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Floquet analysis of extended Rabi models based on high-frequency expansion
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The extended quantum Rabi models make a significant contribution to understanding of the quantum nature
of the atom-light interaction. We transform two kinds of extended quantum Rabi model, the anisotropic Rabi
model and the asymmetric Rabi model, into the rotating frame and regard them as periodically driven quantum
systems. The analytical solutions of the quasienergy spectrum as well as the Floquet modes for both models
are constructed by applying the Floquet theory and the high-frequency expansion, which is applied to the
nonstroboscopic dynamics of physical observables such as atomic inversion, transverse magnetization, and
atom-field correlation. For the anisotropic Rabi model, the quasienergy fits well with the numerical results even
when the rotating-wave coupling is in the deep strong-coupling regime g � h̄ω if the counter-rotating term
is small enough compared to the driving frequency. Avoided level crossing may occur for quasienergy with
the same parity when the positive branch spectrum lines for the total excitation number N cross the negative
branch lines for N + 2, while the high-frequency expansion fails to predict this due to the conservation of the
total excitation number. Furthermore, we present analytical and numerical studies of the long-time evolution of
population and conclude that the analytical method is credible for the population dynamics. For the asymmetric
Rabi model, we find that the external bias field which breaks the parity symmetry of the total excitation number
tends to cluster the upper and lower branches into two bundles, and the detuning induced gap in the first
temporal Brillouin zone shows a quadratic dependence on the bias. Fourier analysis is applied to extract the
frequency composition and two-frequency driving behavior is revealed. Varying the bias strength will change
the time-averaged value of the oscillation, which shows how the bias competes with the detuning and atom-field
coupling in the driving dynamics. Both models prove that treating the Hamiltonian in the rotating frame by
Floquet theory gives an alternative tool in the study of interaction between atom and light.
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I. INTRODUCTION

The Rabi model [1], which describes a two-level atom
interacting with a single-mode classical field, plays an impor-
tant role in understanding atom-field interaction. A solvable
fully quantum-mechanics model, the Jaynes-Cummings (JC)
model [2], gives the general and basic physics of the quantum
Rabi model in the rotating-wave approximation (RWA) [3].
The development of experiments in circuit quantum elec-
trodynamics [4–8], two-dimensional electron gases [9,10],
trapped ions [11–14], etc., has already driven the light-matter
interaction into the strong-coupling regime where RWA is
not applicable and the counter-rotating-wave terms (CRTs)
cannot be neglected. More and more generalized quantum
Rabi models were proposed to study different kinds of interac-
tion beyond RWA, e.g., the Rabi-Stark model [15–18], Dicke
model [19–21], Buck-Sukumar model [22,23], anisotropic
Rabi model (AiRM) [24–28], and asymmetric Rabi model
(AsRM) [8,28–33]. It is thus necessary to find a proper treat-
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ment of CRTs to make the extended quantum Rabi models
solvable. Numerical and analytical approaches were presented
to obtain the energy spectrum of these models, such as the
G function [33], Bogoliubov operators [30], and generalized
rotating-wave approximation [34,35]. Very recently a quan-
tum Rabi triangle system has been proposed as an elementary
building block to explore the nature of emerging quantum
many-body phases [36]. An adiabatic scheme for the fast and
deterministic generation of a two-qubit Bell state and arbitrary
single-photon multimode W states was proposed based on
one-photon solutions to the multiqubit multimode quantum
Rabi model [37]. The quantum phase transition has been ob-
served in experiments with a single 171Yb + ion confined in a
linear Paul trap [13,14]. An experimental scheme with a trans-
mon qubit capacitively coupled to a LC resonator has been
proposed to implement the anisotropic quantum Rabi model
in a circuit quantum electrodynamics system via periodic fre-
quency modulation [26]. A magnon-spin-qubit ensemble in
which a spin qubit exchange coupled to an anisotropic ferro-
magnet is suggested to physically realize the quantum Rabi
model from the isotropic to the Jaynes-Cummings limit with
coupling strengths that can reach the deep strong-coupling
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regime [27]. By inductively coupling a flux qubit and an
LC oscillator via Josephson junctions, superconducting qubit-
oscillator circuits in the deep strong-coupling regime have
been realized with a flux bias [8].

The Floquet theory is generally applied in the periodic
driven quantum system to gain nontrivial physical properties
[38–49]. According to the theory, the time-evolution operator
from initial time ti to final time t f can be written as

Û (t f , ti ) = e−iK̂ (t f )e− i
h̄ ĤF (t f −ti )eiK̂ (ti ), (1)

where ĤF is the time-independent Floquet Hamiltonian to
describe the long-time evolution and K̂ (t ) is the kick operator
to describe the short-time behavior. There are two choices
of the description, the stroboscopic and the nonstroboscopic
dynamics. The former concludes that both the stroboscopic
Floquet Hamiltonian ĤF [t0] and the stroboscopic kick opera-
tor K̂F [t0](t ) depend on the Floquet gauge t0, which is defined
as the time where the first period begins. A very efficient
tool to compute the stroboscopic Floquet Hamiltonian in the
high-frequency limit is the the Magnus expansion, which is a
perturbative scheme in the inverse driving frequency 1/� to
compute ĤF [t0] [41,50]. It is specifically suitable to use this
stroboscopic dynamics to describe the system in the simplest
case when the initial time and final time are fixed on t0 and
t0 + nT with the driving period T = 2π/�, as the strobo-
scopic kick operator in this case reduces to zero. This method
is widely applied in Floquet engineering of many-body lo-
calization [51], counterdiabatic protocols [52], and generic
transient dynamics [53] in quantum many-body systems. The
other one is the nonstroboscopic dynamics which is described
by the t0-independent effective Floquet Hamiltonian Ĥeff and
the nonstroboscopic kick operator K̂eff (t ). This approach of-
fers the advantage that the dependence on the Floquet gauge
will not enter the inverse-frequency expansion of Ĥeff [39,41].
If one is interested in Floquet nonstroboscopic dynamics,
in current and linear response, or the spectral properties of
the Floquet Hamiltonian, then the effective description offers
an advantage, since it gives a Hamiltonian which does not
contain terms that depend on the phase of the drive. Non-
stroboscopic dynamics is capable of capturing the evolution
governed by the Floquet Hamiltonian of any observable asso-
ciated with the effective high-frequency model [42–44].

In recent years, some Rabi-type models have been studied
by applying Floquet theory [54–59], including engineering the
non-Hermitian Hamiltonian with semiclassical Rabi models
and driving fully quantum Rabi-type models with time pe-
riodical parameters. Light in its nature is temporal periodic
and the Rabi model is a periodically driven system in the
first place. But the application of the Floquet theory directly
on the quantum Rabi models is rare, as quantum optics de-
scription utilizing the field quantization maps the atom-field
interaction into a time-independent Hamiltonian—the field
creation and annihilation operators do not depend on time in
the Schrödinger picture. The analysis of the quasienergy and
the dynamic evolution of the Rabi model is expected to lead
to a different understanding of the various kinds of atom-light
interaction. Although the Floquet stroboscopic dynamics is
sufficient for the time evolution, the nonstroboscopic effec-
tive model in many cases provides the analytical form of the

quasienergy spectrum and Floquet modes, which is applicable
in the evaluation of dynamics of physical observables.

In this paper, we consider two extended Rabi models, i.e.,
the anisotropic and asymmetric quantum Rabi models, and
study their nonstroboscopic dynamics in the framework of
Floquet theory. We deliberately break the symmetry in the
standard Rabi model. In one case, the U (1) symmetry in atom-
field coupling, the rotating and counter-rotating interactions
are governed by two different coupling constants. In the other
case, the Z2 parity symmetry of total excitation number, a
bias field is applied on the transverse direction. In the rotating
frame the Hamiltonian can be regarded as a periodic driving
in the interaction picture. In Sec. II, we apply the Floquet
theory and high-frequency expansion to the anisotropic Rabi
model. The quasienergy spectrum and population dynamics
derived from the time-independent effective model will be
investigated and compared with the numerical result in the
extended Floquet Hilbert space. In Sec. III, we carry out a sim-
ilar procedure on the asymmetric Rabi model, and the driving
dynamics of some physical observables will be analyzed. By
comparing the numerical result and the effective model, we
aim to find the parameter regime for the application of the
high-frequency expansion. We conclude our results in Sec. IV
and the details of the expansion of the effective Hamiltonian
and the numerical scheme for the quasienergy spectrum are
presented in the Appendices.

II. ANISOTROPIC RABI MODEL

A. Formalism and high-frequency expansion

Our first model is the AiRM [25,28], which can be de-
scribed by the Hamiltonian in the laboratory frame:

ĤAiRM = 1
2 h̄ω0σ̂z + h̄ωâ†â + g(â†σ̂− + âσ̂+)

+g′(â†σ̂+ + âσ̂−). (2)

Here, â† and â are the creation and annihilation operators
for photons of single-mode frequency ω, σ̂+ = (σ̂x + iσ̂y)/2
and σ̂− = (σ̂x − iσ̂y)/2 are the atomic transition operators,
and σ̂i(i = x, y, z) are the Pauli matrices of the atom with
the level difference characterized by the frequency ω0. g is
the coupling strength between the atom and the field of the
rotating-wave term (RWT), while g′ is the coupling strength
of CRTs. Clearly, when g′ = 0, the AiRM reduces to the JC
model with rotating-wave approximation, while for g′ = g,
it becomes the standard quantum Rabi model. So this is an
appropriate candidate to study the effect caused by CRTs.

To apply the Floquet theory, one needs the Hamiltonian to
be time dependent and temporal periodic. There is a conve-
nient way to achieve this, i.e., putting the Hamiltonian in the
rotating frame. After the time-dependent gauge transforma-
tion by the unitary operator V̂ (t ) = exp[−iω(â†â + σ̂z/2)t],
the Hamiltonian in the rotating frame has the form

Ĥ rot
AiRM(t ) = V̂ (t )†ĤAiRMV̂ (t ) + ih̄

∂V̂ †(t )

∂t
V̂ (t )

= 1

2
h̄�σ̂z + g(â†σ̂− + âσ̂+)

+ g′(ei2ωt â†σ̂+ + e−i2ωt âσ̂−). (3)
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Comparing it with the Hamiltonian (2) in the original gauge,
we find the free field term has been eliminated and the field
information is entangled with the atom. The RWTs remain
time independent in the new gauge, while the CRTs have
the time dependence with the frequency � = 2ω, which can
be regarded as a periodic driving. The time-independent part
consists of the JC model without the free field Hamiltonian,
and the atomic level difference is characterized by the de-
tuning between the photon and atom � = ω0 − ω. For the
high-frequency driven system one requires that the photon
frequency ω is large enough such that the atoms are in near
resonance with the optical mode.

The Floquet theory gives the guidance of solving these
periodic driven cases in the high-frequency limit, i.e., the
effective Hamiltonian can be expanded in order of �−n as
Ĥeff = ∑∞

n=0 H (n)
eff . The corresponding kick operator can also

be expanded as K̂eff (t ) = ∑∞
n=1 K (n)

eff (t ). The first few terms of
high-frequency expansion are calculated as (see Appendix A
for details)

Ĥ (0)
eff = 1

2
h̄�σ̂z + g(â†σ̂− + âσ̂+), (4)

Ĥ (1)
eff = g′2

h̄�
(â†âσ̂z − σ̂−σ̂+), (5)

Ĥ (2)
eff = − g′2

(h̄�)2
[h̄�(â†âσ̂z − σ̂−σ̂+) + g(â†ââ†σ̂− + H.c.)].

(6)

The zeroth-order term of expansion (4), which is exactly the
time-independent part of the Hamiltonian in the rotating frame

(3), plays a major role in the effective Hamiltonian as we
expected. The CRTs enter in the first-order correction (5)
showing the dependence of the effective Hamiltonian on the
coupling strength g′. The second-order correction (6) consists
of two parts: apart from a term similar to the first-order correc-
tion (dressed by the detuning �), there appears a two-photon
interaction process which depends on both coupling strengths
of RWTs and CRTs. With the increase of the correction order,
more multiple-photon processes will be brought into the ef-
fective Hamiltonian. On the other hand, the first few terms of
the corresponding effective kick operator can be evaluated as

K̂ (1)
eff (t ) = g′

ih̄�
(â†σ̂+ei�t − H.c.), (7)

K̂ (2)
eff (t ) = g′

i(h̄�)2
[(gâ†2σ̂z − h̄�â†σ̂+)ei�t − H.c.]. (8)

We see that the zeroth-order term in the Floquet Hamiltonian
(4) is simply the time-averaged Hamiltonian, whereas the
zeroth-order nonstroboscopic kick operator is identically zero.

B. Quasienergy and Floquet modes

Notice that the effective Hamiltonian conserves the total
number of excitations N̂ = â†â + (σ̂z + 1)/2, which enlarges
the Z2 symmetry of the original Hamiltonian (2) to U (1)
symmetry. Therefore, it only couples pairs of states such as
|1〉 = |n,+〉 and |2〉 = |n + 1,−〉 where n is the photon
number and |±〉 denotes the excited and ground states of the
atom. The matrix of the effective Hamiltonian in these basis
is given by

Ĥeff =
[

h̄�
2 + g′2

h̄�
n − h̄�g′2

(h̄�)2 n g
√

n + 1 − gg′2
(h̄�)2 (n + 1)

√
n + 1

g
√

n + 1 − gg′2
(h̄�)2 (n + 1)

√
n + 1 − h̄�

2 − g′2
h̄�

(n + 2) + h̄�g′2
(h̄�)2 (n + 2)

]
. (9)

We should first consider a special case that the total exci-
tation number is zero. There is only one state which forms an
independent space from others with the quasienergy and the
eigenvector:

E0 = − h̄�

2
− g′2

h̄�
+ h̄�g′2

(h̄�)2
, (10)

|�0〉 = |0,−〉. (11)

It is straightforward to get the quasienergy spectrum by solv-
ing the eigenvalue problem of the matrix (9) for the case
of nonzero total excitation number. Expansion of En± with
respect to (h̄�)−1 up to the second order can be written as

E (0)
n± = ±�R

2
, (12)

E (1)
n± = g′2

h̄�

[
−1 ± h̄�(n + 1)

�R

]
, (13)

E (2)
n± = g′2

(h̄�)2

{
h̄� ∓ [h̄�g′(n + 1)]2

�3
R

± (g′2 − 2g2)(n + 1)2 − (h̄�)2(n + 1)

�R

}
, (14)

where �R =
√

(h̄�)2 + 4g2(n + 1) is the so-called Rabi fre-
quency of the quantum Rabi model. We can also obtain the
normalized eigenvectors of the effective Hamiltonian in the
combination of the basis chosen before:

|�n±〉 = 1√
1 + C2

n±
(Cn±|n,+〉 + |n + 1,−〉), (15)

where the coefficient up to the second order reads

C(0)
n± = h̄� ± �R

2g
√

n + 1
, (16)

C(1)
n± = 1

h̄�

g′2√n + 1

g

(
1 ± h̄�

�R

)
, (17)

C(2)
n± = 1

(h̄�)2

g′2√n + 1

2g

{
− h̄� ∓ (h̄�)2

�R

± 8g′2g2(n + 1)2

�3
R

}
, (18)
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FIG. 1. The quasienergy spectrum of the AiRM from numerical
method in the extended Floquet Hilbert space (red solid) and from the
effective Hamiltonian with odd parity (blue dashed) and even parity
(green dotted) in the first Brillouin zone up to the photon number
cutoff ncutoff = 3 as a function of g/h̄ω. The setup is � = 0.1ω and
g′ = 0.1h̄ω.

and the Floquet modes in the rotating frame which form an
orthonormal basis at time t can be written as

|φ0〉 = e−iK̂eff (t )|�0〉, (19)

|φn±〉 = e−iK̂eff (t )|�n±〉. (20)

We can easily check that in the case g′ = 0 the effective
model reduces to the JC model. The quasienergy is left with
the zeroth-order term and the system is characterized by the
energy scale �R and the driving frequency �. This gives
exactly the JC energy eigenvalues when rotating back to the
laboratory frame. The kick operator K̂eff (t ) becomes zero and
the Floquet modes become time independent and reduce to the
eigenstates of the JC Hamiltonian.

For the case that the CRTs’ coupling strength g′ is nonzero,
we compare the quasienergy spectrum result from the ef-
fective Hamiltonian with that numerically calculated in the
extended Floquet Hilbert space (see Appendix B for the de-
tailed numerical scheme). The Floquet theory [40] dictates
that the solution of the Schrödinger equation with a time
periodical Hamiltonian reads


n(t ) = e−iEnt/h̄φn(t ), (21)

where En is the quasienergy and φn(t ) is the Floquet
mode. Multiplying the Floquet mode by a phase fac-
tor exp(im�t ) yields the identical Floquet state but with
the shifted quasienergy En + mh̄� with m an integer.
Hence the quasienergy can be mapped into the first Brillouin
zone [−h̄�/2, h̄�/2] which is similar to the first Brillouin
zone in the spatial lattice model, as the spectrum is invariant if
translated by an integer multiple of h̄�. The results are shown
in Fig. 1, which illustrates the first few quasienergy levels En±
with even and odd parities, i.e., the total excitation number, re-
spectively. We fixed the CRTs’ coupling strength g′ = 0.1h̄ω,
and Fig. 1 shows that the effective model fits the numerical re-
sult pretty well even when the rotating-wave coupling is in the
deep strong-coupling regime g � h̄ω. The coupling strength
tends to separate the eigenenergies of the system into upper

and lower branches and level crossing occurs for different
parities, and avoided level crossing may occur for quasienergy
with the same parity as shown below. The high-frequency
expansion results, on the other hand, fail to predict the this
avoided level crossing. This can be understood as follows.
As we know, the conservation of total excitation number
in the JC model leads to the level crossing of states with
the same parity; the inclusion of the counter-rotating terms
in the Rabi model, either anisotropic or isotropic, however,
explicitly breaks this conservation and correspondingly the
level crossing of the same parity subspace cannot happen. The
effective Hamiltonian employed in the Floquet calculation
conserves the total excitation number N̂ and the nonconserv-
ing terms are carried by the kick operator K̂ . Consequently,
within a given parity subspace level crossings occur in the en-
ergy spectrum as derived from the analytical results, whereas
these level crossings are not present in the numerical results
due to the existence of the counter-rotating terms. Explicitly
the avoiding occurs at point A when the positive branch for the
total excitation number N = 2 meets the negative branch for
N = 4, both of which are even parity. A similar phenomenon
can be observed at point B for odd parity. If we increase the
photon number cutoff, more and more avoided level crossings
emerge when the positive branch spectrum lines for N cross
the negative branch lines for N + 2 with the same parity. One
special case is shown at point C, where the level for zero
excitation number E0 meets the even parity level for N = 2.
On the other hand, if we fix the RWTs’ coupling strength
g = 0.1h̄ω and vary the CRTs’ g′, the effective model coin-
cides with the numerical results well only below the regime
g′ � 0.3h̄ω and the effective model loses its accuracy quickly
for sequentially increasing g′. In addition, we see that the
detuning opens a gap δE = h̄�, defined as the difference of
upper branch and lower branch levels when g approaches zero,
i.e., δE = limg→0(En+ − En−), which would be filled for large
enough photon number or very strong coupling.

C. Population dynamics

We now turn to the study of the population dynamics of
the system; in particular, we examine the dynamics with the
atom initially prepared in the excited state and the field in the
coherent state, which can be expressed as

|
i〉 = |α〉 ⊗ |+〉 = e− |α|2
2

∞∑
n=0

αn

√
n!

|n〉 ⊗ |+〉 (22)

where α is a complex parameter related to the amplitude
of the coherent state. According to the Floquet theory, the
time evolution of this initial state in the laboratory frame is
governed by the following time-evolution operator:

Û (t, 0) = V̂ (t )e−iK̂eff (t )e− i
h̄ Ĥeff t eiK̂eff (0)V̂ †(0). (23)

An important physical quantity is the atomic inversion, which
describes the population probability difference between the
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FIG. 2. The time evolution of the atomic inversion in AiRM by
analytical method (blue) and numerical method (red) with detuning
� = 0.1ω, the amplitude of the coherent state α = 3, the fixed ratio
between RWTs and CRTs g′/g = 0.5, and the cutoff photon number
ncutoff = 20. The time scale is T = 2π/�. (a) g = 0.05h̄ω. (b) g =
0.1h̄ω. (c) g = 0.15h̄ω. (d) g = 0.2h̄ω. (e) g = 0.25h̄ω.

|+〉 and |−〉 of the atom:

W (t ) = 〈
(t )|σ̂z|
(t )〉. (24)

Both numerical and analytical results of the time evolution
of the atomic inversion are shown in Fig. 2. For clarity we
plot the population dynamics for fixed RWT and CRT ratio
g′/g = 0.5 and a detuning � = 0.1ω. Due to the fact that the
mean photon number in the coherent state amounts to |α|2,
for a state with α = 3 we increase our cutoff photon number
to 20 to ensure the calculation accuracy. The dynamics from
the effective model highly coincides with the numerical result
when the CRTs cannot be neglected. The oscillation of the
atomic inversion shows the behavior of collapse rapidly and
then revival as time goes long enough. We see that with the
increasing coupling strength g, henceforth g′, the mean atomic
inversion, about which the revival signal oscillates, gradually
decreases from a value in the weak-coupling case, which is de-
termined by the detuning �, to zero, due to the involvement of
RWTs and CRTs in the population probability. The collapse-
revival period is shorter and shorter for increasing g and the
high-frequency expansion describes the dynamics precisely
even when the coupling strength grows above 0.2h̄ω.

III. ASYMMETRIC RABI MODEL

A. Formalism and high-frequency expansion

Another model we choose to illustrate the power of
high-frequency expansion is the AsRM [61,62] with the
Hamiltonian written as

ĤAsRM = 1
2 h̄ω0σ̂z + εσ̂x + h̄ωâ†â + g(â† + â)(σ̂+ + σ̂−),

(25)

where a bias external field ε is applied along the x axis, which
sometimes is regarded as the intrinsic transition strength of
the atom [60], whereas other parameters are kept the same as

in the anisotropic Rabi model in the previous section. Here
the atom-field coupling is chosen as the Rabi type with equal
coupling strength of RWTs and CRTs. This ε term also breaks
the Z2 symmetry of the quantum Rabi model but provides a
more realistic description of the circuit QED experiments em-
ploying flux qubits than the Rabi model itself [4]. After similar
steps we applied earlier, the Hamiltonian in the rotating frame
reads

Ĥ rot
AsRM(t ) = h̄�

2
σ̂z + g(â†σ̂− + âσ̂+)

+ ε(eiωt σ̂+ + e−iωt σ̂−)

+ g(ei2ωt â†σ̂+ + e−i2ωt âσ̂−). (26)

Clearly there exist two driving terms with frequencies ω

and 2ω and we choose the driving frequency as � = ω. The
first few terms of the effective Hamiltonian Ĥeff are calculated
as

H (0)
eff = 1

2
h̄�σ̂z + g(â†σ̂− + âσ̂+), (27)

H (1)
eff = 1

h̄�

[
ε2σ̂z + g2

2
(â†âσ̂z − σ̂−σ̂+)

]
, (28)

H (2)
eff = − 1

(h̄�)2

{
h̄�ε2σ̂z + 2gε2(â†σ̂− + H.c.)

+ 1

4
[h̄�g2(â†âσ̂z − σ̂−σ̂+) + g3(â†ââ†σ̂− + H.c.)]

}
(29)

with the corresponding kick operator K̂eff (t ):

K (1)
eff (t ) = 1

2ih̄�
(2εσ̂+ei�t + gâ†σ̂+ei2�t − H.c.), (30)

K (2)
eff (t ) = 1

4i(h̄�)2
[ε(7gâ†σ̂z − 4h̄�σ+)ei�t

+ g(ga†2σz − h̄�â†σ+)ei2�t − H.c.]. (31)

As we can see, the zeroth-order effective Hamiltonian (27)
takes the same JC form as in the anisotropic Rabi model and
again plays a major role in the effective Hamiltonian. The
bias ε will have a direct bearing on the effective Hamilto-
nian by means of the quasilevel difference as it induces an
additional σz term, and together with the coupling parameter g
the driving terms contribute to the atom-field interaction up to
(l + 1)-photon process for the lth-order correction. The kick
operators responsible for the dynamics are classified into two
terms with a two-frequency driving with frequencies � and
2�, controlled jointly by the bias ε and coupling parameter g.

B. Quasienergy and eigenstates

The diagonalization of the effective Hamiltonian in the
basis |1〉 = |n,+〉 and |2〉 = |n + 1,−〉 gives the quasienergy
spectrum. The sole state with zero excitation number |�0〉 =
|0,−〉 is the same as in the AiRM model with quasienergy

E0 = − h̄�

2
− ε2 + g2/2

h̄�
+ h̄�(ε2 + g2/4)

(h̄�)2
, (32)
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while the expansions of the quasienergy for those with
nonzero total excitation number are

E (0)
n± = ±�R

2
, (33)

E (1)
n± = 1

2h̄�

{
− g2 ± h̄��2

ε

�R

}
, (34)

and

E (2)
n± = 1

(2h̄�)2

{
h̄�g2 ± �4

ε − 8�2
εg2(n + 1) + 6g4(n + 1)2 − (h̄�)2

[
2�2

ε + �2
ε/�

2
R − g2(n + 1)

]
�R

}
, (35)

where we have defined a bias-related frequency �ε =√
2ε2 + g2(n + 1) in a similar way as the Rabi frequency �R.

And the corresponding eigenvectors take the same form as in
the anisotropic Rabi model in Eq. (15), with the coefficients
given by

C(0)
n± = h̄� ± �R

2g
√

n + 1
, (36)

C(1)
n± = 1

h̄�

1

g
√

n + 1

(
ε2 + g2(n + 1)

2
± h̄��2

ε

2�R

)
, (37)

C(2)
n± = g

√
n + 1

(h̄�)2

{
− h̄�

8
∓ (h̄�)2

8�R
± �4

ε

�3
R

}
. (38)

The numerical result of the quasienergy spectrum and that
from the effective model are shown in Fig. 3. Here the photon
number cutoff is taken as ncutoff = 10 in order to assure the ac-
curacy of the levels for n = 0, 1, 2, 3 for a comparison of the
matrix diagonalization result in the extended Floquet Hilbert
space and the high-frequency expansion result for even and

0 0.1 0.2 0.3 0.4 0.5
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.25 0.5
0

0.3

0.6

FIG. 3. The quasienergy spectrum for n = 0, 1, 2, 3 of the AsRM
from numerical method in the extended Floquet Hilbert space (red
solid) and from the effective Hamiltonian with odd parity (blue
dashed) and even parity (green dotted) in the first Brillouin zone
calculated up to the photon number cutoff ncutoff = 10 as a function of
g/h̄ω. The setup is � = 0.1ω and the coupling strength g = 0.1h̄ω.
Inset: The numerical (red solid) and analytical (black dashed) results
of the gap δE dependence on the bias field ε at the limit g → 0.

odd parities, respectively. We again present the spectrum in
the first Brillouin zone, [−h̄�/2, h̄�/2]. To see more clearly
the role played by the bias field ε, both the detuning and the
coupling strength are fixed to a moderate value of 0.1h̄ω, and
similarly to the case of the AiRM the effective model provides
an efficient tool for the treatment of the quasienergy spectrum
in a rather wide parameter regime of the bias field up to 0.3h̄ω.
We see the bias field tends to cluster the upper and lower
branches En± into two bundles, although the concentration
point given by the effective model is earlier than the numerical
results. Avoided level crossing never happens here due to the
asymmetric structure of the AsRM model, as the bias breaks
the parity symmetry in the standard Rabi model.

As in the AiRM, the detuning opens a gap δE in the
quasienergy spectrum. What is different here is that in the case
of AsRM this gap is bias dependent. For concreteness, in the
inset of Fig. 3 we plot this gap as a function of the bias field
ε in the limit g → 0. Evidently the effective model already
captures the main feature of this gap. From the first few terms
of the effective Hamiltonian Eqs. (27) to (29) one can easily
see that the diagonal terms in the form of σz will determine
the gap dependence on the bias as

δE = h̄� + 2(h̄� − h̄�)

(
ε

h̄�

)2

. (39)

This quadratic dependence fits the numerical result for a bias
field ε up to 0.4h̄ω. Note here the high-frequency expansion
requires a more strict condition for the atom-field coupling
g � 0.1h̄ω, to make sure that the driven frequency � does
dominate the energy scale because the driven frequency here
is half of that in AiRM. But for low energy, such as when the
photon number n is zero, the effective model fits well even in
the deep strong-coupling regime as we mentioned before.

C. Driving dynamics and the Fourier spectrum

The physical observables, such as the atomic inversion
W (t ) introduced in last section, evolve with time and we are
interested in the driving dynamics and the steady oscillation
properties for long enough driving time. For the AsRM, it
is of interest to consider the magnetization M(t ) induced by
the transverse bias field ε, and the atom-field correlation G(t )
mediated by the coupling parameter g. The initial state (22)
is chosen the same as that in the previous model and the
definitions of the latter two physical observables are given by

M(t ) = 〈
(t )|σ̂x|
(t )〉, (40)

G(t ) = 〈
(t )|(â† + â)σ̂x|
(t )〉. (41)
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FIG. 4. The long-time evolution of some physical observables by
analytical method (blue) and numerical method (red) in the same
panel with the setup that coupling strength g = 0.1h̄ω, detuning
� = 0.1ω, and the bias strength ε = 0.1h̄ω. Shown in the panels are
the expectation value of (a) the atomic inversion, (b) the transverse
magnetization, and (c) the atom-field correlation.

As we can see in Fig. 4, for a short time the evolution of all
these observables exhibits a collapse and revival phenomenon
which takes the form of wave packets. The amplitude of the
wave packet decreases and the oscillation tends to be stable as
time goes by so that the wave packet cannot be observed any
more. With suitable choice of the system parameters, the an-
alytical method is sufficiently accurate to describe the system
evolution by comparing with the numerical results. To further
understand the nature of this oscillation, we apply Fourier
spectrum analysis to extract the frequency in the oscillation
of these three observables. The Fourier transform is the fun-
damental technique of Fourier analysis, and it decomposes the
original data into their frequency components, which is often
referred to as the frequency spectrum. The Fourier transform
is represented as

F̄ (ν) =
∫ +∞

0
dtF (t )e−i2πνt , (42)

where F̄ (ν) is the output spectrum that is a function of fre-
quency ν and F (t ) is the input datum that is a function of
time t . The driving dynamics of three observables are similar
and we take the atomic inversion W (t ) as an example. The
frequency spectrum of atomic inversion shows the feature
of two-frequency driving behavior in Fig. 5, i.e., both the
analytical and numerical results indicate that the fundamen-
tal frequency is located at � and the second harmonics is
located at 2� as expected. A relatively large external bias
field ε = 0.3h̄ω is to enhance the peak value at the funda-
mental frequency as the bias dominates the oscillation e±iωt

in the rotating frame Hamiltonian (26). The involvement of
many-photon Fock states in the coherent state leads to the
broadening of the spectral functions at both the fundamental
frequency and the second harmonics, as well as the com-
plicated oscillation around the inevitable frequency mixing

0 0.5 1.0 1.5 2.0 2.5
0

0.05

0.10

0.15

0.20

0.25
numerical
analytical

FIG. 5. The Fourier frequency spectrum analysis of the time
evolution of the atomic inversion, where we choose the parameters
g = 0.1h̄ω, ε = 0.3h̄ω, and � = 0.1ω.

at 0.5, 1.5, and 2.5�. Double and triple revival sequences
for the two- and three-qubit systems have been found in the
probability of finding all qubits in the initial |+〉 state as a
consequence of having two or three Rabi frequencies [63,64].
However, the second harmonics here originates from a rather
different mechanics as the effective Hamiltonian for AsRM is
basically a two-frequency driving system.

The other observation is that for long enough time the
system is driven into a steady state. It is of interest how the
bias field could control the system and what time-averaged
value of the observables would be reached. We define the
time-averaged values of atomic inversion W0, transverse mag-
netization M0, and atom-field correlation G0 as the average
over the 150 driving periods, and show their dependence
on the varying ε. Figure 6 shows the numerical and high-
frequency expansion results for a small coupling parameter
g, to focus on the controllability of the bias field. The
time-averaged value of atomic inversion W0 experiences a
competition between detuning � and the coupling strength g.
The effect of detuning is equivalent to hindering the atomic
inversion, while the effect of g is to induce transition between
upper and lower energy levels. When g and ε are both small,
they fight against detuning together, making the population
begin to reverse. When ε increases to a certain extent, it will
start to compete with g. Thus we see a regime where W0 is
nonetheless slightly increased. The atom will start to reverse
again until the effect of g is completely eliminated and ε takes
the dominant role. On the other hand, the time-averaged value
of the transverse magnetization M0 increases with applied
bias field linearly as expected, whereas the bias field serves
to destroy the correlation between atom and field. In other
parameter regimes the competition between three parameters
g, ε, and � remains, even leading to negative atom-field cor-
relation, which is not shown in Fig. 6. The effective model
proves to be very accurate until ε ≈ 0.2h̄ω and thus provides
a powerful tool in estimating the dynamics and the time-
averaged values of these observables.
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FIG. 6. The time-averaged value of atomic inversion W0, trans-
verse magnetization M0, and atom-field correlation G0 over the 150
driving periods as a function of bias field ε for g = 0.01h̄ω and
� = 0.1ω.

Finally we discuss the regime of validity of our high-
frequency expansion scheme used in this paper. First of all, the
high-frequency expansion requires the driving frequency � to
be large for both AiRM and AsRM. Secondly, for a fixed RWT
coupling g = 0.1h̄ω the effective AiRM model works reason-
ably well in a range of detuning −1 < �/ω < 2, i.e., either
blue � < 0 or red detuning � > 0, provided that the CRT
or the bias is below 0.3h̄ω. For fixed CRTs coupling strength
g′ = 0.1h̄ω the effective AiRM model fits the numerical result
surprisingly well even for the RWT coupling g ≈ 1.5h̄ω in the
whole range of detuning. This is due to the fact that the g′ term
is a driving term while the g term is not—the relatively larger
g only gives a boost to the zeroth-order effective Hamiltonian
in (4). The valid regime for g′ = 0.1h̄ω is thus a rectangle
in the � − g plane, i.e., −1 < �/ω < 2, 0 < g < 1.5h̄ω, as
shown in Fig. 8 in Ref. [65]. If we increase the driving term
g′, the top left corner will first become invalid and for a strong
enough driving term g′ = 0.25h̄ω the method is inaccurate
also in a small area near the resonance even for small g.
Further increase of g′ will totally invalidate the high-frequency
expansion. From the viewpoint of dynamics, it is clear that
close to resonance the analytical results match the numerics
for fixed g′/g = 0.5 provided that g′ is below 0.125h̄ω. For
fixed g = h̄ω, we also find a good match for g′ up to 0.125h̄ω.
For AsRM, we fixed the couplings in the ultrastrong regime,
i.e., g = 0.1h̄ω, and a small detuning � = 0.1ω, and find the
high-frequency expansion is valid for a relative large bias
ε = 0.3h̄ω.

It is also necessary to compare our results with other an-
alytical methods presented in the literature. The generalized
rotating-wave approximation (GRWA) [34] and the Van Vleck
perturbation (VVP) theory [65,66] are both valid in the case
of large blue detuning, −1 < �/ω < −0.4, from the weak
to the deep strong coupling 0 < g < 1.5h̄ω. The GRWA is
preferable to VVP at weak coupling, in particular close to
resonance and red detuning. In contrast, VVP works better

at strong-coupling strengths. High-frequency expansion per-
fectly fills in the blank left by these two methods on the
right part of the red detuning regime, for an ultrastrong CRT
coupling parameter up to g′ = 0.25h̄ω.

IV. CONCLUSION

In conclusion, we transformed two extended Rabi mod-
els, i.e., the AiRM and AsRM, into the rotating frame, and
regard them as the periodically driven models. By applying
the Floquet theory and the high-frequency expansion, we ob-
tained the effective model Hamiltonian and the quasienergy
spectrum both analytically and numerically. For AiRM, the
effective model agrees pretty well with the numerical di-
agonalization in the extended Floquet Hilbert space for g
up to 2h̄ω for a CRT coupling in the ultrastrong-coupling
regime g′ = 0.1h̄ω. The effective model fails to predict that
the avoided level crossing occurred in the same parity due
to its conservation of total excitation number. The population
dynamics governed by the effective model, however, is accu-
rate enough for a fixed ratio of the RWTs and CRT coupling
strength g′/g = 0.5. For AsRM, the quasienergy spectrum
is found to be clustered into two bundles by the bias field,
which breaks the parity symmetry in the Rabi model. In both
cases, the detuning opens a gap in the quasienergy spectrum
illustrated in the first temporal Brillouin zone, which is exactly
the detuning energy in the AiRM and depends quadratically
on the bias field in the AsRM. The driving dynamics of sev-
eral observables are studied by means of the Fourier analysis
and the two-frequency driving nature is manifested in the
frequency spectrum. The time-averaged value of this oscilla-
tion may be controlled by the bias field, while a competition
with detuning and atom-field coupling is expected to provide
more versatile means to manipulate the driving dynamics.
The Floquet method in the extended Rabi models provides
an alternative tool in the study of interaction between atom
and light and is readily applied to more sophisticated models
where more qubits, more cavity modes, or many-body inter-
action are involved.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN

The formula for high-frequency expansion of the effective
Hamiltonian up to the second order can be written as [39,41]

Ĥ (0)
eff = H0, (A1)

Ĥ (1)
eff = 1

h̄�

∞∑
l=1

[Hl , H−l ]

l
, (A2)
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Ĥ (2)
eff = 1

(h̄�)2

∑
l �=0

(
[[Hl , H0], H−l ]

2l2

+
∑

l ′ �=0,−l

[[Hl , Hl ′ ], H−(l+l ′ )]

3l (l + l ′)

)
. (A3)

For K̂ (n)
eff (t ) up to order 1

�2 , we can get

K̂ (1)
eff (t ) = 1

ih̄�

∑
l �=0

Hleil�t

l
, (A4)

K̂ (2)
eff (t ) = 1

i(h̄�)2

∑
l �=0

[Hl , H0]eil�t

l2

+ 1

2i(h̄�)2

∑
l �=0

∑
l ′ �=0,−l

[Hl , Hl ′ ]ei(l+l ′ )�t

l (l + l ′)
, (A5)

where Hl is the Fourier expansion coefficients of lth order:

Hl = 1

T

∫ T

0
Ĥ (t )e−l�t dt . (A6)

For the anisotropic Rabi model (3), we have

H0 = 1
2 h̄�σ̂z + g(â†σ̂− + âσ̂+), (A7)

H−1 = g′âσ̂−, (A8)

H1 = g′â†σ̂+, (A9)

while for the asymmetric Rabi model (26) we can get

H0 = 1
2 h̄�σ̂z + g(â†σ̂− + âσ̂+), (A10)

H−1 = εσ−, H1 = εσ+, (A11)

H−2 = gâσ−, H2 = gâ†σ+. (A12)

By plugging them into the formula above, we can get the
effective Hamiltonian and effective kick operators for each
model.

APPENDIX B: NUMERICAL METHOD FOR THE
QUASIENERGY SPECTRUM

The numerical procedure is based on the block diagonal-
ization of the quasienergy operator in the extended Floquet
Hilbert space by means of degenerate perturbation theory
in Ref. [40]. Let us consider an extended Floquet Hilbert
space F , which is given by the direct product of the state
space Ĥ and the space of square-integrable T -periodically
time-dependent function LT . In this case, a complete set of or-
thonormal basis states |αm(t )〉〉 of space F can be constructed
by combining a complete set of orthonormal basis states
of Ĥ , |α〉 = |n,±〉, with the complete set of time-periodic
functions eim�t labeled by the integer m. In matrix form, we
can get

|αm(t )〉〉 = |n,±〉eim�t . (B1)

Using the definition of the scalar product in the extended
Floquet Hilbert space, we can get the matrix elements Fα′α

m′m =
〈〈α′m′|F̂ |αm〉〉 of the Floquet operator F̂ = Ĥ rot (t ) − ih̄ ∂

∂t
with respect to the basis |αm〉〉:

Fα′α
m′m = 1

T

∫ T

0
dt e−im′�t 〈α′|Ĥ rot (t ) − ih̄

∂

∂t
|α〉eim�t

= 〈α′|Hm′−m|α〉 + δm′mδα′αmh̄�, (B2)

where the

Hm′−m = 1

T

∫ T

0
dte−i(m′−m)�t Ĥ rot (t ) (B3)

quasienergy is the eigenvalue of this infinite matrix.

1. Anisotropic Rabi model

For the anisotropic Rabi model, the Floquet operator ma-
trix can be expressed as⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
. . .

· · · H0 − h̄� H−1 0 0 · · ·
· · · H1 H0 H−1 0 · · ·
· · · 0 H1 H0 + h̄� H−1 · · ·
· · · 0 0 H1 H0 + 2h̄� · · ·
. . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(B4)

where

Hm′−m =
⎧⎨
⎩

g′âσ̂−, m′ − m = −1
1
2 h̄�σ̂z + g(â†σ̂− + âσ̂+), m′ − m = 0
g′â†σ̂+, m′ − m = 1.

(B5)

This infinite matrix cannot be solved analytically, so we have
to cut off the m index and the photon number n and diagonal-
ize the matrix numerically. The maxima of these two numbers
are mmax = 10 and nmax = 4.

2. Asymmetric Rabi model

For the asymmetric Rabi model, the Floquet operator ma-
trix can be expressed as⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

...
. . .

· · · H0 − h̄� H−1 H−2 0 · · ·
· · · H1 H0 H−1 H−2 · · ·
· · · H2 H1 H0 + h̄� H−1 · · ·
· · · 0 H2 H1 H0 + 2h̄� · · ·
. . .

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(B6)

where

Hm′−m =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

gâσ̂−, m′ − m = −2
εσ̂−, m′ − m = −1
1
2 h̄�σ̂z + g(â†σ̂− + âσ̂+), m′ − m = 0
εσ̂+, m′ − m = 1
gâ†σ̂+, m′ − m = 2.

(B7)

The cutoff condition we choose is the same as in the
anisotropic Rabi model.
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