t ) at all times. Also note
that since at the first Markov approximation level we treat
the noise correlations without further approximations, and the
noise correlations are not delta functions in time, the dynamics
of the system is actually explicitly non-Markovian in this case.
Next, we make approximations on the noise correlations.

B. Second Markov approximation

It can be seen that the time dependence of the inhomoge-
neous part in Eq. (32) stems from the noise correlation not
being a delta function. We do the second Markov approxima-
tion to do away with this time dependence. This can be done
at two levels.

1. Level-I second Markov approximation

Let τB2 be defined via the condition∣∣∣∣∫ dω

2π
J�(ω)nB�

(ω)eiωt

∣∣∣∣ < some tolerance, say O(ε),

∀ t > τB2 (34)

for all �. So, assuming t 	 τB2 , from Eq. (14), we see that we
can essentially extend the upper limit of the time integral in
Eq. (33) to infinity since this only changes the higher-order
terms. This gives the Lyapunov equation

dC
dt

= −(GC + CG†) + ε2Q1, (35)

Q1 =
∫

dω

2π

(
F(ω)

1

G† − iωI
+ 1

G + iωI
F(ω)

)
. (36)

The Q1 above is nothing but Q(∞). This level-I second
Markov approximation approximation, by construction, be-
comes more and more accurate as t is increased. In the t → ∞
limit, corresponding to NESS, the results from Eqs. (35) and
(32) match. Thus, C(∞) obtained from the algebraic version
of the above Lyapunov equation [see Eq. (4)] is Hermitian and
positive semidefinite as required. If the NESS is unique, it is
given by Eq. (31) (see Appendix B).

However, Q1 given in the expression in Eq. (35) is not
guaranteed to be positive semidefinite. Thus, unlike Eq. (32),
Eq. (35) may not preserve the positive semidefiniteness C(t )
at all times. Nevertheless, the negative eigenvalues of C(t ), if
at all they exist, will go towards zero on reducing ε and with
increase in time. So, they should be taken to be zero within
the accuracy regime of this equation.

The fact that the NESS obtained from Eq. (35) is positive
semidefinite even though Q1 may not be so is presumably
quite interesting on the mathematical front. This is because it
means that the algebraic Lyapunov equation (4) can provably
yield positive-semidefinite results even when its inhomoge-
neous part is not positive semidefinite.

Next, we make one more level of approximation, which,
as we will see later, makes the description equivalent to that
obtained from the Redfield equation.

2. Level-II second Markov approximation

In this level, a further approximation, using the fact that the
inhomogeneous part is already O(ε2), is made to essentially
perform the integration in the definition of Q1 in Eq. (35). To
do this, we define

FE (ω) = �†F(ω)�, vE = �†v�,

GE = �†G�, GE = −iD − ε2vE . (37)

From Eq. (33) and the above definitions, it follows that

Cξ (t ) � − i�

(∫ t

0
dt ′

∫
dω

2π
FE (ω)eiωt ′

e−iDt ′
)

�† + O(ε2).

(38)

Assuming t 	 τB2 to extend the upper limit of the time inte-
gral to infinity, performing the integral, and neglecting O(ε2)
terms, we obtain

Cξ�m (∞) � − i

2

N∑
α=1

��α�∗
mα

(
F��(ωα ) − iFH

��(ωα )
)
. (39)

The Lyapunov equation is then given by

dC
dt

= −(GC + CG†) + ε2Q2, (40)
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with the elements of the matrix Q2 given by

Q2�m = 1

2

N∑
α=1

��α�∗
mα

(
F��(ωα ) − iFH

��(ωα ) + Fmm(ωα )

+ iFH
mm(ωα )

)
. (41)

Thus, Q2 is given in terms of single-particle eigenvalues and
eigenvectors of the system. Even though Q2 is Hermitian, like
Q1, it is not guaranteed to be positive semidefinite. Moreover,
unlike Eq. (32), even the steady-state solution of Eq. (40) may
not strictly be the same as that from Eq. (35). So there might
be violation of positive semidefiniteness of C(∞). But, the
deviations from the results of Eq. (35) will be small and will
decrease on decreasing ε.

The level-II second Markov approximation explicitly
requires weak system-bath coupling. It requires weak system-
bath coupling even for fermionic baths in the wide-band
limit [Eq. (18)] (unless all the baths are either completely
full or completely empty, i.e., the chemical potentials are
±∞). However, the first Markov approximation and the
level-I second Markov approximation do not require weak

system-bath-coupling approximation for fermionic baths at
the wide-band limit. The first Markov approximation gives
exact dynamics in this case, while the level-I second
Markov approximation gives approximate dynamics but ex-
act steady state (even when system-bath coupling is strong,
i.e., ε = 1).

Having derived the Lyapunov equations, in the next sec-
tion, we find the QMEs which can be associated with them.

V. RELATION TO QUANTUM MASTER EQUATIONS

In the above, we have derived the Lyapunov equa-
tions directly from equations of motion. Usually, Lyapunov
equations arise in open quantum systems when calculating
correlation matrices of linear systems governed by some
QME. The question, then, is what are the QMEs correspond-
ing to the Lyapunov equations derived in the previous section.

Using standard Born-Markov approximations (without any
secular approximation), the Redfield QME corresponding to
our setup can be derived. This is given by [34]

∂ρ̂

∂t
= i[ρ̂, ĤS + ĤLS] + ε2

N∑
�,m=1

[
(v�m + v∗

m� ∓ Q2m�
)

(
ĉmρĉ†

� − 1

2
{ĉ†

� ĉm, ρ̂}
)

+ Q2m�

(
ĉ†
�ρĉm − 1

2
{ĉmĉ†

�, ρ̂}
)]

, (42)

where the minus sign is for fermions and the plus sign is for
bosons, {Â, B̂} = ÂB̂ + B̂Â is the anticommutator, Q2 and v
are as given in Eqs. (41) and (25), and

ĤLS =
N∑

�,m,α=1

��α�∗
mα

(
JH

� (ωα ) + JH
m (ωα )

4

)
ĉ�

†ĉm (43)

is the so-called Lamb-shift Hamiltonian. It can be checked,
directly by calculating the correlation matrix C�m(t ) =
Tr(ĉ†

� ĉmρ̂(t )), that the corresponding Lyapunov equation is
nothing but Eq. (40). This shows equivalence of the equation-
of-motion approach and the Redfield QME approach for
Gaussian systems. This is of course expected as they describe
the same setup under the same approximations.

From the above, it follows by direct inspection that

∂ρ̂

∂t
= i[ρ̂, ĤS + ĤLS] + ε2

N∑
�,m=1

[
(v�m + v∗

m� ∓ Q1m�
)

(
ĉmρĉ†

� − 1

2
{ĉ†

� ĉm, ρ̂}
)

+ Q1m�

(
ĉ†
�ρĉm − 1

2
{ĉmĉ†

�, ρ̂}
)]

(44)

is the QME corresponding to the Lyapunov equation after level-I second Markov approximation (35), while

∂ρ̂

∂t
= i[ρ, ĤS + ĤLS] + ε2

N∑
�,m=1

[
(v�m + v∗

m� ∓ Qm�(t ))

(
ĉmρĉ†

� − 1

2
{ĉ†

� ĉm, ρ̂}
)

+ Qm�(t )

(
ĉ†
�ρĉm − 1

2
{ĉmĉ†

�, ρ̂}
)]

(45)

is the QME corresponding to the Lyapunov equation with
time-dependent inhomogeneous part after the first Markov ap-
proximation (32). These QMEs would be hard to derive using
the standard approaches. In particular, Eq. (45) has explicitly
time-dependent rates, which means it can potentially describe
non-Markovian dynamics. Further, for fermionic systems in
the wide-band limit, Eq. (45) is essentially exact, i.e., does
not require any more approximation (holds even in strong
system-bath coupling, i.e., when ε = 1). On the other hand,
Eq. (44), although makes some approximation on the dynam-
ics, in this case, it gives the correct steady state exactly without
any further approximations. In the next section, we discuss in
more detail the positivity, accuracy, and additivity issues of
the Lyapunov equations and the associated QMEs.

VI. POSITIVITY, ACCURACY, AND ADDITIVITY

The positivity issues of the Lyapunov equation have been
mentioned above, while those in QMEs have already been
well studied [18,19,100–102]. In the following, we discuss
both kinds of positivity issues, the relation between them,
their origin from the accuracy issue, and how they may be
circumvented in practice. We also comment on additivity of
the QMEs.

A. Positivity

All the QMEs given above are in the Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) [100–102] form. For time-
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independent rates, Eqs. (42) and (44), the condition for
complete positivity of the density matrix ρ̂ is given by [18,19]

v∗ + vT ∓ Q1,2 → positive semidefinite,

Q1,2 → positive semidefinite. (46)

On the other hand, as we have discussed before, positive
semidefiniteness of the correlation matrix C requires

Q1,2 → positive semidefinite. (47)

Thus, the first condition in Eq. (46) is not required. It fol-
lows that, for Gaussian initial states of the system, only
Q1,2 being positive semidefinite is sufficient for positivity
of ρ̂. To see this, we note that QMEs derived above pre-
serve the Gaussianity of the initial state. This is, of course,
consistent, because the actual time evolution, without any
approximation, e−iĤt ρ̂tot(0)eiĤt has this property. Now, for all
Gaussian states, the density matrix can be constructed from
the correlation matrix (see, for example, [103–105]), giving
a one-to-one mapping between the two at all times. So, a
valid, positive-semidefinite correlation matrix, guaranteed by
Eq. (47), will yield a valid density matrix. If, on the other
hand, the initial state is non-Gaussian, this one-to-one map-
ping breaks. The correlation matrix has no information about
the non-Gaussianity of the initial state. To ensure complete
positivity of the density matrix at all times in such cases, both
conditions in Eq. (46) are required. It immediately follows that
if the steady state is unique irrespective of the initial condition
(i.e., if the real parts of eigenvalues of G are positive), then it
must be Gaussian. This means that to ensure positivity in the
steady state, only Eq. (47) is sufficient.

The above discussion leads us to the following two impor-
tant conclusions. The first is that, for Gaussian initial states,
the dynamics obtained from Eq. (45) is free from positivity
issues at all times. The second is that the NESS of Eq. (44)
is free from any positivity issues. This is despite the fact
that, in general, Q1 may not be positive semidefinite and
therefore Eq. (44) may not be completely positive. In fact, for
fermionic wide-band baths, even in cases where Eq. (44) is
not completely positive, it always yields exact NESS results.
This is contrary to the somewhat popular belief that complete
positivity is a necessary requirement for accurately describing
the steady state.

B. Accuracy

The positivity issues remain in the Redfield QME (42), and
the corresponding Lyapunov equation (40), even for Gaussian
initial states and even in the steady state. But this is related
to accuracy of the results. Both of these are differential equa-
tions written correct to O(ε2). But, their solution requires an
exponentiation, thereby generating all orders of ε in the result.
Clearly, all orders of ε in the result are not correct. For the
Redfield equation, it can be shown that the diagonal elements
of ρ̂ in the eigenbasis of the system Hamiltonian ĤS are
given correctly to O(1) (leading order), the error occurring at
O(ε2), while the off-diagonal elements in that basis are given
correctly to O(ε2) (leading order), the error occurring at O(ε4)
[47,56] (assuming no degeneracy). The correlation matrix in

the eigenbasis of the system Hamiltonian is given by

CE (t ) = �†C(t )�. (48)

Following similar arguments, it can be shown that CE
αα (t ) is

obtained correct to O(1) while CE
αν (t ), α �= ν, is given correct

to O(ε2). It is exactly this mismatch in orders of accuracy
between the diagonal and the off-diagonal elements that leads
to positivity violation both for ρ̂(t ) and C(t ). It can be checked
that the diagonal elements in any basis carry an error of O(ε2).
So O(ε2) violation of positivity is related with accuracy limits
of the equations.

If positivity is restored by doing ad hoc approximations
at the level of the differential equations, for example, by
neglecting the negative eigenvalues of Q1,2, or making secular
approximations, it does not guarantee better accuracy. In fact,
accuracy usually becomes worse [47,49]. On the other hand,
the results from the Redfield QME and the corresponding
Lyapunov equation can be checked by scaling the required
matrix elements with ε [47,50]. If the scaling observed is
higher than that dictated by the accuracy, then that matrix
element is to be taken as zero. This is because it would mean
that the leading-order contribution is zero while the nonzero
values are coming as an artifact of the higher orders present
in the solution of the equation. This gives a completely con-
trolled way of checking and correcting the results. Further,
interesting techniques for obtaining the O(ε2) correction to
diagonal elements in the energy eigenbasis at steady state
from the Redfield equation have been developed [106–108].
These techniques can be used to alleviate positivity issues at
steady state [50].

Also, in the first and the second Markov approximations,
we have assumed t 	 τB1 [Eq. (22)] and t 	 τB2 [Eq. (34)] re-
spectively. So, results for times smaller than these timescales
will not be accurate.

C. Additivity

A point to note is that in all the forms of Lyapunov equa-
tions and the associated QMEs the contribution from each
bath comes as an additive term. It is sometimes believed
that additive QMEs cannot give accurate NESS, especially
at strong system-bath coupling [39,109–112]. However, as
mentioned before, Eqs. (45) and (44) give exact NESS for
the fermionic case with wide-band baths, irrespective of the
strength of system-bath coupling. But, clearly they are addi-
tive. This prompts a deeper discussion.

Most works exploring inaccuracy of additive QMEs (ex-
cept Ref. [111]) refer to additivity of equations in the diagonal
Lindblad form

∂ρ̂

∂t
= i[ρ̂, ĤS] + L̂(ρ̂),

L̂(ρ̂) = i[ρ̂, ĤLS] +
∑

λ

γλ

(
L̂λρ̂L̂†

λ − 1

2
{L̂†

λL̂λ, ρ̂}
)

, (49)

where L̂λ are called Lindblad operators, and γλ are called
rates. Clearly, for a system with more than one site, none of
Eqs. (42), (44), and (45) are explicitly in this form. Rather,
they are in the so-called off-diagonal GKSL form. They can
be cast into the form of Eq. (49) by making a change of basis
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[18,19,100–102]. The Lindblad operators and the rates so ob-
tained will no longer have just additive contribution from each
bath, but rather will be a linear combination of contributions
from all the baths. Thus, once converted to form of Eq. (49),
they will be nonadditive in this strict sense. Note that the
above statements also hold true for the Redfield equation (42),
which therefore would be nonadditive in this sense, whenever
the system has more than one site.

A single-site system, then, gives an exception. A single
fermionic site coupled to two wide-band fermionic baths at
different temperatures and chemical potentials is the so-called
resonant level model. This is one of the simplest and ex-
tremely well-studied open quantum systems. Exact results are
known from various approaches like NEGF [7]. As we will
see explicitly later in Sec. IX A, it turns out, for this system,
the QME after the level-I second Markov approximation, i.e.,
the analog of Eq. (44), is additive, perfectly of (diagonal)
Lindblad form, and yet gives the exact NESS answer. This
simple example therefore shows perfectly additive QMEs,
even in the strict diagonal Lindblad sense, may be able to give
exact results in some cases. This example does not even satisfy
the sufficient condition for microscopically derived additive
QMEs found in Ref. [111].

From the above discussion, we see that our equations sug-
gest a nontrivial result: linear fermionic open systems in the
wide-band limit are governed by additive QMEs (not in the
strict diagonal Lindblad sense) at all strengths of system-bath
coupling. Interestingly, the exact QME for linear systems,
which can be derived without wide-band limit approximation,
is manifestly nonadditive [22]. Thus, it seems that, at least for
linear systems, additivity of QMEs depends on the validity of
our first Markov approximation. This can be done exactly for
all coupling strengths for wide-band fermionic baths, which
makes the corresponding QME additive. For bosonic baths, it
would require a weak system-bath-coupling approximation.

With the positivity, accuracy, and additivity issues of the
Lyapunov equations and the associated QMEs clarified, in the
next section, we look at the possibility of having dark states,
and also provide perturbative solutions in the regime of very
small system-bath coupling.

VII. DARK STATES, THE PERTURBATIVE SOLUTION,
AND THERMALIZATION

A. Dark states

Dark states are eigenstates of the system Hamiltonian
which are left invariant by presence of the baths (for example,
see [113–116]). Depending on the geometry of the lattice, it
may so happen that the eigenfunction of some system mode
has nodes at exactly the sites where the baths are attached. In
that case, it can be checked by transforming the exact quantum
Langevin equation [Eq. (12)] to the single-particle eigenbasis
that the corresponding mode is completely detached from the
baths, and will evolve in the same way as the isolated system.
So, if the system was initially prepared in that state, it will
remain in that state even in presence of the baths, making it a
dark state. This, in turn, means, there is no unique steady state
of the system. By transforming the Lyapunov equations to the
single-particle eigenbasis, it is easy to show that this property
is respected by them.

B. Perturbative solution: Dynamics and NESS

In the limit of very small system-bath coupling, the level-II
second Markov approximation is good for single-time corre-
lations, the corresponding Lyapunov equation being Eq. (40).
Although this equation can be exactly solved, it gives correct
answers only up to the leading-order term in ε. So, it is useful
to find analytical expressions for C(t ) up to the leading-order
term in ε. In order to do so, we transform Eq. (40) to single-
particle eigenbasis

dCE

dt
= −(GE CE + CGE †

) + ε2QE
2 , (50)

where GE , CE are as defined in Eqs. (37) and (48), and QE
2 =

�†Q2� likewise. The explicit expressions for the elements of
vE and QE

2 are

vE
αν = 1

2

(
fE
αν (ων ) + ifE H

αν (ων )
)
, (51)

QE
2αν

= 1
2

(
FE

αν (ων ) − iFE H
αν (ων ) + (α ↔ ν)∗

)
, (52)

where (α ↔ ν)∗ notation means that the labels α and ν are to
be interchanged, and the resulting expression is to be complex
conjugated. The functions fE

αν (ω) and FE
αν (ω) are

fE
αν (ω) =

N∑
�=1

�∗
�α��νJ�(ω),

FE
αν (ω) =

N∑
�=1

�∗
�α��νJ�(ω)nB�

(ω), (53)

and fE H
αν (ω) and FE H

αν (ω) are the corresponding Hilbert trans-
forms. This form of the Lyapunov equation can be used to
find perturbative solutions. In the following, we will assume
that the NESS is unique, and there is no degeneracy in the
system. Results can be easily generalized to cases without
these approximations. In particular, we use the condition

|ωα − ων | 	 ε2
∣∣vE

αα + vE∗
νν

∣∣, ∀ α �= ν. (54)

To this end, first we define

wαν = i(ωα − ων ) + ε2
(
vE

αα + vE∗
νν

)
. (55)

The perturbative solutions of Eq. (50) up to leading order in ε

are given by

CE
αα (t ) � CE

αα (0)e−2ε2fE
αα (ωα )t + FE

αα (ωα )

fE
αα (ωα )

(
1 − e−2ε2fE

αα (ωα )t
)
,

(56)

CE
αν (t ) � CE

αν (0)e−wαν t − iε2QE
2αν

ωα − ων

(1 − e−wαν t )

+ iε2

ωα − ων

[
vE∗

να CE
αα (0)

(
e−2ε2fE

αα (ωα )t − e−wαν t
)

+ vE
ανCE

νν (0)
(
e−2ε2fE

νν (ωα )t − e−wαν t
)]

+ iε2

ωα − ων

[
vE∗

να

FE
αα (ωα )

fE
αα (ωα )

(
1 − e−2ε2fE

αα (ωα )t
)

+ vE
αν

FE
νν (ων )

fE
νν (ων )

(
1 − e−2ε2fE

νν (ων )t
)]

. (57)
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The real part of wαν is fE
αα (ωα ) + fE

νν (ων ), fE
αα (ωα ) > 0 by

construction. Thus, for time t 	 max{[ε2fE
αα (ωα )]−1}, the

steady state is reached. The perturbative results for the steady
state are given by

CE
αα (∞) = FE

αα (ωα )

fE
αα (ωα )

=
∑

� |��α|2J�(ωα )n�(ωα )∑
� |��α|2J�(ωα )

, (58)

CE
αν (∞) = iε2

ωα − ων

[
vE∗

να FE
αα (ωα )

fE
αα (ωα )

+ vE
ανFE

νν (ων )

fE
νν (ων )

− QE
2αν

]
.

(59)

We clearly see that the leading-order diagonal elements in
the single-particle eigenbasis of the system are O(1), while
the leading-order off-diagonal elements are O(ε2), as already
mentioned before. Given the single-particle eigenvalues and
eigenvectors of the system, the equations in this section are
almost closed-form solutions for dynamics and NESS of our
very general setup under Born-Markov approximation and
Eq. (54). Thus, we see that, in this regime, all results for both
the transient dynamics and the NESS can be written in terms
of the single-particle eigenvalues and eigenvectors of the sys-
tem. This simplifies the extremely complicated problem of the
system in arbitrary dimension connected to an arbitrary num-
ber of baths at different temperatures and chemical potentials,
to the same level as obtaining the dynamics of the isolated
system in absence of the baths. This is a very significant
simplification. Moreover, as we will see later in Sec. IX B,
if the system is one dimensional with nearest-neighbor hop-
ping, further simplification is possible and a very general
and insightful expression for current at NESS in terms of
single-particle eigenvalues and eigenvectors can be obtained.
Below, we use Eqs. (58) and (59) to discuss thermalization in
the arbitrary dimensions and geometry setting.

C. Thermalization

Equations (58) and (59) reveal the very important physics
of thermalization. In equilibrium all baths have the same
temperatures and chemical potentials, i.e., the Bose or Fermi
distributions of all the baths are exactly the same, n�(ω) →
n(ω). Thus, from Eq. (58), CE

αα (∞) = n(ωα ). So we get the
nontrivial and physically important result that

in equilibrium, lim
ε→0

(
lim

t→∞ ρ̂(t )
) = e−β(ĤS−μN̂S )

Tr(e−β(ĤS−μN̂S ) )
, (60)

where the order of limits cannot be changed, and N̂S =∑N
�=1 ĉ†

� ĉ�. Note that the ε → 0 limit is consistent with
Eq. (54). Although Eq. (58) is written for the case where
each site is attached to the bath, as mentioned before, it is
possible to send an arbitrary number of system-bath couplings
to zero to obtain an arbitrary distribution for location of baths.
Even if a bath at one site is kept connected, while all others
are disconnected, Eq. (58) shows that Eq. (60) holds. To
appreciate the nontriviality of the result, remember that we
are working with an extremely general system in arbitrary
lattice and geometry with arbitrary number of site attached to
baths. What we showed above is that even if a thermal bath is
attached to one site of such a system, all the modes attached to
it will reach thermal equilibrium, and if the NESS is unique,
the system will thermalize in the sense of Eq. (60), irrespective
of any further details of the system.

Away from equilibrium, when the temperatures and chem-
ical potentials of the baths are different, there will be nonzero
current in NESS. For systems with time-reversal symmetry, H
will be real symmetric and, consequently, � can be chosen to
be real orthogonal. In this case, the current in NESS depends
directly on the imaginary part of the off-diagonal elements
CE

αν . After some algebra, the imaginary part of CE
αν can be

explicitly written as

Im
[
CE

αν (∞)
] = ε2

ωα − ων

[∑
�,m �2

mα��α��νJ�(ωα )Jm(ωα )[nm(ωα ) − n�(ωα )]∑′
� �2

�αJ�(ωα )
+ (α ↔ ν)

]
. (61)

In equilibrium, n�(ωα ) = nm(ωα ) = n(ωα ), so
Im[CE

αν (∞)] = 0, which is consistent with the fact that
there is no steady-state current in equilibrium for systems
with time-reversal symmetry.

Until now, we have discussed only equal-time correlations
of the system. The understanding in terms of equation of
motion gives us a natural way to discuss two-time correlation
functions and regression formulas, which we discuss in the
next section.

VIII. TWO-TIME CORRELATIONS AND REGRESSION
FORMULAS

The matrix C(t ) gives equal-time correlations. In this sec-
tion, we move to calculating two-time correlations

C�m(t, t ′) = 〈ĉ†
� (t )ĉm(t ′)〉. (62)

These quantities are directly related to NEGF [7]. For calcu-
lating two-time correlations from QMEs one has to resort to
the corresponding quantum regression formulas, which often
rely on assumptions with their own set of issues [117–119].
On the other hand, having an operator equation-of-motion
description makes obtaining two-time correlations completely
straightforward.

A. First Markov approximation

After the first Markov approximation, calculating two-time
correlation functions from Eq. (27) gives (see Appendix A)

C(t, t ′) = e−Gt C(0)e−G†t ′

+ ε2
∫

dω

2π

(
1 − e−(G+iωI)t

G + iωI
F(ω)

1 − e−(G†−iωI)t ′

G† − iωI

)
,

(63)
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which is exactly the same as Eq. (29) except with the two
time arguments being different. The regression formula deals
with evolution of C(t + τ, t ) as a function of τ , τ > 0. If we
naively used the quantum regression relation on the QMEs
[18], we would get

dC(t + τ, t )

dτ
= −GC(t + τ, t ). (64)

This would be same for all three QMEs [Eqs. (45), (44), and
(42)]. However, we can derive the differential equation for
evolution of C(t + τ, t ) as a function of τ directly from equa-
tions of motion, exactly as Eq. (32) was obtained, without
further approximations. This gives

dC(t + τ, t )

dτ
= −GC(t + τ, t ) + iε2Cξ (t + τ, t ). (65)

Here, Cξ�m (t + τ, t ) = 〈ξ̂ †
� (t + τ )ĉm(t )〉, which can be calcu-

lated from Eq. (27) as

Cξ (t + τ, t ) = −i
∫ t

0
dt ′

∫
dω

2π
F(ω)eiω(t ′+τ )e−G†t ′

. (66)

Thus, naively using quantum regression at the QMEs would
not have given the inhomogeneous part of Eq. (65). Such
deviations from the quantum regression formula at the level
of QMEs has been associated with non-Markovian behavior
[119]. We call equations of the form of Eq. (65) generalized
regression formulas. Equation (65) is under the first Markov
approximation, and requires t + τ 	 τB1 with τB1 defined in
Eq. (22). So, if τ 	 τB1 , only then t = 0 is allowed, otherwise
not. If we set t = 0, the inhomogeneous part becomes zero.
Thus, only in this case the equation becomes same as the one
expected by using quantum regression from the QME.

The formal solution of Eq. (65) can be written as

C(t + τ, t ) = e−Gτ C(t ) + ε2
∫

dω

2π

×
(

eiωτ − e−Gτ

G + iωI
F(ω)

1 − e−(G†−iωI)t

G† − iωI

)
. (67)

If real parts of eigenvalues of G are positive, i.e., if there is
unique NESS, then noting that C(∞) is given by Eq. (31), we
can write the above equation in the following suggestive form:

C(t + τ, t ) = e−Gτ [C(t ) − C(∞)]

+ ε2
∫

dω

2π
eiωτ

(
1

G + iωI
F(ω)

1

G† − iωI

)
− ε2

∫
dω

2π

(
eiωτ − e−Gτ

G + iωI
F(ω)

e−(G†−iωI)t

G† − iωI

)
.

(68)

So the contribution from the term that would be obtained via
naive application of quantum regression at the level of the
QME actually goes to zero at NESS. We get the following
result for two-time correlations at NESS:

lim
t→∞ C(t + τ, t ) = ε2

∫
dω

2π
eiωτ

(
1

G + iωI
F(ω)

1

G† − iωI

)
.

(69)

This is exactly the same as would be obtained by solving
Eq. (23) by a Fourier transform and then obtaining the two-

time correlation functions. Clearly, quantum regression at the
level of the QME would not give this result.

B. Second Markov approximation

The level-I second Markov approximation would assume
t + τ 	 τB2 , with τB2 defined in Eq. (34), and take t → ∞ in
Eq. (66). This yields

dC(t + τ, t )

dτ
= −GC(t + τ, t ) + iε2C̃ξ (τ ), (70)

where

C̃ξ (τ ) = −i
∫

dω

2π
eiωτ F(ω)

1

G† − iωI
. (71)

The formal solution for the above equations is

C(t + τ, t ) = e−Gτ C(t ) + ε2
∫

dω

2π

×
(

eiωτ − e−Gτ

G + iωI
F(ω)

1

G† − iωI

)
. (72)

If real parts of eigenvalues of G are positive, the above ex-
pression can be written in the same form as Eq. (68) except
the last line being set to zero. So, in the long-time limit, the
expression again reduces to Eq. (69).

A level-II second Markov approximation would further
approximate Eq. (71) and carry out an analogous procedure
of Eq. (38). However, carrying out this approximation gives
inconsistent results for two-time correlations. This is because
C̃ξ (τ ) typically would decay with τ . Setting ε = 0 in the
expression with finite τ would not give this behavior and
therefore would be inconsistent. As a result, the level-II sec-
ond Markov approximation cannot be performed here. So, to
obtain two-time correlations corresponding to the Redfield
equation (42), one has to resort to the regression relation at
the level of QMEs (64), which is likely to impose additional
restrictions [119]. In particular, we see from Eqs. (72) and (31)
that only if, due to some additional approximations over and
above the level-I second Markov approximation, the following
relation approximately holds,∫

dω

2π
eiωτ

(
1

G + iωI
F(ω)

1

G† − iωI

)
≈ e−Gτ C(∞), (73)

will Eq. (64) be satisfied at all times. Whether these additional
approximations are the same as those required for deriving the
Redfield equation is not clear and requires further work [120].

It is usually believed that if the NESS is given by a QME
of Lindblad form, the quantum regression formula must be
valid. However, as we will see below in Sec. IX A, the simple
example of the resonant level model with wide-band baths
shows that it is not so. Although its NESS can be obtained
from a Lindblad equation for arbitrary strengths of system-
bath coupling, the exact two-time correlations at NESS are
given by the analog of Eq. (69), which is different from
what is obtained via the analog of Eq. (64). Only if further
approximations, like weak system-bath coupling, or high tem-
peratures, are made, can the two results be reduced to the same
form. So, clearly, regression relations require a further set of
approximations, which can sometimes be different from those
required to obtain Lindblad descriptions.
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TABLE I. Summary of the three levels of approximations for the three slightly different continuous-time Lyapunov equations. The
homogeneous part of the Lyapunov equations, which is associated with the non-Hermitian Hamiltonian governing the dynamics [see Eqs. (23),
(24), (25), and (30)] is the same in all cases. The approximations change the inhomogeneous part of the Lyapunov equations which embody
the quantum and thermal fluctuations. The level-II second Markov approximation is identical to the Redfield equation and has the same,
controlled, accuracy and positivity issues. It can be used to obtain semianalytical results [Eqs. (56), (57), (58), and (59)] in the regime of
very small system-bath coupling [Eq. (54)], which give open system dynamics in terms of single-particle eigenvalues and eigenvectors of the
system.

First Markov, Level-I second Markov, Level-II second Markov,
Eqs. (32), (33) Eqs. (35), (36) Eqs. (40), (41)

Assumption t 	 τB1 t 	 τB1 , τB2 t 	 τB1 , τB2

see Eq. (22) for τB1 see Eq. (34) for τB2 + weak system-bath coupling

Weak system-bath coupling Holds Holds Holds

Strong-coupling wide-band-limit Holds and exact Holds, exact at NESS Does not hold
fermionic case [Eq. (18)]

Positivity of Lyapunov equation Preserved at all times Preserved at NESS Violated below accuracy level

Associated QME Eq. (45) Eq. (44) Eq. (42)
time-dependent rates time-independent rates, Redfield equation

may not be completely positive,
but always gives positive NESS

Additivity Additive Additive Additive
(both Lyapunov equation and QME)

Generalized regression formula Can be derived, Can be derived, Cannot be derived
from equations of motion Eqs. (65), (66) Eqs. (70), (71)

The formulas given in this section allow calculation of the
C(t + τ, t ), τ > 0, knowing C(t ). If C(t, t + τ ) is desired in-
stead, it can be obtained by simply noting that C†(t + τ, t ) =
C(t, t + τ ).

This concludes our main general results. A summary of our
results is given in Table I. In the next section, we explicitly
discuss the two examples we have referred to before, viz.,
the resonant level model and a one-dimensional system with
nearest-neighbor hopping.

IX. INSIGHTFUL EXAMPLES

A. Resonant level model

In this section, we work out the extremely simple example
of a resonant level model, which is a single fermionic site,
coupled to two wide-band fermionic reservoirs at different
temperatures and chemical potentials (see Fig. 2). The Hamil-
tonian is given by

ĤS = εĉ†ĉ,

FIG. 2. Schematic of the resonant level model.

ĤSB =
∑

�=L,R

ĤSB�
, ĤSB�

=
∞∑

r=1

(κrl ĉ
†B̂r� + κ∗

rl B̂
†
r�ĉ),

ĤB =
∑

�=L,R

ĤB�
, ĤB�

=
∞∑

r=1

�rl B̂
†
r�B̂r�. (74)

In the above, � = L, R labels the left and the right baths
attached to the system site. The system-bath coupling and
the baths are of the same form as Eq. (6) except the follow-
ing differences. Since we will consider the wide-band limit
fermionic case,

J�(ω) = ��, � = L, R (75)

we have set ε = 1. Further, unlike in previous sections, there
are two baths attached to the same single site. As mentioned
before, since all the equations are additive this hardly compli-
cates anything. We will specifically focus on the level-I second
Markov approximation. For each bath, we have an analog of
v and Q1 matrices, and they are just summed over.

v = v(L) + v(R), Q1 = Q(L)
1 + Q(R)

1 , (76)

where v(L,R) and Q(L,R)
1 are calculated by using Eqs. (26) and

(36). For a single site, they are just scalars, v(L,R) being given
by

v(�) = ��

2
, � = L, R (77)

[see Eq. (26)]. The non-Hermitian Hamiltonian [Eq. (24)] and
G [Eq. (30)] are then

HNH = ε − i
�L + �R

2
, G = −iε + �L + �R

2
. (78)
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Using Eq. (36), we get the following expressions for Q(L,R)
2 :

Q(�)
1 =

∫
dω

2π

(�L + �R)��nB�
(ω)

(ω − ε)2 + (
�L+�R

2

)2 , � = L, R (79)

where nBL (ω) [nBR (ω)] is the Fermi distribution correspond-
ing to the left (right) bath. For a single site, the correlation
matrix is also a scalar, 〈n̂〉 = 〈ĉ†ĉ〉 being the only element.
The Lyapunov equation then becomes

d〈n̂〉
dt

= −(�L + �R)〈n̂〉 + Q(L)
1 + Q(R)

1 . (80)

The corresponding QME is

∂ρ̂

∂t
= i[ρ̂, εn̂] +

∑
�=L,R

[(
�� − Q(�)

1

)(
ĉρĉ† − 1

2
{ĉ†ĉ, ρ̂}

)

+ Q(�)
1

(
ĉ†ρĉ − 1

2
{ĉĉ†, ρ̂}

)]
. (81)

This is clearly additive and of Lindblad form. It can be
checked explicitly that the above QME gives Eq. (80).

The NESS is obtained by setting the left-hand side of
Eq. (80) to zero, which, gives

〈n̂〉 = Q(L)
1 + Q(R)

1

�L + �R
. (82)

This, along with Eq. (79), gives

〈n̂〉 =
∫

dω

2π

�LnBL (ω) + �RnBR (ω)

(ω − ε)2 + (
�L+�R

2

)2 . (83)

This is the well-known correct expression for occupation at
NESS for the resonant level model [7].

Let us now calculate the current at NESS. Equation (80) is
essentially a continuity equation for occupation, and currents
from the left and the right baths, IL and IR, can be identified as
I� = −��〈n̂〉 + Q(�)

1 , � = L, R. At NESS, since the left-hand
side of Eq. (80) is zero, we have IL = −IR = I . Using Eq. (82),
the expression for current I is

I = �RQ(L)
1 − �LQ(R)

1

�L + �R
. (84)

Substituting the expression for Q(�)
1 from Eq. (79) gives

I =
∫

dω

2π

�L�R[nBL (ω) − nBR (ω)]

(ω − ε)2 + (
�L+�R

2

)2 , (85)

which is the well-known correct expression for current in
NESS resonant level model with wide-band baths [7]. Note
that these results are true irrespective of strength of system-
bath coupling. Therefore, the perfectly additive Lindblad
equation (81) gives completely exact results for NESS of the
resonant level model (refer to discussion in Sec. VI C). Note
that the system-bath coupling Hamiltonians neither commute
with each other, nor with the system Hamiltonian. So, it does
not satisfy the sufficient condition for accurate additive dy-
namics given in Ref. [111].

It is interesting to note that even though the NESS is given
exactly by a QME of perfectly Lindblad form, Eq. (81), the
two-time correlations at NESS cannot be obtained by using

quantum regression relation at the level of the QME (refer to
discussions in Sec. VIII). For simplicity, here we will assume
�L = �R = �. Let us define the notation

〈ĉ†(τ )ĉ〉 = lim
t→∞〈ĉ†(t + τ )ĉ(t )〉. (86)

Using quantum regression at the level of the QME gives

〈ĉ†(τ )ĉ〉 = e(iε−�)τ 〈n̂〉

= e(iε−�)τ
∫

dω

2π

�
[
nBL (ω) + nBR (ω)

]
(ω − ε)2 + �2

. (87)

On the other hand, using Eq. (69) gives

〈ĉ†(τ )ĉ〉 =
∫

dω

2π
eiωτ

�
[
nBL (ω) + nBR (ω)

]
(ω − ε)2 + �2

, (88)

which is the correct expression obtained from NEGF [7].
Clearly, this is not the same as Eq. (87). So, despite the NESS
being exactly given by a Lindblad equation, the regression
relation does not hold.

Equation (88) has the form of Fourier transform of sum of
Fermi distributions weighted by a Lorentzian function. This
can approximately reduce to Eq. (87) if the Fermi distributions
are reasonably flat within the width of the Lorentzian. Since
Fermi distributions vary in a scale of 1/β, this can be satisfied
if

β�� � 1, � = L, R. (89)

The above condition can either be satisfied at weak coupling
or at high temperatures. In either case, it will be justified
to approximately set nL,R(ω) ≈ nL,R(ε) in the integrations in
Eqs. (87) and (88). Due to properties of Lorentzian functions,
both integrations will now yield

〈ĉ†(τ )ĉ〉 ≈ e(iε−�)τ nBL (ε) + nBR (ε)

2
. (90)

This same result could be obtained by using quantum regres-
sion on the Redfield equation (which will also be of Lindblad
form in this case), deriving which will explicitly require
weak system-bath-coupling approximation. Clearly, validity
of quantum regression requires additional approximations.

B. Simple expression for current and dimensionless
conductance in one-dimensional nearest-neighbor systems

Here we consider a one-dimensional chain with nearest-
neighbor hopping and derive a simple and insightful expres-
sion for the particle current using the result in Eq. (59). The
system Hamiltonian we will be considering now is given by

ĤS =
N∑

�=1

ε�ĉ†
� ĉ� +

N−1∑
�=1

g�(ĉ†
� ĉ�+1 + ĉ†

�+1ĉ�). (91)
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In other words, H in Eq. (5) is now the tridiagonal matrix

H =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ε1 g1 0 . . . . . .

g1 ε2 g2 0 . . .

0 g2 ε3 g3 0
...

. . .
. . .

. . .
. . .

. . . . . . 0 gN−1 εN

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (92)

This system is coupled at an arbitrary number of sites to
different baths which are all at different temperatures and
chemical potentials [see Fig. 3(a)]. We will find an expression
for particle current at a system bond in terms of the single-
particle eigenvalues and eigenfunctions of the system. The
particle current Ip at the pth bond of the one-dimensional
system is given by

Ip = gpIm(〈ĉ†
pĉp+1〉) = gp

N∑
α,ν=1

�pα�pνIm
(
CE

αν

)
, (93)

where Im(A) refers to the imaginary part of A. Using Eq. (59)
and simplifying utilizing some properties of a tridiagonal ma-
trix, we obtain the following expression for current at the pth
bond (see Appendix C):

FIG. 3. (a) General linear one-dimensional nearest-neighbor sys-
tem coupled to multiple thermal baths. (b) The same system but with
baths attached at only the two ends.

Ip = ε2
N∑

α=1

1∑ ′
��

2
�αJ�(ωα )

[ ′∑
�,m

p∑
k=1

δ�k�
2
mα�2

�αJ�(ωα )Jm(ωα )[n�(ωα ) − nm(ωα )]

]
. (94)

Here
∑′ refers to sum over the points where the baths are

attached. So, we see that the current in the limit of very
small system-bath couplings [Eq. (54)] is governed by the
amplitudes of the single-particle eigenfunctions at the sites
where the baths are attached.

Now, let us further specialize to the case where the only
two baths are attached, which are at the first and last sites of
the system [see Fig. 3(b)]. In this case, the current should be
independent of the bond where it is calculated, Ip = I . Indeed
it is so, as is seen from carrying out the sum over k in Eq. (94),
which gives

I = ε2
N∑

α=1

�2
1α�2

NαJ1(ωα )JN (ωα )[n1(ωα ) − nN (ωα )]

�2
1αJ1(ωα ) + �2

NαJN (ωα )
. (95)

The above expressions for current are valid for both
bosonic and fermionic cases. We can now obtain an insightful
expression for particle conductance of a fermionic system. Let
the setup be fermionic with the two baths having the same
temperature β1 = βN = β, but different chemical potentials
μ1 = μ + �μ,μN = μ, and being described by wide-band
baths coupled at the same strength J1(ωα ) = JN (ωα ) = �.
Then particle conductance is given by

G = lim
�μ→0

dI

dμ

= ε2β�

N∑
α=1

[
�2

1α�2
Nα

�2
1α + �2

Nα

n2(ωα )eβ(ωα−μ)

]
. (96)

Note, here we have already imposed very small system-bath-
coupling condition before, so we are not in the regime of
Eq. (35), even though we are using wide-band fermionic baths
now. In the high-temperature limit, n2(ωα )eβ(ωα−μ) � 1/4. So,
particle conductance of the fermionic system in the wide-band
and high-temperature limits is given by

G = ε2 �β

4
W (1, N ), where W (r, s) =

N∑
α=1

[
�2

rα�2
sα

�2
rα + �2

sα

]
.

(97)

Thus, in this limit, W (1, N ) is proportional to conductance. It
can be termed a dimensionless conductance. It is interesting to
note that W (1, N ) depends only on system eigenfunctions and
is independent of the baths. It is essentially an isolated system
quantity, but to derive Eq. (97), we required to consider an
open system. This expression for particle conductance was
used in Ref. [121], without proof, to explain the origin of
subdiffusive scaling of conductance with system size at the
critical point of the Aubry-André-Harper model. The results
were also checked against exact calculations.

X. SUMMARY AND OUTLOOK

Summary and distinguishing features from previous works.
In this work, we have derived the Lyapunov equation for
describing the dynamics of number-conserving linear systems
(quadratic Hamiltonians) in a lattice of arbitrary dimension
and geometry, coupled to an arbitrary number of macroscopic
thermal baths which can all be at different temperatures and
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chemical potentials. Three slightly different forms of the
Lyapunov equation are derived. Table I gives the summary
of our results. The following points distinguish our work
from previous works involving Lyapunov equations. We have
given a detailed, systematic, controlled derivation starting
from a fully microscopic Hamiltonian (Hermitian) model of
the system coupled with the baths. Unlike most previous
works [63–73], we have done so without referring to any
QME. Exact approaches require inverse Laplace transforma-
tion [20–22,24,25], inverting which can become challenging
depending on number of sites in the system and the spec-
trum of the system. The Lyapunov equations greatly simplify
the problem of obtaining dynamics of such open quantum
systems via bypassing the need for Laplace transform. In
particular, for fermionic reservoirs in the so-called wide-band
limit, our results do not require a weak system-bath-coupling
approximation. Our microscopic derivation makes the valid-
ity regimes of the Lyapunov equations clear. We have then
found the associated QMEs which yield the corresponding
Lyapunov equations. For Gaussian initial states of the system,
two of the associated QMEs also allow us to resolve the
positivity problem of the Redfield equation. These two QMEs
would have been difficult to obtain otherwise. On the other
hand, the third QME is the Redfield equation, which shows
the equivalence of QME and equation-of-motion approaches.
In the limit of very small coupling to the baths, we have
found semianalytical results for the system which are written
only in terms of the single-particle eigenvalues and eigen-
vectors of the system. This therefore reduces the problem of
obtaining open system dynamics to the same difficulty level
as solving the isolated system dynamics. Finally, we have
given the generalized regression formulas from the correlation
matrix, which allows calculation of all two-time correlation
functions for a Gaussian system. These formulas would not
be possible to derive by naively applying quantum regres-
sion at the level of the QMEs. Finally, we have worked out
two insightful examples which highlight several features of
our results.

Implications for non-Hermitian quantum physics. One of
the most immediate implications of our work is that our
microscopic derivation explicitly separates the non-Hermitian
Hamiltonian governing the dynamics of the system from the
quantum and thermal fluctuations due to the presence of the
baths. Therefore, it shows how dynamics governed by effec-
tive non-Hermitian Hamiltonians can microscopically arise
out of Hermitian quantum mechanics, and gives a unified
way to treat quantum and thermal fluctuations on such sys-
tems. Since our formulation is very general, all kinds of
non-Hermitian Hamiltonians can be microscopically designed
in this way, as long as there are no sources of gain. The ho-
mogeneous part of the Lyapunov equation is associated with
the non-Hermitian Hamiltonian, while the inhomogeneous
part of the Lyapunov equation is associated with the quan-
tum and thermal fluctuations. Interestingly, the three levels
of approximation only change the inhomogeneous part. They
therefore give various accuracy levels of treating the quantum
and thermal fluctuations. While Lyapunov equations from
Lindblad QMEs have been used to explore non-Hermitian
physics in few works [72,74,90], our formulation goes beyond
the validity regimes of such Lindblad QMEs deriving which

usually require further approximations over the Redfield equa-
tion [18,19,47].

Sources of gain typically require a nonlinear coupling with
bath, which is beyond the scope of this paper. However,
Lyapunov equations can be obtained from microscopic con-
siderations, completely out of Hermitian quantum mechanics,
in such cases also (see [84]). But, such Lyapunov equations,
which give an effective linearized description, may be unsta-
ble and may not be valid up to long times. Nevertheless, at
least up to some finite time (which can be estimated), this
work, in combination with [84], suggests that systems de-
scribed by all kinds of effective non-Hermitian Hamiltonians
can be obtained from standard quantum mechanics, as long as
quantum and thermal fluctuations are properly accounted for
via a Lyapunov equation. However, in presence of gain, the
nonlinear coupling can make the state non-Gaussian. So, the
Lyapunov equation in presence of gain may not describe the
full state of the system.

Possible implications for dissipative quantum many-body
systems. Systems governed by quadratic Hamiltonians form
the starting point for much of our understanding of physics,
especially, in higher than one dimension. Much of analyti-
cal techniques in physics deal with formulating sophisticated
methods to obtain corrections above such quadratic de-
scriptions [6,7,9]. These techniques may be combined with
our general Lyapunov equations and regression formulas
to treat many-body interactions (i.e., higher than quadratic
terms). The simplest of these is the Hartree-Fock mean field
approximation, which is very often made for realistic three-
dimensional systems. At such mean field level, the dynamics
and NESS can be obtained by solving the Lyapunov equa-
tion self-consistently. The Lyapunov equations may therefore
be used as a natural and simple way to include dissipation into
the mean field description of realistic quantum many-body
systems. This also gives a microscopic meaning, consistent
with standard quantum mechanics, to band structures of non-
Hermitian Hamiltonians, which have been explored in various
works (for example, [91,92,94]).

Relevance to quantum thermodynamics of Gaussian sys-
tems. Lyapunov equations have been recently used to
introduce and describe concepts related to quantum thermody-
namics in Gaussian systems like Wigner entropy production
[70,71], and nonlinear Onsager relations [122]. Once again,
this was done from the viewpoint of Markovian Lindblad
equations. Our results therefore suggest possible generaliza-
tions of those results beyond their present validity regimes.

Further generalizations and future works. Here we have
considered a number-conserving quadratic Hamiltonian. But,
most of our results can be readily generalized to the case
of number-nonconserving systems, such as superconductors
and squeezed harmonic oscillators, using a slightly different
definition for the correlation matrix [26]. They may also be
possible generalize to the case of athermal Gaussian baths,
instead of thermal baths. Another interesting direction is gen-
eralization of the Lyapunov equation to the case where the
temperatures and the chemical potentials of the baths are
time dependent. At the level of the Redfield equation and the
associated Lyapunov equation, this has already been achieved
[123]. It will be interesting to see if a generalization beyond
the validity regime of Redfield equation would be possible.
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Moreover, the entire rich mathematical understanding of Lya-
punov equations [75,76] can now be carried over to open
quantum systems and non-Hermitian physics. Investigations
in these directions, as well as in the direction of quantum
thermodynamics, will be taken up in future works. Overall,
we find it fascinating that an equation used in daily life for
control of macroscopic objects [75] can be shown to play
such a fundamental role in describing physics of microscopic
quantum systems.
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APPENDIX A: DERIVATION OF EQ. (29) FROM EQ. (27)

In order to derive Eq. (29) from Eq. (27), first we take the
transpose of Eq. (27):

cT
vec(t ) = cT

vec(0)e−iHT
NHt + iε

∫ t

0
dt ′ξT

vec(t ′)e−iHT
NH(t−t ′ ). (A1)

Note that with the transpose, the column vectors cvec(t ) and
ξvec(t ) with elements {ĉ�(t )} and {ξ̂�(t )} have now become row
vectors. Next, we take the Hermitian conjugate of the above
equation. This gives

c†
vec(t ) = eiH∗

NHt c†
vec(0) − iε

∫ t

0
dt ′eiH∗

NH(t−t ′ )ξ †
vec(t ′), (A2)

where c†
vec(t ) and ξ †

vec(t ) are column vectors with elements
{ĉ†

� (t )} and {ξ̂ †
� (t )}. Multiplying Eqs. (A2) and (A1) and taking

expectation values with respect to the initial state (7), we get

C(t ) = e−Gt C(0)e−G†t + ε2
∫ t

0
dt1

∫ t

0
dt2e−i(t−t1 )G

× 〈ξ †
vec(t1)ξT

vec(t2)〉e−i(t−t2 )G†
, (A3)

where G = −iH∗
NH, as defined in Eq. (30), and

〈ξ †
vec(t1)ξT

vec(t2)〉 is a matrix with elements 〈ξ̂ †
� (t1)ξ̂m(t2)〉.

Using the expression for 〈ξ̂ †
� (t1)ξ̂m(t2)〉 from Eqs. (13) and

(14), and carrying out the integrations over time, we obtain
Eq. (29).

Note that Eq. (63) can also be obtained as above, simply by
making the time arguments in Eqs. (A1) and (A2) different.

APPENDIX B: SOME EXPLICIT PROOFS

In the main text, it was mentioned that Eq. (29) is the
solution for Eq. (32). Further, it was mentioned that although
Eq. (29) is not the solution of Eq. (35), the long-time solu-
tion of Eq. (35) is given by Eq. (31), and is hence positive
semidefinite. Here we explicitly show the steps for proving
these statements.

The formal solution of Eq. (32) is

C(t ) = e−Gt C(0)e−G†t + ε2R(t ), (B1)

FIG. 4. The domain of the integrations in Eq. (B3).

where

R(t ) =
∫ t

0
dt ′e−(t−t ′ )GQ(t ′)e−(t−t ′ )G†

. (B2)

Then, we have to show that R(t ) simplifies to the second term
in Eq. (29), when Q(t ) is as defined in Eqs. (32) and (33). To
show this, first, we use the expression for Q(t ) in R, and after
some algebra, it can be written in the form

R(t ) =
∫ t

0
dt1

∫ t1

0
dt2 I (t1, t2; t )

+
∫ t

0
dt2

∫ t2

0
dt1 I (t1, t2; t ), (B3)

with

I (t1, t2; t ) =
∫

dω

2π
e−(t−t1 )Gei(t1−t2 )ωF(ω)e−(t−t1 )G†

. (B4)

At this point, visualizing the domain of the integrations,
shown in Fig. 4 becomes useful. Since the two terms in
Eq. (B3) correspond to exactly the same function getting
integrated over the lower triangular and the upper triangular
parts of square shown in Fig. 4, their sum exactly corresponds
to integration of the function over the entire square. Thus, we
have

R(t ) =
∫ t

0
dt1

∫ t

0
dt2 I (t1, t2; t ). (B5)

Now, explicitly carrying out the integrations over time gives
exactly the second term in Eq. (29). This therefore proves that
Eq. (29) is indeed the solution for Eq. (32).

The formal solution of Eq. (35) is

C(t ) = e−Gt C(0)e−G†t + ε2R1(t ), (B6)

where

R1(t ) =
∫ t

0
dt ′e−Gt ′

Q1e−G†t ′
. (B7)

Noting that Q1 [Eq. (36)] is nothing but Q(∞), simi-
lar algebraic simplifications as done to obtain Eq. (B3)
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give

R1(t ) =
∫ t

0
dt1

∫ ∞

0
dt2 I (t1, t2; t )

+
∫ t

0
dt2

∫ ∞

0
dt1 I (t1, t2; t ). (B8)

Clearly, using the geometric visualization of domain to com-
bine the two terms in the sum into one integration is no longer
possible for finite t . But for t → ∞, this can be done and it
gives exactly the same result as R(∞). By carrying out the
time integration, it can be checked that the result is exactly
Eq. (31), which is manifestly positive semidefinite.

APPENDIX C: DERIVATION OF EQ. (94)

In this Appendix, we give the derivation of Eq. (94). In
going to the single-particle eigenbasis we have to diagonalize
H as in Eq. (16). Writing out Eq. (16) explicitly for Eq. (92),
we have the following set of equations:

(ωα − ε�)��α = g���+1α + g�−1��−1α ∀ � �= 1, N ;

(ωα − ε1)�1α = g1�2α, (ωα − εN )�Nα = gN−1�N−1α.

(C1)

Using Eq. (59), and simplifying, the expression for NESS
current becomes

I = ε2gp

N∑
α,ν=1

�pα�p+1ν − �pν�p+1α

ωα − ων

×
[∑′

�,m �2
mα��α��νJ�(ωα )Jm(ωα )[nm(ωα ) − n�(ωα )]∑′

� �2
�αJ�(ωα )

]
,

(C2)

where
∑′ refers to sum over the points where the baths are

attached. Remember that since we have used Eq. (61), the
above expression for current is only valid when Eq. (54) is
satisfied. This expression can be further simplified using an
interesting result which we find for tridiagonal matrices using
Eq. (C1):

�pα�p+1ν − �pν�p+1α = ων − ωα

gp

p∑
k=1

�kα�kν . (C3)

Also, the eigenvectors are orthogonal, so

N∑
ν=1

��ν�mν = δ�m. (C4)

Using Eqs. (C3) and (C4) in Eq. (C2), we obtain Eq. (94).
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