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Generating long-lived entangled states with free-space collective spontaneous emission
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Considering the paradigmatic case of a cloud of two-level atoms interacting through common vacuum modes,
we show how cooperative spontaneous emission, which is at the origin of superradiance, leads the system to
long-lived entangled states at late times. These subradiant modes are characterized by an entanglement between
all particles, independently of their geometrical configuration. While there is no threshold on the interaction
strength necessary to entangle all particles, stronger interactions lead to longer-lived entanglement.
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I. INTRODUCTION

Entangled states, apart from their interest for fundamen-
tal physics [1], are now turning into crucial resources for
quantum information science, in particular for secure quantum
communication [2] and quantum metrology [3]. Once created,
these states suffer from decoherence, due to their inevitable
coupling to the environment. This can be circumvented by
different strategies, such as resorting to decoherence-free
subspaces [4,5], the quantum Zeno effect [6,7], weak mea-
surements [8], or well-positioned emitters in optical cavities
[9]. Alternatively, it has been proposed to engineer locally the
decoherence to reach a target entangled state [10–12]. Yet, the
required control of each decay channel makes it an unpractical
and nonscalable solution.

Differently, we here show that collective spontaneous
emission, which arises from dipole-dipole interactions, nat-
urally leads to the formation of long-lived entangled states.
These interactions present the peculiarity of being composed
of both a coherent and a dissipative part [13], often referred
to as virtual and real photons, respectively. The hallmark of
collective spontaneous emission is superradiance [14], which
was initially studied in the context of a cascade, as the system
decays from a fully excited toward its ground state, passing
through a series of symmetric entangled states [15]. Note that
the entangled nature of the visited states was later questioned,
since semiclassical approaches exhibit very similar features
[16,17].

Dipole-dipole interactions have attracted renewed attention
over the past years, with a large focus on “single-excitation”
collective processes. In this weak-driving regime, super-
and subradiance were reexamined [18–21], and the su-
perflash [22] and collective steady-state shifts were also
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observed [19,23–32]. These studies were restricted to the
single-excitation states, which allows us to explore a reduced
portion of the Hilbert space (of size N + 1 instead of 2N ,
for N two-level emitters). Adopting this description gives
a quantum flavor to the phenomena, yet the underlying set
of dynamical equations can equally be derived from fully
classical principles, describing the atomic dipoles as classical
oscillators [33,34]. As it has been the case for superradiance
[35], whether entangled subradiant states can be generated
dynamically remains an open question. Indeed, only the use
of a single-photon source (and thus quantum light) can guar-
antee an at-most-single-excitation state [36], or the presence
of specific mechanisms such as excitation blockade [37,38]
or multiple decay channels for each emitter [39]. Collective
effects were shown to challenge the notion of “weak drive,”
since the narrow-linewidth collective modes (that is, the sub-
radiant modes) present a nonlinear reaction to the drive even
at very low saturation parameters [40,41], yet the generation
of long-lived entanglement through such nonlinear effects has
not been demonstrated yet.

In this paper, we show how at-most-single-excitation states
can be created out of a statistical mixture by collective spon-
taneous emission, without resorting to strong energy shifts to
address specific modes with an appropriate drive frequency
(such as for blockadelike mechanisms) or to single-photon
pulses with specific phase patterns. The longest-lived modes
are single-excitation ones, which make them hold most of the
excited population; indeed, highly excited modes decay faster
than the single-excited states and this process, interestingly,
includes decay channels into long-lived single-excitation sub-
radiant states.

These long-lived modes are characterized by a finite con-
currence, which can survive over timescales hundreds of times
larger than the single-atom excited-state lifetime (see Fig. 1).
We first investigate linear regular chains, before showing that
three-dimensional disordered clouds present the same fea-
tures. Remarkably, all atoms always get entangled altogether,
even for vanishing interactions, although stronger interactions
guarantee that the associated concurrence survives longer.
These entangled states leave a direct signature in the radiated

2469-9926/2022/105(5)/053715(6) 053715-1 ©2022 American Physical Society

https://orcid.org/0000-0002-6989-7958
https://orcid.org/0000-0003-0007-2330
https://orcid.org/0000-0001-5194-3680
https://orcid.org/0000-0002-6026-509X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.053715&domain=pdf&date_stamp=2022-05-20
https://doi.org/10.1103/PhysRevA.105.053715


ALAN C. SANTOS et al. PHYSICAL REVIEW A 105, 053715 (2022)

FIG. 1. Propagation of the entanglement in a chain of N = 5
atoms, starting from a statistical mixture [see Eq. (3)], and evolving
to an all-to-all entangled state. Simulations realized for a lattice step
kd = π/2, with polarization of the atoms perpendicular to the atomic
chain. The color bar is rescaled at each time [with max(Ci j ) = 0,
0.03, 0.08, and 0.007 from earlier to later times].

light, whose equal-time second-order optical coherence van-
ishes at longer times. Our work paves the way toward the
preparation of dissipatively induced globally entangled states,
even in large atomic systems.

II. COLLECTIVE SPONTANEOUS EMISSION

Let us consider an ensemble of N two-level atoms, at posi-
tions r j , with a transition between their ground and excited
states |g〉 and |e〉 characterized by its transition frequency
ωa = kc = 2πc/λ, linewidth �, and rising (lowering) opera-
tors σ̂+

j (σ̂−
j ). The dipole dynamics is obtained from a master

equation ˙̂ρ = −i[Ĥ , ρ̂] + L(ρ̂ ), with a coherent (Hamilto-
nian) contribution [13,42,43],

Ĥ = −�
∑

j

σ̂+
j σ̂−

j + 1

2

∑
j

(	eik·r j σ̂+
j + H.c.)

+
∑
j,m �= j

� jmσ̂+
j σ̂−

m , (1)

written in the rotating frame of the pump driving frequency,
and a dissipative (Lindbladian) component

L(ρ̂ ) = 1

2

∑
j,m

� jm(2σ̂−
j ρ̂σ̂+

m − {σ̂+
m σ̂−

j , ρ̂}). (2)

We assume pointlike dipoles, whose associated Green’s
tensor is given by G jm ≡ G(r jm) = 3�

4
eikr jm

(kr jm )3 [(k2r2
jm +

ikr jm − 1)13 − (k2r2
jm + i3kr jm − 3)

r jmrT
jm

r2
jm

] for j �= m,

where r jm ≡ r j − rm, and G j j = i �
2 13 for the single-

atom term. Thus the incoherent coupling term is
� jm ≡ ε̂∗

j · 2 Im{G jm} · ε̂m, while the excitation-exchange
term is � jm ≡ −ε̂∗

j · Re{G jm} · ε̂m, with ε̂ j the polarization
of the jth dipole, here chosen as ε̂ j = ẑ. These coupling
terms stem from the interaction of the dipoles through
common radiation modes, and they are at the origin of the
superradiant/subradiant decay and collective energy shifts.
The purpose of the classically treated monochromatic plane
wave in Eq. (1), with Rabi frequency 	eik·r and detuned from
the atomic transition by �, is only to prepare the system, and
it is turned off at t = 0 to study the decay dynamics.

FIG. 2. (a) Energy levels for a pair of atoms, with the super-
radiant (subradiant) decay denoted by a thick (thin) arrow. (b),
(c) Density matrix of the system at the initial time [(b) �t = 0], when
the system is in the statistical mixture ρ̂mix, and at a late time [(c)
�t = 10], when the system decayed toward an entangled state of the
form ρ̂ ≈ (1 − ε) |gg〉 〈gg| + ε |−〉 〈−|. Atom distance of d = 0.1/k;
energy shifts are not represented, since they do not play a role in the
decay process.

III. TWO-ATOM CASE

Let us first discuss the case of a pair of close atoms
(N = 2), since it offers an intuitive picture of how a long-lived
entangled state can be generated by collective spontaneous
decay [44], even when starting from a statistical mixture.
In Fig. 2(a) we illustrate the different states composing the
Hilbert space, with their decay rate. The excited states are
the fully excited one |ee〉, which decays at rate 2�, and the
symmetric and antisymmetric single-excitation states, |±〉 =
(|eg〉 ± |ge〉)/

√
2, which decay at rate �± toward the ground

state |gg〉. For two strongly interacting atoms (r12 
 λ), �+ ≈
2� and �− 
 �. Consequently, when the drive is switched
off, the population of states |ee〉 and |+〉 decays to zero on
a timescale 1/�, whereas the (single-excitation) antisymmet-
ric state holds its population over times 1/�− � 1/�. The
latter time can be arbitrarily large, as the two atoms are
approximated and assuming there is no additional source of
decoherence.

Let us first consider a statistical mixture, such as created by
a strong drive, as the initial state, since it has been shown to
be an efficient scheme to populate efficiently long-lived states
[41],

ρ̂mix =
N⊗

j=1

( |g j〉 〈g j | + |e j〉 〈e j |
2

)
. (3)

For N = 2 atoms, the antisymmetric (subradiant) mode |−〉
then holds one-fourth of the population, just as the other
states. According to the previous reasoning, a few units of
1/� after the pump is switched off, the system is found in an
entangled state: ρ̂a ≈ 3

4 |gg〉 〈gg| + 1
4 |ψ−〉 〈ψ−|. This is illus-

trated in Fig. 2(c), where the density matrix of the system is
presented at �t = 10 after switch-off. We hereafter quantify
the entanglement using the concurrence as proposed by Hill
and Wootters [45,46]. It is defined as C(ρ̂) ≡ max{0, λ1 −
λ2 − λ3 − λ4}, with λn the eigenvalues of the matrix R̂=
(ρ̂1/2 ˆ̃ρρ̂1/2)1/2 in decreasing order (λn � λn+1); we have here
introduced ˆ̃ρ ≡ (σ̂y ⊗ σ̂y)ρ̂∗(σ̂y ⊗ σ̂y), with ρ̂∗ the complex

053715-2



GENERATING LONG-LIVED ENTANGLED STATES WITH … PHYSICAL REVIEW A 105, 053715 (2022)

conjugate of ρ̂ taken in the atomic basis {|g〉 , |e〉}. The con-
currence for the state ρ̂a is C(ρ̂a) ≈ 0.25 at a time �t = 10.

IV. MANY-ATOM CASE

Moving to the many-atom case, one faces the usual chal-
lenge of the exponential growth of the Hilbert space with
N , which is aggravated by the fact that the collective spon-
taneous emission is described by a density matrix and its
associated Lindblad superoperator L [47]. The presence of
multiply excited subradiant states may actually prevent the
system to reach an entangled state, as the superposition of
Dicke (entangled) states is not necessarily entangled. Never-
theless, the longest-lived modes are actually encountered in
the single-excitation manifold [41,48], with the lifetime of
the longest-lived n-excitation state scaling as (n/N )−3. Inter-
estingly, this scaling actually guarantees that the population
from doubly and higher-excited states decays much faster than
that of the longest-lived single-excitation one, so the system is
bound to decay toward a mixture between ground and single-
excitation states.

Beyond this qualitative argument, the variety of states and
decay channels between them calls for a numerical approach,
which we conduct using exact simulations [49,50], at first for
a linear regular chain of N emitters with step d . The system is
prepared in the statistical mixture ρ̂mix introduced in Eq. (3),
and the strong pump is again switched off at time t = 0.
We monitor the generation of entanglement by computing
the average pair entanglement Cavg = [

∑
j,m �= j C jm]/N (N −

1), based on the concurrence for pairs of atoms C jm = C(ρ̂ jm),
where ρ̂ jm is the reduced density matrix for the atoms j
and m.

The dynamics of the average concurrence is presented in
Fig. 3(a), where the peak value of the concurrence Cavg is
observed to scale roughly as 1/N . This scaling stems from the
concurrence of the Dicke states themselves. Indeed, calling
|ψ1e〉 = (1/

√
N )

∑
j eiφ j |g · · · e j · · · g〉 the single-excitation

Dicke state, one can show that a state of the form ρ̂ε =
(1 − ε) |g · · · g〉 〈g · · · g| + ε |ψ1e〉 〈ψ1e| has an average con-
currence 2ε/N , for any set of phases {φ j} [51]. Hence, the
observed value Cavg ≈ 0.2/N suggests that a fraction of ∼10%
of the system state decays toward the single-excitation most-
subradiant state, at a time when higher-excited states have a
negligible population.

This is confirmed by a closer analysis of the evolution of
the populations Pn of the n-excitation states:

Pn = Tr

[(∑
P

⊗n
j=1|e j〉〈e j | ⊗N

m=n+1 |gm〉〈gm|
)

ρ̂

]
. (4)

In Fig. 3(b), the concurrence Cavg reaches a late peak when
states with n � 2 excitations have depleted, and only the
single-excited and ground states remain populated. This peak
is associated with a value P1 ≈ 0.15, consistent with the above
hypothesis of the system being in a mixture between ground
and single-excitation Dicke state. We note that one may also
seek signatures of the long-lived states population in the trans-
mission of a weak pulse through the atomic sample, as it was
done for few-emitter systems [52,53].

un
its

 o
f

FIG. 3. (a) Average concurrence multiplied by N , as a function
of the time and for chains of different atom numbers (N = 2, 4, 7, 10)
and with spacing kd = π/2. (b) Dynamics of the n-excitation state
populations Pn (for n = 1, 2, 3 and N = 7 atoms), along with average
Cavg and minimum concurrence Cmin, as a function of time. The green
shaded area indicates the time interval where g(2)(t, t ) < 1. (c) Life-
time τ

(n)
sub = 1/�

(n)
sub of the longest-lived state with n excitations, for

n = 1, 2, and time τent at which the peak of Cmin is reached, as a
function of the atom number N . (d) Minimum concurrence Cmin for
different initial states: statistical mixture (3) (solid blue curve), fully
inverted (dotted orange curve), coherent ψcoh = ⊗

j (|gj〉 + |e j〉)/
√

2
(dashed gray curve), and weak-drive steady state for 	 = 0.1�

(dashed-dotted green curve).

Nevertheless, the average concurrence Cavg provides lim-
ited information, in the sense that it is nonzero already when
only a pair of atoms is entangled. A stronger measure is
the minimum concurrence Cmin = min( j,m)C jm, taken over all
pairs of atoms j and m, which is nonzero only if all pairs of
atoms are entangled with each other. This minimum concur-
rence departs from zero only at late times, when all multiply
excited states have negligible populations [see Fig. 3(b)].
Hence, a global entanglement between all atoms is reached
only at the latest time, after collective spontaneous emission
has driven the system toward a mixture between a collective
(Dicke) single-excitation state and the ground state.

The picture of the maximum of global entanglement being
reached after multiply excited states have died out is con-
firmed by comparing, for different atom numbers, the lifetime
of the longest-lived single- and double-excited states (τ (n)

sub
with n = 1, 2) with the time τent at which the peak of Cmin is
reached. As presented in Fig. 3(c), this global entanglement is
maximum at times when double-excited states have vanished,
yet single-excited states have not, that is, τ

(2)
sub < τent < τ

(1)
sub.

A remarkable point is that this global entanglement actually
never dies, provided there is no additional source of deco-
herence. Indeed, at late times the system is essentially in
the at-most-single-excitation state ρ̂ε introduced before, with
ε ∝ exp(−t/τ (1)

sub ), so the minimum concurrence decays expo-
nentially at the slow rate 1/τ

(1)
sub.

Entanglement is thus generated by cooperative decoher-
ence, starting from a statistical mixture where no correlations
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FIG. 4. (a) Illustration of the entanglement generated by collec-
tive spontaneous emission in a disordered cloud of N = 8 atoms, at a
time t = 232�−1 after starting the decay process from state (3) [with
max(Ci j ) ≈ 8 × 10−8]. (b) Number of entangled atoms (see text) as
a function of time. (c) Equal-time second-order coherence of the
radiated light, and (d) minimum concurrence Cmin, as a function of
time, and for clouds of N = 8 atoms and of different optical depths.
The shaded areas represent the fluctuations encountered over the ten
realizations, for a homogeneous-density cloud with radius such that
b0 = 2N/(kR)2 (kR ≈ 5.2, 3, 1.4, and 1.1 for the increasing values
of b0 presented).

between the particles are present. This raises the question
of the optimal state from which to start the decay process,
in order to achieve larger entanglement values. The case of
an initially fully inverted system, which was the configura-
tion initially proposed by Dicke to study the superradiant
cascade [14], is actually slightly less efficient at generating
an all-entangled state, as shown in Fig. 3(d). The product
state ψcoh = ⊗

j (|g j〉 + |e j〉)/
√

2, where each atom is in a
coherent state, leads to a much weaker entanglement, due to
the fact that, differently from the statistical mixture, it has
a very reduced projection on subradiant states (for N = 2
atoms, this projection is initially zero). Finally, a weak drive
(a resonant plane wave with Rabi frequency 	 = 0.1�) is
even less efficient at creating entanglement, due to the poor
coupling of subradiant states to plane waves in the weak-drive
regime. Hence, because the statistical mixture (3) is the most
efficient at populating the long-lived state by decoherence
[54], it also generates most efficiently a long-lived globally
entangled atomic state.

V. DISORDERED CLOUDS

Let us now discuss the case of disordered clouds which, de-
spite the absence of specific interference patterns, are known
to hold superradiance and subradiance, both arising from co-
operative spontaneous emission. As mentioned previously, the
large difference in lifetimes between long-lived single- and
double-excited states, illustrated in Fig. 3(c) for linear chains
[48], has also been reported for disordered samples [41]. This
leads to the generation of an all-entangled state at late times,
as before, although the distribution of pair concurrence no
longer exhibits a simple pattern [see Fig. 4(a)].

As for the linear chains (see Fig. 1), the entanglement by
pairs is created progressively, until it spreads over all the sys-
tem. In Fig. 4(b), we present the number of entangled atoms
Nent, or size of the entangled cluster, defined as the size of the
largest subset (or cluster) of particles in which all pairs are
entangled. One observes that independently of the resonant
optical thickness b0 = 2N/(kR)2 (R the cloud radius), which
is a measure of the cooperativity in disordered clouds [55],
the system decays to a collective state where all atoms are
entangled, that is, Nent = N at late times.

It may seem surprising that even for weak interactions
(small values of b0), all pairs of atoms develop entanglement.
The explanation can be found in the values of the minimum
concurrence associated with these late-time states: Weaker
interactions come with shorter timescales for the concurrence.
Indeed, since the creation of entanglement relies on the dif-
ference between the lifetimes of single- and double-excited
long-lived states, the fact that both tend to 1/� for vanishing
interactions implies that the time over which the entanglement
is substantial vanishes as well. This point is illustrated in
Fig. 4(d), where the increasing values of b0 are characterized
by larger timescales for observing a finite minimum concur-
rence. Note that we have used, for the disordered case, the
scalar model for dipole-dipole interactions. Indeed, the near-
field terms strongly affect the subradiant decay, a phenomenon
which can interpreted as van der Waals dephasing [54], and
it here leads to a reduction of the entanglement at higher
densities [51].

VI. SIGNATURE IN THE SCATTERED LIGHT

Interestingly, this creation of collective single-excitation
states leaves a direct signature in the light radiated by the
cloud. Let us introduce the equal-time second-order optical
coherence

g(2)(t, t ) ≡ 〈Ê−(t )Ê−(t )Ê+(t )Ê+(t )〉
〈Ê−(t )Ê+(t )〉2

, (5)

which reflects the capacity of the system to emit two photons
at a time t . Here, Ê† ∝ ∑

j e−ikn̂·r j σ−
j refers to the radiated

field in a direction n̂, in the far-field limit. For a state with
at most one excitation (that is, without a contribution from
multiply excited states), one has g(2) = 0. In Fig. 4(c), one
observes that the g(2)(t, t ) starts for t < 1/� slightly below 2,
as expected from a system composed of several independent
emitters [the system is initially in the statistical mixture given
in Eq. (3)]. Then it undergoes a burst (more visible for larger
values of b0), as the system decays superradiantly toward
lowly excited states. Finally, the g(2)(t, t ) goes below unity
at the same time as the minimal concurrence rises above zero,
that is, when the system can be considered in a superposi-
tion between the ground and single-excited collective state.
Thus, the below-unity g(2)(t, t ) is a signature of the at-most-
single-excitation nature of the state, whereas its long lifetime
reflects its collective (subradiant) nature. This is analogous
to the blockade mechanism, where the population-population
correlations witness the single-excitation nature of the state,
whereas the accelerated Rabi oscillations reveal its collective
nature [56]. Note that we have checked that the detection of
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at most one excitation in the state by the intensity-intensity
correlation function is, at late times, unaffected by the finite
temporal resolution of the photodetector [51]. This stems from
the fact that the at-most-single-excitation nature of the state
remains true at any later time.

VII. CONCLUSION

We have shown how cooperative spontaneous emission
drives the system toward a state where all atoms are pair
entangled, at late times when it is in a superposition between
ground and single-excitation states. Remarkably, even though
multiple-excitation, long-lived states exist in our system, and
could in principle contribute to the all-to-all entanglement,
the regime is achieved only when there is at most a sin-
gle excitation in the dynamics. We note that since the most
subradiant two-excitation states have a lifetime eight times
shorter than the single-excitation one, as reported in one and
three dimensions (1D and 3D), the generation of entanglement
by collective spontaneous emission is expected to hold for
arbitrary large systems [41,48]. While this mechanism is valid
for arbitrary interaction strengths (here determined by the
distance between the atoms), a larger cooperativity promotes
longer-lived entanglement. Furthermore, because it does not
rely on specific interference patterns between the atoms, the
phenomenon is equally present in disordered systems. In prac-
tice, this also means that our scheme does not require a high
control to generate entanglement, differently from proposals
with engineered dissipation [10,12] or with a fine control on
the positions of the emitters [9]. This can be advantageous
since individual addressing of quantum emitters is not always
possible, especially when distances comparable with the opti-
cal wavelength are involved.

The creation and propagation of entanglement by deco-
herence in this long-range interacting system leads to several
intriguing questions, such as whether the excitation-exchange
(Hamiltonian) or the spontaneous-emission (Lindbladian) dy-
namics is more efficient to propagate quantum correlations
[57–59], or if spin squeezing may also be produced using
decoherence [60].

Note added. Recently, we have become aware of a related
work on the generation of entanglement by decoherence in 1D
systems [44].
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