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Giant diamagnetism of a quantum charged particle after inversion of the magnetic field
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We consider a quantum charged particle moving in the xy plane under the action of a uniform perpendicular
time-dependent magnetic field, in the presence of a parabolic binding potential. The time-dependent probability
distribution of the magnetic moment is calculated analytically and numerically in the case of initial thermody-
namic equilibrium state. In the high-temperature regime, the initial distribution is almost symmetric, resulting in
a tiny mean diamagnetism. However, if the magnetic field eventually changes its sign, the fragile balance between
the diamagnetic and paramagnetic “wings” of the probability distribution becomes broken, resulting in a giant
mean diamagnetic moment, exceeding the initial one by several orders of magnitude. The final mean value of

the magnetic moment is inversely proportional to the strength of the binding potential, and it does not depend on
the Planck constant in the high-temperature regime. Strong fluctuations of the magnetic moment (described in

terms of the variance) exist in all temperature regimes.
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I. INTRODUCTION

Magnetic properties of quantum charged particles in the
thermodynamic equilibrium state have been studied by many
researchers since 1930 [1-12]. One of the main results is the
Darwin formula for the mean magnetic moment of a spinless
free particle with mass M and charge e in the homogeneous
magnetic field B [2]:

M = u[(uBB)~" — coth(uBp)], (1)

where p© =eh/(2Mc) is the Bohr magneton and S
the inverse temperature (we use the Gauss system of
units). In particular, M = —p in the low-temperature
limit BB > 1, whereas M =—u’BB/3 (ie.,
IM| « @) in the high-temperature limit wpBf < 1.
Recently [13], we have obtained a new explanation of
these results, considering the magnetic moment probability
distribution in the equilibrium state. It was shown that the
small high-temperature diamagnetism is a consequence
of quasi total compensation of the diamagnetic and
paramagnetic “wings” of the magnetic moment probability
distribution. But what can happen if the system goes out of
equilibrium?

Many authors studied the evolution of quantum states of
a charged particle in time-dependent magnetic fields [14-23].
Continuing those studies, it was discovered recently [24-26]
that the evolution of the initial equilibrium state in the
time-dependent magnetic field can result in a strong am-
plification of the diamagnetic moment, especially in the
high-temperature case, under the magnetic field inversion.
The aim of the present paper is to study this unexpected effect

*vicdod @ gmail.com
fa.v.dodonov@gmail.com

2469-9926/2022/105(6)/062201(7)

062201-1

in more detail, paying special attention to the evolution of the
magnetic moment probability distribution.

II. EIGENSTATES OF THE MAGNETIC
MOMENT OPERATOR

To introduce the magnetic moment operator, we use the
definition of the classical magnetic moment [27,28]

M= i/dV[r X jl. 2)
2c

Then, using the expression for the quantum probability current
density in the presence of the magnetic field,

j=ieh(YVy* —y*Vi)/ QM) — EAY Y /(Mo),
one can write vector (2) as the mean value of vector operator
M = (# x #)e/(2Mc). (3)

Here, A is the magnetic field vector potential and vector
T =p—eA/c is the kinetic momentum. Vector p is the
canonical momentum, whose quantum operator is p = —ifiV.
The form (3) of the magnetic moment operator was justified
from different points of view by many authors in [6,8,29-34].

We consider the case of a homogeneous magnetic field
directed along the z axis. We are interested in the projector
of vector (3) on the z axis, using the symbol M for this
projection. Using the “circular” gauge of the vector potential,
A = B(—y, x)/2, we can write

M = [&py — $pr — M(F* + §9)]e/(2Mc) = pA.  (4)

Here, w = eB/(2Mc) is the Larmor frequency, so that uB =
hw. The spectrum of the dimensionless operator A is
continuous. Eigenfunctions of this operator were found in
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[13] in the momentum representation in terms of the Bessel
functions:

WA m(p, @) = (il /470)' 2™ Iy (vmp), ®)

2w 00
/ d(p/ APV Wnrw = S S(A — A),
0 0

m=0,+1,42,..., ym=+km—A), Kk =Mhw)".
(6)

It is important to remember that frequency w can be positive
or negative (as well as parameter k). For each value of discrete
parameter m, the coefficient y,, must be real (then, it can be
always chosen positive). The continuous parameter A must
satisfy the restrictions

—co< A<mif w>0, m<A< if w<0. (7)

III. EVOLUTION OF THE WAVE FUNCTIONS

In the nonrelativistic case considered in this paper, it is
sufficient to consider the motion in the plane xy perpendic-
ular to the z axis. To avoid the problems with normalization
and degeneracy of energy levels in the stationary state, we
assume, following Darwin [2], that the particle motion is con-
fined by means of the isotropic harmonic potential V (x, y) =
Mg*(x* +y?)/2. Therefore, the motion in the xy plane is
governed by the Hamiltonian

A =#%/2M) + Mg (x* + %) /2. (8)

We discard the effects of spin, since they are independent from
the orbital motion effects within the nonrelativistic approxi-
mation.

The stationary Schrodinger equation Hy = Evy with
Hamiltonian (8) and A = B(—y, x)/2 was solved in the co-
ordinate representation in polar coordinates by Fock [35].
The Fourier transform of that solution, resulting in the wave
function in the momentum representation, was calculated in
[13]:

Kgty!

—n(n, ¥ jmD! (Kgp2)|m|/2

%,m(p, Q) = (_l')\ml(_l)n,

x L™ (kcgp®) exp(—kep” /2 + img).  (9)

Here, function L{*)(z) is the generalized Laguerre polynomial,
defined as [36,37]

n
a+n)
b

1, _,d
LY2)= —ez77"—(e %z
n!

dz"
we =Vl + &, k= Mhwy) ™, p=\/P§TP§'

The energy spectrum is given by the formula
E,m = haog(l + |m| + 2n,) — hom, (10)

where m =0, +1,+2,...,n,=0,1,2,.... Note that solu-
tion (9) is valid even for g < 0, provided the frequency g 18
real (we assume that wg > 0).

What happens with the energy eigenstates (9) if the fre-
quency w depends on time after some instant 7,? The answer
was given by Malkin et al. [15]. It appears that the initial

function (9) takes the following form at ¢ > #, (see the Ap-
pendix for details):

K, ()] +m p2im
lI/nrm(p9 (Pét) = \/n ET(g;’f )_]‘_ |m|)p, Lr(zl,m‘)[Kg(t)pz]

iep?
2Mhe

X exp (im(p— +ix(t)>. (11
Here, K (1) = [M7i|&(t)]*]"!, where the complex function
&(t) is the solution to the classical equation of the harmonic
oscillator with a time-dependent frequency,

E+wy(t)e =0, (12)
satisfying the initial conditions

e(ty) = [t ™2, &) = ilwg(t)]V2. (13)

The explicit form of phase factor x (¢) is not important for our
purposes.

IV. EVOLUTION OF THE MAGNETIC MOMENT
PROBABILITY DISTRIBUTION FROM THE INITIAL
THERMAL STATES

When the magnetic field depends on time, it is reasonable
to consider the instantaneous magnetic moment operator (4)
and its eigenfunctions (5) with the time-dependent Larmor
frequency w(t). Then, the instantaneous probability distri-
bution of the magnetic moment (normalized by the Bohr
magneton ) in the time-dependent state W, ,,(f) is given by
the function P, ,,(A;t) = |(\IJA,m(t)|‘~Iln,m(t))|2. Note that the
quantum numbers m coincide in the bra and ket vectors in
this formula, because (W (1) W), (¢)) = 0if m’ # m. Since
function (11) has the same structure as (9), the result has the
same form as that obtained in [13]:

11 g(O1 6 (A g ()]
(n, + Im])!

x (L;(zl,m‘)[gm(l\§q(t))])2. (14)

We see that the probability distribution depends on time
through the time-dependent functions

q(t) = lo®e@)P1™",  &(Asq(1)) = qt)m — A). (15)

Therefore, we use hereafter the notation P,,,,(A; g(¢)).

In the stationary case, we have |e(t)|® = wg’l, so ¢q(t)
goes to the constant coefficient ¢ = wg/w used in paper [13].
Formula (14) holds provided &,,(A; g(¢)) = 0, i.e., under the
restrictions (7). Otherwise, P,.,(A;q(¢)) = 0. The normal-
ization ffooo Pum(A; qt))dA =1 is nothing but the standard
normalization of the Laguerre polynomials (see formula 8.980
in [37]). It is crucial that time-dependent parameter ¢(¢) can
be positive or negative, depending on the sign of frequency
w(t).

The energy eigenstate is a specific quantum state, which
can be created in experiments with some difficulties. A
more realistic initial state seems the equilibrium one. In this
case, the (normalized) total time-dependent magnetic moment

Pn,.m(A;t) = exp[_gm(A; Q(f))]
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probability density at # > ¢, can be calculated as

P(Asq(0) = 27’”,."1(1\;610))67(13 (=BEnn)/Z2(B), (16)

ny,m

where Z(B) = Zn,,m exp(—pBE,,n) is the statistical sum,
which can be easily calculated [2], due to the linear nature
of the spectrum (10) (see also [6,38] for other approaches):

(22)™" = cosh(ng)—cosh(), (17)

n=hpw;, ng=hBw?+g. (18)

We assume that the initial Larmor frequency w; is positive.
Making the same calculations as in [13], we obtain

P(A:q(t) =) Pu(Aig(t)), 19)

Pul(; q(t)) = |q@)|Gexp [mn—&,(A; q(t)) coth(n,)]

En(A;q(1))
X1m||:mi|, (20)
G = [cosh(ng)—cosh(n)]/ sinh(n,). 201
Formula (20) holds for £&,(A;q(t)) >0, otherwise

Pu(A;q()) = 0.

At zero temperature, 8 = n = n, = oo and G = 1. In this
case, the only contribution to the probability density is from
the ground state with n, = m = 0:

lg(@®)| exp (—=|g(®)Al),

P(A: () = {O, (A <0

q(t)A > 0. (22)

Hence, (A)(t) = [*2 AP(A;q(t))dA = —q~'(t). The dis-
tribution width is characterized by the variance o, = (A?) —
(A)2. Since (A?) = Zq’z(t) for the distribution (22), the vari-
ance is rather big in this case: o5 (1) = ¢72(t) = [(A)(1)]*.

V. MEAN VALUES

The mean value

o0

WO = [ AP@igiaa= 3 (A0

o0 m=—0o0

can be calculated in the same way as was done in [13] in the
stationary case. The result is as follows:

(A)(1) = F- — (@)le@)P[Fy + coth(y,)],

_ sinh’(ny) £ sinh?(y_)
72 sinh(n, ) sinh(n_) sinh(n,) ’

1
Nt = E(ng +n).

(23)

This expression is another form of the result obtained in [24]
with the aid of the density matrix formalism. The separation
of (A)(t) in the constant and time-dependent parts in Eq. (23)
corresponds to the form (4) of the magnetic moment operator:
the constant part is due to the conserved canonical angular
momentum X5, — yp,, whereas the second term describes the
contribution of the quantity w(z)(%*> + $*) which depends on
time.

Note that n— — 0 when g — 0. This means that the
limit g — O should be taken with some care, only at the

final stage, because of the term sinh(n_) in the denomina-
tors of time-independent coefficients Fy. For example, the
zero-temperature limit 8 — oo should be taken for g # 0,
assuming that n_ — oo. Then, F, = F_ = 0, so that

(A)()pmoo = —q (1) = —(t)|e(t)]?, (24)

in accordance with the distribution (22). In the case of con-
stant frequency, when w®)e®)|)? = w/w,, formula (23) goes
to the Darwin formula (A) = n~' — coth(n) if g — 0.

For a quasifree particle (g < w;), we have n_ < ny and
F, ~ F_ =~ [2sinh(_)]~!. A simple approximate formula in
this case reads

l-q'(®)

(AN~ 2 sinh(n_)

g (t) coth(n). (25)
Hence, the mean magnetic moment can be increased im-
mensely if 7_ < 1 and the factor ¢g(¢) is not close to unity.
This does not happen in the adiabatic regime, when

£aa(t) ~ [w(t)]”"* exp [z/ w(t)dr]. (26)

However, the simple formula (26) fails when the frequency
w(t) goes to zero and changes the sign. Then, g(¢) < 0 and
the difference 1 — g~'(¢) cannot be small in the asymptotic
regime with wy < 0. Consequently, a giant amplification of
diamagnetism can happen when w; < 0 and n_ < 1, due to
the small denominator sinh(n-) in Eq. (25).

VI. SOME EXACT FORMULAS FOR TIME-DEPENDENT
FUNCTIONS

We suppose that the frequency w(#) goes asymptotically to
some finite value wy. In this limit, the function w,(#) tends to

the constant value Q = \/a)} + g7, which is always positive,
while wy can be either positive or negative. The asymptotic
solution to Eq. (12) has the form

e(t) = Q V2 up e 4+ u_e ). 27
Constant complex coefficients u4 obey the condition
g )* = Ju_* = 1. (28)

This relation follows from the preservation in time of the
Wronskian between two linear independent solutions &(¢) and
£*(t) and the initial conditions (13):

e(n)e*(t) — &% ()e(t) = 2i. (29)
Hence, the function ¢~ '(t) = w(t)|e(¢)|* in the asymptotic
regime has the form

[OFs .
g ') = 5fnu+|2 + Ju_|? + 2Re(uyu* ). (30)

This function oscillates with frequency 22 between the ex-
treme values

ot = (@p/Q)(uy| £ |u_])*. &2y

Several concrete functions w(#) admitting exact solutions
to Eq. (12) were considered in Refs. [24,26]. We confine
ourselves here to the special example of the Epstein-Eckart
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profiles,

wyrexp(yt) + w;

0= 1

—oco<t<oo, y>0. (32
Moreover, we consider the case of the exact field inversion,
ws = —w;, when the coefficient u_ has the most simple ana-

Iytic form [24],

_icos(y/1/4 — 402)

sinh(27 )

For y > Q (the “sudden jump” of the frequency) we have
u_ ~0and g ~ —1 (assuming g < ;). In this case, accord-
ing to Eq. (24), the mean magnetic moment simply changes its
sign in the zero-temperature case (still meaning the diamag-
netism, because the magnetic field changed the sign as well).
However, a great amplification of the diamagnetism can be
observed for nonzero initial temperatures, under the condition
n— < 1 (i.e., when the product Bg? is small):

; Q=Q/y. (33

(M) ~ 02! ~ 4o/ (IBE7) = A (34)
In the opposite limit case of y < 2~ w; (a very slow
evolution) we have |u_| = 1. Then, the mean value (A) os-

cillates between the values A, (2 £ +/2). It is remarkable that
the mean magnetic moment in this quasifree high-temperature
case does not depend on the Planck constant:

WA, = BikgT[e/(Mcg)]*. 35)

The origin of this formula is discussed in Sec. VIII. For the
electron in the magnetic field B ~ 1 T, the condition n < 1
means the absolute temperature 7 > 1 K.

VII. THE DISTRIBUTION FUNCTIONS IN THE GIANT
DIAMAGNETISM CASE

It seems interesting to see the magnetic moment dis-
tribution functions resulting in the giant diamagnetism.
Unfortunately, the series (19) with functions (20) cannot be
calculated analytically. Therefore, we had to perform nu-
merical calculations. The summation for each value of A
was performed with 13 000 terms in the series (19), accord-
ing to the restriction (m — A)/w(t) > 0, which guaranteed
the convergence of the series with the machine precision.
The modified Bessel functions were generated via recurrence
relations either for I,(z) or e *I,(z) (when z > 1), using
the Miller’s algorithm to avoid overflows. The numerical value
of the normalization integral ffooo P(A;q(t))dA was more
than 0.9993 in all cases.

Figures 1-3 show the function P(A;¢q(¢)) in the loga-
rithmic scale (with details in the usual scale) for n = 1/10
(high-temperature case) and n, = 1.1 (i.e., n=! = 200). Fig-
ure 1 corresponds to the initial equilibrium distribution with
q = wg/w; = 1.1. In this case, the distribution is almost sym-
metric, with a tiny asymmetry at the origin, resulting in the
small mean value (A)eq =~ —0.005. Figures 2 and 3 show
P(A;q(1)) for g = —(3+2+/2) and ¢ = —(3 — 24/2) [the
extreme values (31) for the slow evolution to the exactly
inverted magnetic field with w;/Q = —1 and lu_|>=1".

We see two striking features in all figures. The first one is
the “sawtooth fine structure” of distributions for small values
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FIG. 1. Function P(A;¢q(t)) forn =0.1,7, =0.11,andg = 1.1
(the initial equilibrium distribution). Top: the behavior in the large
interval of values of A, using the logarithmic scale for /P. Bottom:
the details for small values of A.

of A and the discontinuity at A = 0 (where the probabil-
ity density attains the maximal value). This discontinuity is
explained by the appearance or disappearance of the term
Po(0; g(t)) in the series (19), when the variable A passes
through the point A = 0. Since I,(0) = 1, the discontinuity at
A = 0equals |g(t)|G ~ |g(t)|(ng — 1), in an excellent agree-
ment with all plots. When A passes through integer values
A = m # 0, the new Bessel function /,, enters the game (or
goes out). Since 1,,(0) =0 for m # 0, function P(A;q(t))
remains continuous at these points, but its derivative changes
abruptly. This explains the “sawtooth” structure, which be-
comes less and less visible with the increase of |A].

The second striking feature is the practically ideal expo-
nential form of P(A) in the large scale, excluding a small
region near the origin. In this (logarithmic) scale, we see

10"
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FIG. 2. Function P(A;¢q(t)) for n =0.1 and n, = 0.11 at the
instant when ¢(t) = —(3 + 24/2). In this case, (A) ~ 113.2. Top:
the behavior in the large interval of values of A, using the logarithmic
scale for P. Bottom: the details for small values of A.
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FIG. 3. Function P(A;q(t)) for n =0.1 and n, = 0.11 at the
instant when ¢(t) = —(3 — Zﬁ). In this case, (A) = 705.7. Top:
the behavior in the large interval of values of A, using the logarithmic
scale for P. Bottom: the details for small values of A.

two linear wings of the distribution, which changes from the
almost symmetric form in the high-temperature equilibrium
state to strongly asymmetric forms at zero temperature (22) or
after the field inversion in the high-temperature initial state.
The equilibrium case was discussed in Ref. [13]. Here we ana-
lyze the distributions after the field inversion, shown in Figs. 2
and 3. Neglecting a small contribution of the left “wing” (for
A < 0), the distribution for A > 0 can be approximated by
the simple function P(A) = (A)~'exp(—A/(A)). The mean
value (A) can be taken either from the exact formula (23)
or its simplified version (25). Note, however, that the exact
mean values given for each figure were obtained numerically,
using the exact distribution function P(A;q(t)) shown in
the figures. The main advantage of the approximate function
P(A) is the possibility to calculate easily the dispersion of
the distribution, which is very big: on = (A)2. It is worth
remembering that the function P(A; g(¢)) oscillates in time
with the frequency 2|wy| between the extreme distributions
shown in Figs. 2 and 3. However, the form of the distribution
in the large scale remains the same: only the value (A) in
function P(A) changes (i.e., the inclination of straight wings
in the logarithmic scale).

VIII. CONCLUSION

We have demonstrated that a giant mean diamagnetic mo-
ment can arise when the magnetic field changes its sign,
especially for the initial high-temperature thermodynamic
equilibrium state. This effect can be understood if one takes
into account two factors. The first one is the structure of the
magnetic moment operator (4), which contains two parts. One
part is proportional to the canonical angular momentum, and
its mean value is preserved in the case under study due to
the symmetric geometry. But the mean value of the second
part, Mw(%? + $%), depends on the extension of the particle
wave packet in the coordinate space. And here the second
factor enters the game, namely, the “weakly quantum” (or
“quasiclassical”) nature of the high-temperature equilibrium

state of a charged particle in the magnetic field. Indeed,
using the results of Ref. [25], it can be shown that the spa-
tial extension of the equilibrium wave packet is very large
under the condition /g < 1 (remember that we assume
that g < w;):

. R kgT
()eq = (Peq = MB—gz{l + O(hBZ P} (36)

The principal term in the right-hand side of this relation is in
total accord with the classical equipartition theorem for the
harmonic oscillator with frequency g. Initially, the huge value
Mo (3> + j/z)eq is almost balanced by the first term in Eq. (4),
resulting in the tiny Landau-Darwin diamagnetism. However,
this balance is very fragile, and it can be broken when the
magnetic field depends on time. The total breakdown happens
when the magnetic field changes its sign. This can be seen
in the most distinct form in the case of sudden jump of the
Larmor frequency to the value w; = —w;. Immediately after
the “jump,” the state of the system does not change. This
implies that the mean value (%2 + $%) remains the same. But
now this mean value should be multiplied by —w; (instead of
w;) in the expression for the mean magnetic moment. Hence,
two terms of Eq. (4) do not cancel each other after the jump.
On the contrary, the new magnetic moment is the double value
of the second term (with an opposite sign). One can verify
that this double value coincides exactly with the right-hand
side of Eq. (35). If the evolution of the magnetic field is not
so fast, the final values of the mean magnetic moment can be
different. However, the results of Sec. VI show that the order
of magnitude of these values is the same. Consequently, the
reason of the giant diamagnetism is the immense spatial exten-
sion of the initial equilibrium (quasiclassical) wave packet and
the breakdown of the fragile balance between two parts of the
magnetic moment operator under the magnetic field inversion.

The magnitude of the asymptotic value of the mean mag-
netic moment depends on the details of field evolution, but
in all regimes—from the “instant jump” to the adiabatic
evolution—it is inversely proportional to the strength of the
binding potential. This potential is chosen in the parabolic
form in order to obtain explicit exact analytical solutions to
the Schrodinger equation (following many studies, starting
from Darwin’s paper [2]). Such a potential is necessary in
order to take into account the fact that the true motion is
always confined in some region of space. In more realistic
models, including the explicit presence of boundaries, the
asymptotic mean value of magnetic moment must depend
on the size of container (instead of parameter g). However, us-
ing the reasoning of the preceding paragraph, we may expect
that the effect of giant amplification will exist even under more
realistic assumptions (provided the size of container is large
enough). Of course, studies of more realistic models would be
very interesting. Note in addition that the parabolic binding
potential is frequently used in the models of “artificial atoms”
or quantum dots in semiconductors [39,40].

It would be interesting to try to verify the effect of giant
amplification of the mean magnetic moment in experiments
with single electrons or ions in traps or quantum dots, when
the magnetic field changes its sign.
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APPENDIX: DERIVATION OF THE TIME-DEPENDENT
SOLUTIONS

An elegant method of solving the time-dependent
Schrodinger equation with time-dependent parameters was
suggested in 1969 by Lewis and Riesenfeld [14]. The crucial
idea is to find the time-dependent operator—integral of mo-
tion [ (1), satisfying the equation

ihdf /ot = [H(t), [(1)]. (A1)

Then, any eigenstate of [(t) satisfies the Schrodinger equa-
tion ko /ot = H ()Y (t) automatically. Of course, this
method is not universal, because one has to guess the structure
of operator (). However, it works quite well for systems
with quadratic Hamiltonians, when [(#) can be looked for as
some quadratic form of the coordinates and momenta. A more
simple and more efficient method was proposed by Malkin
etal. [15], who showed that it is sufficient to find the solutions
to (A1) as linear combinations of coordinates and momenta
operators. In particular, in the case of Hamiltonian (8), the
following linear integrals of motion exist [15]:

R (1)

Q) = SZLL WP+ ify) ~ MEOG+ DL, (4D
Bty = D )y + ip) — MEOG + B, (A3)
- ZM p}' px y ’

where ®(r) = expli ft o(t)dt] and e(t) is any solution to
Eq. (12). Choosing the complex solution with the Wronskian
(29), we obtain the time-independent commutation relations

[Aw), AT()] = [B@t), B' ()1 =1,
[A@t), B(t)] = [At), B'(1)] = 0.

Then, one can construct the set of coherent states as common
eigenstates of operators A(#) and B(¢). In turn, these coherent
states are generating states of the generalized Fock states. The
stationary coherent states in the magnetic field are obtained
for e(t) = w, /> exp(icgt) [5,41]. Comparing this formula
with the general structure of operators A(t) and B(r), one
can conclude that the evolution of stationary solutions under
the time-dependent magnetic field can be obtained, roughly
speaking, by means of replacement of the frequency w in
the expressions for the stationary wave function with the
fraction —ié(t)/e(t), provided the solution &(z) is determined
by Eq. (12) and the initial conditions (13). Following this
line, one can obtain the following generalization of the Fock’s
solution [35] to the case of a time-dependent magnetic field:

% o 0o Iml
\an(}’ oit) = Kon, \(Kqr?) L(Im‘)(lg rz)
S 7w (n, + mpt

Me , . -
X exp I%r +imp +ix@)). (A4)

Here, Kg(t) = M/[i|e(t)|?]. Since the phase ¥ () is not im-
portant for our purposes, we do not bring its explicit (rather
complicated) expression. The time-dependent wave function
in the momentum representation can be calculated in the same
manner as in the stationary case. The identity (29) is important
in these calculations. The result is given by Eq. (11) of the
main text.
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