
PHYSICAL REVIEW A 105, 053713 (2022)

Perturbation approach in Heisenberg equations for lasers
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Nonlinear Heisenberg-Langevin equations are solved analytically by operator Fourier expansion for the laser
in the light-emitting diode (LED) regime. Fluctuations of populations of lasing levels are taken into account as
perturbations. The spectra of operator products are calculated as convolutions, preserving Bose commutations
for the lasing field operators. It is found that fluctuations of population significantly affect spontaneous and
stimulated emissions into the lasing mode, increase the radiation rate, the number of lasing photons, and broaden
the spectrum of a bad cavity threshold-less and the superradiant lasers. The method can be applied to various
resonant systems in quantum optics.
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I. INTRODUCTION

Operator Heisenberg-Langevin equations (HLE), as quan-
tum Maxwell-Bloch equations, are widely used in quantum
optics and laser physics [1]. They are applied for modeling
devices and processes in nonlinear optic [2,3], lasers [4–7],
the generation of nonclassical light [8], qubits [9], and other
quantum phenomena [10], making them an important part of
physics [11]. HLEs are in the background of various theoreti-
cal methods of quantum optics such as the input-output theory
[12,13] and the cluster expansion method [14,15].

HLE for lasers and resonant optical systems are often
nonlinear in operators, which makes them difficult to solve
analytically. This paper continues and extends the research of
the authors of [16] on analytically solving HLEs for lasers.

Several methods of solving HLE were proposed [17–23].
A relatively simple and widespread method of solving HLE
in quantum optics and laser physics [4–7,24,25] is a general-
ization of the perturbation approach of the classical oscillation
theory [26]. This is the linearization of HLE around the mean
values of operators and solving linear equations for operators
of small perturbations.

Consider, for example, the nonlinear term âN̂e in Eq. (4b)
of the laser model in Sec. II, where â is a Bose operator of the
lasing field amplitude and N̂e is the operator of the population
of excited states of lasing transitions. N̂e can be separated on
the mean Ne and fluctuations δN̂e: N̂e = Ne + δN̂e. Supposing
that the contribution of fluctuations δN̂e is small and can be
neglected, we approximately replace âN̂e by the term âNe

linear in the operator â. Then the stationary HLE for the laser
in Sec. II is linearized and can be solved as in [7,16,27] at a
weak excitation of the laser, when the laser does not generate
coherent radiation, and the mean amplitude of the lasing field
a = 0. This approach reproduces well-known results, such as
the laser linewidth [16], and leads to new results, such as
the collective Rabi splitting [27], but it must be extended for
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considering population fluctuations at the weak excitation of
the laser.

In a similar way the laser HLE can be linearized and solved
for a high excitation, when the laser does generate coherent
radiation, so â ≈ a + δâ, where δâ is the operator of a small
perturbation [5,6,16]. In this case, population fluctuations are
taken into account and lead to well-known relaxation oscilla-
tions’ peaks in the intensity fluctuation spectra [25] and to the
prediction of such peaks in the field spectra of the bad cavity
nanolasers [16].

A direct generalization of the standard perturbation ap-
proach for considering population fluctuations at a low
excitation meets difficulties. Consider, for example, the laser
at a weak excitation, when the mean laser field a = 0. Fol-
lowing the standard procedure of the classical perturbation
theory we neglect δN̂e and find a zero-order solution â = â0

[7,16,27]. Next we must replace âδN̂e with the linear term
â0δN̂e and obtain linear equations with the time-dependent
operator coefficients, like â0. It is unclear how to solve such
equations.

To overcome such a difficulty, in [16] we replaced â0 in
â0δN̂e by

√
n, where n is the mean photon number. This

approach made a “smooth transition” between the high and
the low excitations of the laser, but remained without a justifi-
cation for the low excitation in [16]. It was mentioned in [16]
that the approach is good if the population fluctuations with
the low excitation are negligibly small (we will see that this is
not always the case). The features of lasing, found in [16] due
to the population fluctuations at the low excitation, need to be
provem with a more rigorous approach.

One purpose of this work is to extend the analysis of
[16] and consider population fluctuations rigorously at the
low excitation, when the laser works in the LED regime. We
will correct some results of [16] related with the population
fluctuations in the LED regime.

As we outlined above, it is difficult to take into account
population fluctuations in the nonlinear laser HLEs at the low
excitation with the standard perturbation approach. Another
purpose of the paper is to formulate a perturbation approach
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for solving nonlinear stationary HLEs at the low excitation of
the laser in the first order on population fluctuations.

Only a few methods can be applied in the higher order on
quantum perturbations as, for example, a cluster expansion
method [14,15]. It allows for finding mean values of high-
order correlations of products of operators, but it does not
calculate the spectra of optical fields. Path integral formalism
can be used in some problems of nonlinear and quantum
optics [28,29]. However, it is applied mostly to systems with
quadratic Hamiltonian, i.e., to linear systems. Quantum per-
turbation theory, in time, is often applied for the analysis
of nonstationary processes in nonlinear optics [30], and it is
restricted by short periods of time when the effect of nonlinear
terms is negligibly small.

Here we consider the population fluctuations as a pertur-
bation using the operator Fourier expansion, and express the
power spectra of the operator products as convolutions of
spectra of multipliers in the product.

An important part of the method is preserving commuta-
tion relations for Bose operators of the field. This lets us to
take into account quantum fluctuations in the field with a small
number of photons.

Because of the dissipation and fluctuations, the oscillation
spectra of resonant systems are bands centered at mode fre-
quencies. We suppose, as usual, that the width of the band
is much smaller than the mode frequency and use a rotating
wave approximation (RWA) [31].

As usual, we suppose that the laser interacts with incoher-
ent “white noise” baths of broad spectra.

We demonstrate the method in the example of the quantum
model of a single-mode laser with a homogeneously broad-
ened active medium of two-level emitters, the same as in
[16,27]. We suppose a large number of emitters N0 � 1 and
consider the LED radiation regime at a weak excitation of the
laser, when the mean number n of lasing photons is small
n < 1 or of the order of 1, so the laser does not generate
coherent radiation.

We will show that population fluctuations increase, at
certain conditions, the radiation rate into the lasing mode;
increasing the number of lasing photons and broad lasing
spectra. This can be seen most clearly in lasers with low-
quality cavities and large gain where population fluctuations
are high and collective effects, as a superradiance, are im-
portant [32–34]. Such superradiant lasers were experimentally
realized, for example, with cold alkaline earth atoms [35–38],
rubidium atoms [39], and with quantum dots [14].

Quantum models of a laser were presented in many papers
and books as, for example, [4,40,41]. Among popular methods
of the laser theory are the linearization of Heisenberg-
Langevin equations around the steady state [5,6,40], solving
the master equation for the density matrix [4] or Lindblad
master equation [42]. The method proposed here has not been
used before.

Usual perturbation theory with the linearization of opera-
tor equations on small fluctuations around the steady states
is widely used in the laser quantum rate equation theory
[25,43–46]. Quantum rate equations for lasers are valid with
the adiabatic elimination of the polarization of the lasing
media. The method presented here does not require the
adiabatic elimination of polarization, so it can be applied

FIG. 1. Scheme of the two-level laser. Upper levels of emitters
with the population operator N̂e decay to the low levels with the
rate γ‖ and pumped with the rate γ‖P from the low levels with the
population N̂g. The width of the lasing transition is γ⊥. Lasing mode
described by Bose-operator â decays through the semitransparent
mirror with the rate κ and resonantly interacts with lasing transitions
of two-level emitters with the vacuum Rabi frequency �.

for the modeling of lasers with bad cavities and collective
effects.

In this paper we do not provide rigorous mathematical
justification of the method, in particular, we do not prove
its conversion to the exact solution. Our aim is to demon-
strate basic physical ideas and to show the application of
the method. We will use general properties of Heisenberg
representation and well-known results of quantum mechanics
[47] for the derivation of the mathematical part of the method
in Appendixes A and B.

We demonstrate the method on the example of the laser
model described in Sec. II. There we derive the laser HLE and
obtain from them equations for Fourier-component operators.

In Sec. III we apply the perturbation approach to the
laser model in the zero-order approximation, when popula-
tion fluctuations are neglected. In Sec. IV we solve the laser
equations, taking into account population fluctuations in the
first-order approximation. We demonstrate the important parts
of the method: the calculation of the spectrum of the operator
product with convolutions and preserving Bose-commutation
relations for the lasing field operator. Section V presents and
discuses results related with the effect of population fluctua-
tions on the lasing in the LED regime at low excitation. We
show that population fluctuations increase the spontaneous
and the stimulated emission rates into the lasing mode, leading
to the increase of the number of lasing photons; they broad the
lasing field spectra, but do not lead to narrow peaks in the field
spectra found in [16]. Such peaks are the consequence of the
application of the standard perturbation approach at the low
excitation. Results are summarized in Sec. VI. Appendix A
shows the Fourier expansion for operators, Appendix B cal-
culates the spectrum of the operator product, and Appendix C
calculates diffusion coefficients. Appendix D presents equa-
tions for population fluctuations for the calculation of the
population fluctuation spectrum and the justification of the
approximation (37).

II. EQUATIONS FOR TWO-LEVEL LASER

We consider a quantum model of a single mode homoge-
neously broadened laser in the stationary regime with N0 � 1
two-level identical emitters, the same as in [16,27], shown
schematically in Fig. 1. Lasing transitions are in the exact
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resonance with the cavity mode with the optical frequency
ω0. â(t )e−iω0t is the Bose operator of the lasing mode and the
operator â(t ) of the complex amplitude is changed much more
slowly than e−iω0t .

The Hamiltonian of the laser, written in the interaction
picture with the carrier frequency ω0 and in the RWA approx-
imation, is

H = ih̄�

N0∑
i=1

fi(â
†σ̂i − σ̂

†
i â) + �̂. (1)

Here � is the vacuum Rabi frequency, fi describes the differ-
ence in couplings of different emitters with the lasing mode. σ̂i

is a lowing operator of ith emitter, �̂ describes the interaction
of the mode and emitters with the white noise baths of the
environment.

The commutation relations for the operators are

[â, â†] = 1, [σ̂i, σ̂
†
j ] = (

n̂g
i − n̂e

i

)
δi j,[

σ̂i, n̂e
j

] = [
n̂g

j, σ̂i
] = δi j σ̂i, (2)

where n̂e
j and n̂g

j are operators of populations of the upper
and the low levels of the ith emitter and δi j is the Kronecker
symbol.

We introduce operators v̂ and N̂e,g of the polarization and
populations of all emitters

ν̂ =
N0∑

i=1

fiσ̂i, N̂e,g =
N0∑
i=1

n̂e,g
i . (3)

Using commutation relations (2) and Hamiltonian (1) we
write Maxwell-Bloch equations for â, v̂, and N̂e

˙̂a = −κ â + �v̂ + F̂a, (4a)

˙̂v = −(γ⊥/2)v̂ + � f â(2N̂e − N0) + F̂v, (4b)

˙̂Ne = −�
̂ + γ‖[P(N0 − N̂e) − N̂e] + F̂Ne , (4c)

where


̂ = â†v̂ + v̂†â, (5)

κ , γ⊥, and γ‖ are decay rates; Pγ‖ is the pump rate; and F̂α

with the index α = {a, v, Ne} are Langevin forces. The total
number of emitters is preserved, so N̂e + N̂g = N0.

In Eqs. (4) and below we approximate f 2
i ≈ f =

N−1
0

∑N0
i=1 f 2

i and use notations with a “hat” for operators and
without a hat for mean values as, for example, Ne = 〈N̂e〉.

We separate the mean values and fluctuations in population
operators N̂e,g = Ne,g + δN̂e,g, in 
̂ = 
 + δ
̂, insert them
into Eqs. (4) and write

˙̂a = −κ â + �v̂ + F̂a, (6a)

˙̂v = −(γ⊥/2)v̂ + � f (âN + 2âδN̂e) + F̂v, (6b)

δ ˙̂Ne = −�δ
̂ − γPδN̂e + F̂Ne , (6c)

where γP = γ‖(P + 1). With the derivation of Eqs. (6c) we
take

0 = −�
 + γ‖[P(N0 − Ne) − Ne]. (7)

In Eq. (6b) and below N = Ne − Ng is the mean population
inversion.

We take the stationary mean photon number n = 〈â†â〉 and
find from Eq. (6a)

0 = −2κn + �
. (8)

Equations (8) and (7) lead to the energy conservation law

2κn = γ‖[P(N0 − Ne) − Ne]. (9)

In the next sections we consider population fluctuations
δN̂e as a perturbation and solve the stationary Eqs. (6) approx-
imately using Fourier expansion for the operators

α̂(t ) = 1√
2π

∫ ∞

−∞
α̂(ω)e−iωt dω, (10)

where α̂ denotes an operator α̂ = â, v̂, . . .. In particular, α̂ can
be the product of operators âδN̂e. α̂(ω) is the Fourier compo-
nent of the operator α̂(t ). α̂(ω) can be expressed through α̂(t )
by the reverse Fourier transform; see more about the operator
Fourier expansion in Appendix A.

In the stationary case

〈α̂†(ω)α̂(ω′)〉 = Sα†α (ω)δ(ω + ω′), (11)

where Sα†α (ω) is a power spectrum of fluctuations, cor-
responding to α̂(t ). We will find power spectra solving
equations for Fourier-component operators and using re-
lations as in Eq. (11). A similar way of calculations of
field spectra can be found in the literature, for example, in
[44,48,49]. It can be shown that Sα†α (ω) in Eq. (11) is a
Fourier component of the autocorrelation function 〈α̂†(t +
τ )α̂(t )〉 in accordance with the Wiener-Khinchin theorem
[50,51].

Fourier expansion for operators is widely used in laser
physics and quantum optics [5–7,13,44,45,48], as well as in
the classical stochastic theory [52]. However, the Fourier ex-
pansion of a stochastic function is not well defined [50,51],
so quite often the calculation of the power spectra, as
Sα†α (ω), is carried out without the use of Fourier-component
operators. Instead, one calculates a time-dependent auto-
correlation function and then applies the Wiener-Khinchin
theorem [24,53–55]. In our opinion, the calculation of spec-
tra in the stationary case with Fourier-component operators
and the formula (11) (see examples in [25,45,48]) is more
easy than with the Wiener-Khinchin theorem. However, the
operator Fourier expansion (10) must be justified, so in Ap-
pendix A we make the operator Fourier expansion (10) based
on quantum-mechanical relations in the Heisenberg picture in
the stationary case.

Making the Fourier expansion (10) in Eqs. (6)
we obtain algebraic equations for Fourier-component
operators

0 = (iω − κ )â(ω) + �v̂(ω) + F̂a(ω), (12a)

0 = (iω − γ⊥/2)v̂(ω) + � f [â(ω)N + 2(âδN̂e)ω] + F̂v (ω),

(12b)

0 = (iω − γP )δN̂e(ω) − �δ
̂(ω) + F̂Ne (ω). (12c)

Here (âδN̂e)ω is a Fourier component of the operator product
â(t )δN̂e(t ).
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Correlations for the Fourier components of Langevin
forces F̂α (ω), F̂β (ω) are

〈F̂α (ω)F̂β (ω′)〉 = 2Dαβδ(ω + ω′), (13)

where 2Dαβ is a spectral power density of the bath noise or a
diffusion coefficient. The diffusion coefficients

2Daa† = 2κ, 2Da†a = 0, (14)

correspond to the lasing mode-harmonic oscillator [12,13].
They remain the same in any order of our approach. We
choose diffusion coefficients 2D(i)

v†v
and 2D(i)

vv† such that Bose-
commutation relations for the operator â of the lasing mode
will be preserved in the i = 0, 1, . . . , order of the approxima-
tion on population fluctuations.

III. ZERO-ORDER APPROXIMATION

In the zero-order approximation we neglect population
fluctuations [7,16,27]. We drop the term (âδN̂e)ω in Eq. (12b)
and take the Langevin force F̂v (ω) = F̂ (0)

v (ω) with diffusion
coefficients

2D(0)
v†v

= f γ⊥Ne, 2D(0)
vv† = f γ⊥Ng. (15)

These diffusion coefficients are found at the absence of popu-
lation fluctuations in Appendix C.

In the zero-order approximation â = â0. We solve the set
of Eqs. (12a) and (12b), taken without (âδN̂e)ω, and find

â0(ω) = (γ⊥/2 − iω)F̂a(ω) + �F̂v (ω)

s(ω)
, (16)

where

s(ω) = (iω − κ )(iω − γ⊥/2) − (κγ⊥/2)N/Nth, (17)

and Nth = κγ⊥/2�2 f is a threshold population inversion
found in the semiclassical laser theory [16,27].

The spectrum n0(ω) of the lasing field satisfies

〈â†
0(ω)â0(ω′)〉 = n0(ω)δ(ω + ω′). (18)

We calculate n0(ω) from Eqs. (16) and (18) and using diffu-
sion coefficients (14) and (15)

n0(ω) = (κγ 2
⊥/2)Ne/Nth

S(ω)
, (19)

where S(ω) = |s(ω)|2. The mean photon number n0 =
(2π )−1

∫ ∞
−∞ n0(ω)dω is

n0 = Ne

(1 + 2κ/γ⊥)(Nth − N )
. (20)

To ensure that Bose-commutation relations 〈[â0, â†
0]〉 = 1

are satisfied, we find the spectrum (n0 + 1)ω such that
〈â0(ω)â†

0(ω′)〉 = (n0 + 1)ωδ(ω + ω′)

(n0 + 1)ω = 2κ (ω2 + γ 2
⊥/4) + (κγ 2

⊥/2)Ng/Nth

S(ω)
, (21)

and the spectrum of the commutator 〈[â0(ω), â†
0(ω′)]〉 =

[â0, â†
0]

ω
δ(ω + ω′)

[â0, â†
0]

ω
= (n0 + 1)ω − n0(ω). (22)

The calculation shows that (2π )−1
∫ ∞
−∞ [â0, â†

0]
ω

dω = 1, so
the Bose-commutation relations for â0 are satisfied.

IV. FIRST-ORDER APPROXIMATION

In the first-order approximation we denote â = â1, keeping
in Eq. (12b) the term (â0δN̂e)ω with â replaced by â0 and take
Langevin force F̂v (ω) = F̂ (1)

v (ω) with diffusion coefficients

2D(1)
v†v

= f γ⊥[Ne + N1(ω)],

2D(1)
vv† = f γ⊥[Ng − N1(ω)]. (23)

N1(ω) in Eqs. (23) is added for satisfying the Bose-
commutation relations 〈[â1, â†

1]〉 = 1. Expressions (23) are
written such that the sum 2D(1)

v†v
+ 2D(1)

vv† does not depend on
N1(ω) and, therefore, on population fluctuations, as it is shown
in Appendix C. This is why the same N1 appears in both
diffusion coefficients 2D(1)

v†v
and 2D(1)

vv† .
Solving the set of Eqs. (12a) and (12b) with (â0δN̂e)ω and

F̂ (1)
v (ω) instead of (âδN̂e)ω and F̂v (ω), respectively, we find

the Fourier-component operator

â1(ω) = â(1)
0 + κγ⊥

Nth

(â0δN̂e)ω
s(ω)

. (24)

where â(1)
0 (ω) is given by Eq. (16) with F̂v (ω) = F̂ (1)

v (ω).
Now we find (â0δN̂e)ω and N1(ω). We consider the spec-

trum Sa0Ne (ω) of the operator product â0δN̂e

〈(â†
0δN̂e)

ω
(â0δN̂e)ω′ 〉 = Sa0Ne (ω)δ(ω + ω′). (25)

We calculate Sa0Ne (ω) neglecting cumulants in correlations,
as in a well-known cumulant-neglect closure method in the
classical statistical theory [56,57] and in the quantum cluster-
expansion method [15]. In these methods the mean of, for
example, four-operator products is approximated by the sum
of products of the nonzero two-operator means. In the case of
Eq. (25) this is

〈â†
0(ω1)δN̂e(ω2)â0(ω3)δN̂e(ω4)〉
≈ 〈â†

0(ω1)â0(ω3)〉〈δN̂e(ω2)δN̂e(ω4)〉, (26)

since 〈â†
0(ω1)δN̂e(ω2)〉 = 0 and 〈â0(ω1)δN̂e(ω2)〉 = 0 at the

low excitation of the laser.
It is shown in Appendix B that Sa0Ne (ω) calculated with the

approximation (26) is a convolution Sa0Ne (ω) = (n0 ∗ δ2Ne)ω,

(n0 ∗ δ2Ne)ω = 1

2π

∫ ∞

−∞
n0(ω − ω′)δ2Ne(ω′)dω′, (27)

where δ2Ne(ω) is a spectrum of population fluctuations

〈δN̂e(ω)δN̂e(ω′)〉 = δ2Ne(ω)δ(ω + ω′). (28)

The field spectrum n1(ω), 〈â†
1(ω)â1(ω′)〉 = n1(ω)δ(ω + ω′),

can be represented, with the help of Eq. (24), as

n1(ω) = n0(ω) + nsp(ω) + nst (ω). (29)

Here n0(ω), given by Eq. (19), is caused by the vacuum fluctu-
ations of the lasing mode and the active medium polarization;

nsp(ω) = κγ 2
⊥

2Nth

N1(ω)

S(ω)
(30)
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is due to the effect of the population fluctuations on sponta-
neous emission: we see that nsp(ω) does not depend explicitly
on the mean photon number;

nst(ω) =
(

κγ⊥
Nth

)2 (n0 ∗ δ2Ne)ω
S(ω)

(31)

is proportional to the mean photon number n0, appeared in
(n0 ∗ δ2Ne)ω and, therefore, it is due to the effect of the popu-
lation fluctuations on the stimulated emission.

Replacing (n0 ∗ δ2Ne)ω by n0δ
2Ne(ω) in Eq. (31) we come

to the approach of [16], which is good if the field spectrum
n0(ω) is much narrower than the population fluctuation spec-
trum δ2Ne(ω). This is true for the high excitation, when the
laser generates coherent radiation, so n0(ω) ≈ n0δ(ω) where
δ(ω) is the Dirac delta function. The term nsp(ω) does not
appear in the approach of the authors of [16], which does not
take into account the influence of population fluctuations on
the spontaneous emission into the lasing mode.

With the derivation of Eqs. (29) to (31) we suppose that
â0δN̂e, in the first-order approximation, is not correlated with
F̂a and F̂ (1)

v .
We find N1(ω) demanding Bose commutation relations

〈[â1, â†
1]〉 = 1. From Eq. (24) we obtain

[â1, â†
1]

ω
= [â0, â†

0]
ω

+ {(κγ⊥/Nth )2([â0, â†
0] ∗ δ2Ne)

ω

− κγ 2
⊥N1(ω)/Nth}/S(ω), (32)

with the spectrum [â0, â†
0]ω given by Eq. (22). We

know that (2π )−1
∫ ∞
−∞ [â0, â†

0]
ω

dω = 1. Therefore

(2π )−1
∫ ∞
−∞ [â1, â†

1]
ω

dω = 1, if the nominator in the second
term on the right in Eq. (32) is zero, which is true when

N1(ω) = (κ/Nth)([â0, â†
0] ∗ δ2Ne)

ω
. (33)

Inserting N1(ω) from Eq. (33) into Eq. (30) we find

nsp(ω) =
(

κγ⊥
Nth

)2 ([â0, â†
0]/2 ∗ δ2Ne)

ω

S(ω)
. (34)

We see that nsp(ω) depends on the convolution of the pop-
ulation fluctuation spectrum δ2Ne(ω) with the spontaneous
emission noise spectrum. Indeed, the spectrum [â0, â†

0]
ω
/2,

in the convolution in Eq. (34), is a spectrum of vacuum field
fluctuations in the lasing mode, or a “spectrum of the half of a
photon”: (2π )−1

∫ ∞
−∞ ([â0, â†

0]
ω
/2)dω = 1/2.

To find nsp(ω) and nst(ω) we must know the spectrum of
the population fluctuations δ2Ne(ω). From Eq. (12c) we find
δN̂e(ω) and the population fluctuation spectrum

δ2Ne(ω) = �2δ2
(ω) + 2DNeNe

ω2 + γ 2
P

, (35)

where δ2
(ω) is the spectrum of δ
̂(ω). With calculations of
δ2Ne(ω) we use the same approximation as in [16], neglect-
ing by correlations between the polarization and population
fluctuations, i.e., between F̂v and F̂Ne , which is a good approx-
imation at a large number of emitters N0 � 1. The diffusion
coefficient 2DNeNe = γ‖(PNg + Ne) is the same as in the rate
equation laser theory [43].

We find δ
̂(ω) from Eqs. (D5) written Appendix D in the
zero-order approximation on δN̂e. Then we find the spectrum
δ2
(ω) from Eq. (D6). The explicit expression for δ2
(ω)

FIG. 2. The relative difference R(P) of the population fluctuation
dispersion found with and without δ
̂ for γ⊥ = 5 (curve 1), 10 (2),
20 (3), 50 (4), and 500 (5). R(P) < 1, so population fluctuations
caused by δ
̂ [the first term in Eq. (35)] is smaller than population
fluctuations caused by the second term in Eq. (35) at the weak
excitation, when the pump rate P < 2.

is cumbersome so we do not present it here. With δ2
(ω)
we integrate the spectrum (35) over frequencies and find the
population fluctuation dispersion δ2Ne.

Figure 2 shows the relative difference

R = δ2Ne/δ
2N (0)

e − 1, (36)

of δ2Ne(P) found with the help of Eq. (35) and the popu-
lation fluctuation dispersion δ2N (0)

e (P) = 2DNeNe/2γP found
by integrating Eq. (35) without δ2
(ω). We see from Fig. 2
that R < 1, which means that the contribution from δ
̂ to
the population is relatively small for P < 2. So, for the sake
of simplicity, we drop the first term in Eq. (12c) at the low
excitation and approximate

δN̂e(ω) ≈ F̂Ne (ω)/(iω − γP ). (37)

Calculations based on the approximation (37) demonstrate our
method in a simplified setting, however, approximation (37)
is not a necessary part of the method. Approximation (37)
considerably simplifies the calculation of the convolutions in
Eqs. (31) and (34) and, in the meanwhile, shows, as we will
see, the nonnegligible influence of population fluctuations on
the lasing at the low excitation. Straightforward but cumber-
some calculations of convolutions beyond the approximation
(37) can be done with δN̂e(ω) satisfying Eq. (12c) and found
from Eqs. (D5) of Appendix D. We leave such calculations for
the future.

With the approximation (37) the spectrum of population
fluctuations is

δ2Ne(ω) = 2DNeNe/
(
ω2 + γ 2

P

)
. (38)

The mean photon number n1 = (2π )−1
∫ ∞
−∞ n1(ω)dω depends

on the mean population Ne of the upper lasing states. Ne can be
found from the energy conservation law (9) with n = n1(Ne).

V. RESULTS AND DISCUSSION

In these examples we present the results of calculations
with parameters: the wavelength of the lasing transition
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FIG. 3. The mean photon number n1 versus the normalized pump
rate P for threshold-less superradiant laser with 2κ/γ⊥ = 2, N0 =
100 resonant emitters, and nonnormalized beta factor [16] β̃ =
15.4 � 1. Curves 1 and 2 are found with and without population
fluctuations, respectively. n1 in the curve 1 is the sum of values in
curves 3, 4, and 5 taken with the same P and population inversion
N . Curve 3 is due to vacuum fluctuations in the lasing mode; curves
4 and 5 are contributions of the effect of population fluctuations on
stimulated and on spontaneous emission, correspondingly. The mean
population inversion for curves 1, 3, 4, and 5 is smaller than for curve
2 because population fluctuations accelerate the radiation and reduce
the population inversion.

λ0 = 1.55 μm, the background refractive index nr = 3.3, the
cavity mode volume Vc = 10(λ0/nr )3 with N0 = 100 emitters;
a population relaxation rate γ‖ = 109 s−1; the vacuum Rabi
frequency � = (d/nr )[ω0/(ε0 h̄Vc)]1/2 with a dipole moment
of the lasing transition d = 10−28 C-m so that � = 34γ‖; the
average atom-lasing mode-coupling factor f = 1/2 and the
cavity quality factor Q = 1.2 × 104 so 2κ = 100γ‖.

We vary the dephasing rate γ⊥ and the pump P keep-
ing all other parameters fixed. γ⊥ is varied between
50 GHz (2κ/γ⊥ = 2) to 1.5 THz (with 2κ/γ⊥ = 0.07). This
is a realistic region of γ⊥ for quantum dots [58]. We calcu-
late the nonnormalized β-factor β̃ = g/γ‖ [16], where g =
4�2 f /[γ⊥(1 + 2κ/γ⊥)] is the spontaneous emission rate into
the lasing mode and the rate γ‖ includes all population losses
in the lasing medium. Within the chosen range for γ⊥, β̃ varies
from 15 to 1.4, so lasers with the chosen parameters have
significant amounts of spontaneous emission into the lasing
mode.

Similar parameters can be found in photonic crystal
nanolasers with quantum-dot active media [45]; superradiant
lasers with cold alkaline earth atoms [35–38], rubidium atoms
[39], and quantum dots [14]. These lasers are threshold-less,
with a large nonnormalized beta factor and with the significant
influence of collective effects (the superradiance) [16,27,32–
34]. Population fluctuations in superradiant lasers are large
[16,27]. We consider the LED regime with relatively small
dimensionless pump rate P < 2, when the mean number of
the cavity photons is of the order of one or less, and when the
linewidth γlas of the lasing field is large γlas > γ‖.

The mean photon number n1(P) for γ⊥ = 50γ‖ is shown
in Fig. 3, where we note the influence of population fluctua-
tions on the lasing field. In Fig. 3 the bold solid curve 1 is

FIG. 4. The mean population inversion calculated with (curve 1)
and without (curve 2) population fluctuations. Population fluctua-
tions increase the radiation rate and deplete the population inversion.
This is why curve 1 goes below curve 2.

n1(P), found in the first-order approximation with population
fluctuations. The thin solid curve 2 is n0 found without pop-
ulation fluctuations. The other curves are parts of n1: curve
3 is due to fluctuations of polarization with the spectrum
n0(ω) in Eq. (29); curve 4 and curve 5 are due to the effect
of population fluctuations on stimulated and on spontaneous
emission, respectively; they are the integrals of spectra nst (ω)
and nsp(ω) in Eq. (29), correspondingly. Curve 1 is the sum of
curves 3, 4, and 5, they depend on the same mean population
inversion N found from the energy conservation law (9).

We see in Fig. 3 that population fluctuations (curves 4 and
5) give a noticeable contribution into the mean cavity photon
number (curve 1). Comparing curves 1 and 2 in Fig. 3 we see
that population fluctuations at the low excitation make a larger
influence on the mean photon number than was predicted with
the standard perturbation approach used in [16]. In Fig. 5
of [16], we see that n found with and without population
fluctuations almost coincides. This is because the standard
perturbation approach does not consider the influence of pop-
ulation fluctuations on spontaneous emission.

One can find that the population inversion N for the curve 2
is larger than for curves 1, 3, 4, and 5, since N is depleted, be-
cause of the population fluctuations’ increase in the radiation
rate; see population inversions for curves 1 (with population
fluctuations) and 2 (without population fluctuations) in Fig. 4.
This is why curve 3 goes below curve 2 in Fig. 3.

It is well known that the spontaneous emission is stimu-
lated by the vacuum fluctuations of the electromagnetic field
[4] and that a high density of states of the field increases the
spontaneous emission rate in the cavity (Pursell effect) [59].
As an important finding, we see that the population fluctua-
tions increase the spontaneous (and the stimulated) emission
rates into the lasing mode. Such an emission rate increase may
be important for highly efficient LEDs. We will estimate how
large such an increase can be.

We note in Fig. 3, that the contribution of population
fluctuations into spontaneous emission (curve 5) dominates
the contribution into stimulated emission (curve 4) at weak
pump P < 1.5, when the cavity photon number is small. We
introduce the characteristic of the influence of the population
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FIG. 5. The relative contribution of population fluctuations to the
mean photon number for γ⊥/γ‖ = 1500 (curve 1), 100 (2), 50 (3), 30
(4), 10 (5), and 2 (6) and other parameters the same as for Fig. 3. We
see that, for the small pump, almost all photons in the lasing mode
are related with population fluctuations at small γ⊥ approaching γ‖
as for curves 5 and 6.

fluctuations on the emission rate. For that we calculate the part
npop of the mean number of photons

npop = 1

2π

∫ −∞

−∞
[nsp(ω) + nst (ω)]dω, (39)

caused by population fluctuations. Equation (39) is the sum
of curves 4 and 5 in Fig. 3. The ratio npop/n1 characterizes the
contribution of population fluctuations into the emission rates.
Smaller npop/n1 corresponds to a smaller influence of the pop-
ulation fluctuations. npop/n1 is shown in Fig. 5 as a function
of the pump P for different γ⊥. We see that npop/n1 is reduced
with P and grows for smaller γ⊥. For curves 5 and 6 npop/n1

is close to 1, which means that almost all photons in the lasing
mode are related to population fluctuations when P → 0 and
for small γ⊥ → γ‖ 
 2κ . Thus we conclude that population
fluctuations may considerably increase the emission rate at a
weak pump in lasers with a narrow lasing transitions such that
γ⊥ 
 2κ . In such lasers population fluctuations are high and
the collective effects are significant [16].

The limit of npop/n1 close to 1, however, does not corre-
spond to the perturbation approach on population fluctuations,
so curves 5 and 6 in Fig. 5 must be reconsidered in higher
orders of the approximation. We show curves 5 and 6 in Fig. 5
since they display a trend of the increase of the emission
rate by population fluctuations, when (i) the pump P became
smaller and (ii) for bad-cavity lasers, where the cavity dump-
ing rate 2κ is relatively large 2κ > γ⊥. Figure 5 indicates
the possibility of a high acceleration of the radiation from
LEDs at a weak pump and on the corresponding increase of
the LED efficiency by population fluctuations. Determining
the maximum radiation rate increase at the weak pump is an
interesting topic important for applications, but it is beyond
the first-order perturbative scheme. We leave this topic for the
future. From Fig. 5 we learn that the expected increase of the
radiation rate by population fluctuations may be of the order,
or even larger, than the radiation rate taken without population
fluctuations.

FIG. 6. Photon number spectra found with (the solid curve 1)
and without (the thin curve 2) population fluctuations. P = 1, other
parameters are the same as for Fig. 3. The dashed curve 3 is a
result of [16] found with population fluctuations. The narrow peak
in the center of curve 3 disappears in the present approach, while the
mean photon number (the height of the spectrum) increases (compare
curves 1 and 3).

Figure 6 shows spectra of the lasing field calculated with
(solid curve 1) and without (thin curve 2) population fluctu-
ations for γ⊥ = 50γ‖ (the same as for Fig. 3) and for P = 1.
The two peaks in spectra in Fig. 6 are because of the collective
Rabi splitting [27].

According to Fig. 6, the present approach does not pre-
dict a narrow peak in the center of the spectra found in
[16]. Instead we see the increase of sideband peaks due to
population fluctuations. This is because the approximation
(âδN̂e)ω ≈ √

nδN̂e(ω) used in [16] ignores the finite width of
the field spectrum and the effect of population fluctuations
on the spontaneous emission into the lasing mode. It is not
appropriate at the low excitation in the bad cavity lasers,
where the population and the field fluctuations are large.

Thus we correct the results of [16] for the LED regime
by making a more accurate description of population fluctu-
ations. Here we use a convolution of spectra for calculating
nonlinear terms in laser HLE and corrected diffusion coeffi-
cients, while in [16] the approach for a high-excitation regime
was directly extended to the low-excitation LED regime.

Figure 7 shows the laser linewidth [16]

γlas = 2κ + γ⊥√
2

{r − 1 +
√

(r − 1)2 + r2}1/2,

r = 4κγ⊥
(2κ + γ⊥)2

(1 − N/Nth ), (40)

found with (curve 1) and without (curve 2) population fluctu-
ations. The linewidth of the laser, with population fluctuations
taken into account, is larger than the linewidth of the laser
where population fluctuations are neglected, so population
fluctuations broaden the lasing spectrum.
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FIG. 7. Laser linewidth with (solid curve 1) and without (thin
curve 2) population fluctuations for the same parameters as for Fig. 3.

VI. CONCLUSION

We consider population fluctuations as a perturbation in
quantum nonlinear stochastic equations for the laser and
present an approximate approach for solving such equa-
tions analytically in various orders on perturbations. As an
example, we consider Maxwell-Bloch equations for the laser
in the low-excitation (or LED) regime. The spectra of nonlin-
ear terms are found as convolutions of the spectra calculated
in the zero-order approximation, when population fluctuations
are neglected. This approach improves the method of [16],
where nonlinear terms were linearized around mean values,
which is not an accurate approximation at the low excitation.
Diffusion coefficients for Langevin forces are found from the
requirement that Bose commutation relations for operators of
the lasing field are preserved.

We find that population fluctuations accelerate spontaneous
and stimulated emissions, increase the radiation rate, and, as a
consequence, the mean number of lasing photons. Population
fluctuations broaden the lasing spectrum. We find a larger
mean photon number at the low excitation and the absence
of small peaks in the center of the field spectrum shown in
[16] and correct the results of [16].

Population fluctuations are high in bad cavity lasers with
large gain and relatively narrow lasing transitions, such as
superradiant lasers, where collective effects are significant. A
large part of the radiation in the LED regime in such lasers
may be related to the population fluctuations.

Lasers or LEDs with the radiation rate, increased by pop-
ulation fluctuations, may find applications as miniature and
efficient broadband light sources.

Our approach may be applied for the theoretical analysis
of various resonant systems in nonlinear and quantum optics
as, for example, the optical parametric oscillator in the cavity
[60].

ACKNOWLEDGMENTS

We wish to acknowledge the stimulated discussions, notes,
and advice from Professor Jesper Mörk and Professor Martijn
Wubs from the photonics department of the Danish Technical
University.

APPENDIX A: FOURIER EXPANSION FOR OPERATORS

We consider the Fourier expansion of the Bose operator
â(t )e−iω0t of the lasing mode, where â(t ) is changed much
more slowly than e−iω0t .

In the case of the classical field complex amplitude a(t )
can be represented as Fourier-integral

a(t ) = 1√
2π

∫ ∞

−∞
a(ω)e−iωt dω, (A1)

where a(ω) is Fourier component of a(t ). Expression (A1)
describes the physical fact that the electromagnetic field is a
superposition of monochromatic components of different fre-
quencies [61]. According to the Heisenberg correspondence
principle [62] Fourier expansion (A1) remains true for quan-
tum electromagnetic field, so classical variables in Eq. (A1)
can be replaced by operators

â(t ) = 1√
2π

∫ ∞

−∞
â(ω)e−iωt dω. (A2)

We will come to Eq. (A2) another way, by a transition from
Schrödinger to Heisenberg operators with the help of the
evolution operator [63].

Suppose |�〉 is a wave function of the system (of the
laser in our case) and of baths interacting with the system.
|�〉 is, therefore, the eigenfunction of Hamiltonian H of the
system and baths. In the Heisenberg representation |�〉 does
not depend on time. We average the operator â over |�〉

〈�|â(t )|�〉 = a(t ). (A3)

a(t ) is a random function of time because of the quantum
fluctuations of the lasing mode and fluctuations due to the
interaction of the mode with baths. In the stationary case a(t )
corresponds to the stationary random process.

Operator â(t ) is related to the time-independent
Schrödinger operator âSh by the transformation

â(t ) = exp (iHt/h̄)âSh exp (−iHt/h̄), (A4)

where exp(−iHt/h̄) is the evolution operator [47].
Suppose, for simplicity, that |�〉 can be expanded over

states with discreet spectrum

|�〉 =
∞∑

i=1

|�i〉, (A5)

where {|�i〉} is a complete set of mutually orthogonal eigen-
states of Hamiltonian H .

We take a unity operator 1̂ [30,64]

1̂ =
∞∑

i=1

|�i〉〈�i|, (A6)

and insert 1̂ into Eq. (A4) on the right and on the left sides to
the operator âSh. After this we average Eq. (A4) over the state
|�〉 and come to

a(t ) =
∞∑

i, j=1

〈�|eiHt/h̄|�i〉ai j〈� j |e−iHt/h̄|�〉, (A7)

where ai j = 〈�i|âSh|� j〉 is a matrix element of the opera-
tor âSh. |�i〉 are eigenfunctions of Hamiltonian H , |�〉 is a
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superposition of states |�i〉, therefore

〈�|eiHt/h̄|�i〉 = eiEit/h̄, 〈� j |e−iHt/h̄|�〉 = e−iE jt/h̄, (A8)

where Ei is the energy of the state |�i〉. We insert Eqs. (A8)
into Eq. (A7) and come to

a(t ) =
∞∑

i, j=0

ai je
−iωi j t , (A9)

where ωi j = (Ei − Ej )/h̄.
We consider resonant systems where the most populated

states have energy close to h̄ω0, so ωi j 
 ω0. Then we assume
that matrix elements ai j depend only on Ei − Ej , but not on
Ei or Ej separately. Precisely, the dependence on Ei ≈ Ej

is the same for relevant matrix elements taken into account.
Therefore ai j = a(ωi j ). We rearrange the terms ai je−iωi j t in
the sum (A9) in the ascending order on ωi j , use the index k
instead of two indexes i and j, and rewrite Eq. (A9) as the
sum over k

a(t ) =
∞∑

k=0

a(ωk )e−iωkt . (A10)

Equation (A10) relates the mean a(t ) and matrix elements
a(ωk ) of the Schrödinger operator âSh. Matrix elements a(ωk )
define the operator â(ωk ), so we can rewrite the relation (A10)
in terms of the operators

â(t ) =
∞∑

k=0

â(ωk )e−iωkt . (A11)

Taking in Eq. (A11) the limit of the continuess spectrum we
come to the Foruer integral (A2) for the operator â(t ).

From Eq. (A4) we write

âSh = exp (−iHt/h̄)â(t ) exp (iHt/h̄). (A12)

Starting with Eq. (A12) we come to the reverse Fourier trans-
form

â(ω) = 1√
2π

∫ ∞

−∞
â(t )eiωt dt, (A13)

in a similar way as we come from Eq. (A4) to Eq. (A2).
We prefer to work with the Fourier expansions (A11) or

(A2) for operators instead of the mean values as Eq. (A10).
Working with these operators we can preserve the commu-
tation relations. The expansion (A10) for means neglects
the commutation relations. Obviously, a∗(t )a(t ) = a(t )a∗(t )
while â†(t )â(t ) �= â(t )â†(t ). Preserving commutation rela-
tions for the field operators is important for the correct
description of fluctuations at a small number of photons.

We note that there is a random function of time a(t ) on
the left in Eq. (A10) and a random function of frequency
a(ωk ) on the right in Eq. (A10). A random set of frequencies
ωk corresponds to every realization of the random process,
described by a(t ). This way the correspondence between
random processes in the time and in the frequency domains
are established, for example, in numerical methods of the
generation of a random signal [65]. Practically, at numerical
calculations, ωk may chose the homogeneously distributed
over some interval [−ωmax, ωmax], where ωmax is something

larger than the expected half of the maximum linewidth of the
spectra of the system [65].

So each set of random frequencies corresponds to a partic-
ular realization of the random process. Such a realization may
be an analog of the path integral [28,29]. Mean values of op-
erators are the result of the averaging over many realizations.

Mean values of Fourier-component operators, for example,
〈â(ω)δN̂e(ω)〉, are averaged over many realizations of the
random processes with Fourier expansion as Eq. (A10), where
a random set of frequencies is chosen for each realization.

APPENDIX B: SPECTRUM OF THE OPERATOR PRODUCT

It is sufficient to know power spectra to describe the system
in the stationary state. Here we calculate the spectra of opera-
tor products approximately in the perturbation approach.

We carry out Fourier expansion of the operator â†

â†(t ) = 1√
2π

∫ ∞

−∞
â†(−ω)e−iωt dω, (B1)

and take the mean 〈â†(t )â(t + τ )〉. In the stationary case
〈â†(t )â(t + τ )〉 does not depend on t . Therefore, if we write
〈â†(t )â(t + τ )〉 with Fourier-expansions (A2) and (B1)

1

2π

∫ ∞

−∞
〈â†(−ω)â(ω′)〉e−i(ω+ω′ )t−iω′τ dωdω′, (B2)

it must be that

〈â†(−ω)â(ω′)〉 = n(ω)δ(ω + ω′). (B3)

The physical meaning of Eq. (B3) is that there is no transition
from the states of photons with different energies and ω �= ω′
in the stationary state: the probability of such transitions,
proportional to 〈â+(ω)â(ω′)〉, is zero. So the matrix of the
operator â†(ω)â(ω′) is diagonal in the stationary state, as well
as the matrices of binary products of other Fourier-component
operators. This fact simplifies the calculations.

The mean number n of photons in the lasing mode is

n = 〈â†(t )â(t )〉 = 1

2π

∫ ∞

−∞
n(ω)dω, (B4)

so n(ω) is a power spectrum of the lasing field.
We have seen that n(ω) is a diagonal matrix element of the

operator â†(ω)â(ω′) in the basis {|�i〉} of states of the laser
and baths. Therefore,

d pn(ω) = n(ω)dω/(2πn) (B5)

is a probability that the lasing field is in states with energies in
the interval from h̄(ω0 + ω) to h̄(ω0 + ω + dω). n(ω)/(2πn)
is, therefore, a probability density.

The binary product of the Fourier-component operators
δN̂e(ω) of the population fluctuations is

〈δN̂e(ω)δN̂e(ω′)〉 = δ2Ne(ω)δ(ω + ω′). (B6)

Here we write N̂e(ω), not N̂+
e (−ω) [compare with Eq. (B3)]

because othe population fluctuations are real quantities and
δN̂†

e (−ω) = δN̂e(ω).
We consider binary products â(t )δN̂e(t ) and â†(t )δN̂e(t )

with zero mean 〈âδN̂e〉 = 0. The fact that such a mean is zero
follows from Eqs. (6), when 〈â〉 = 0 and 〈v̂〉 = 0.
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Suppose, SaNe (ω) is the spectrum of the binary products of
operators âδN̂e We write, the same way as in Eq. (B4),

〈â†(t )δN̂e(t )â(t )δN̂e(t )〉 = 1

2π

∫ ∞

−∞
SaNe (ω)dω. (B7)

We will show how SaNe (ω) is expressed through the lasing
field spectrum n(ω) and the spectrum δ2Ne(ω) of the popula-
tion fluctuations

〈
δN̂2

e (t )
〉 = 1

2π

∫ ∞

−∞
δ2Ne(ω)dω. (B8)

In follows from the analysis in Appendix A that the Fourier-
component operator is expressed through the time-dependent
operator by the Fourier-transform

(âδN̂e)ω = 1

2π

∫ ∞

−∞
â(t )δN̂e(t )eiωt dt . (B9)

Here (âδN̂e)ω is the Fourier component of â(t )δN̂e(t ). We
insert the Fourier expansions of â(t ) and δN̂e(t ) into Eq. (B9)
and obtain

(âδN̂e)ω =
∫ ∞

−∞
â(ω1)δN̂e(ω2)e−i(ω1+ω2−ω)t dω1dω2dt

(2π )3/2 .

(B10)
We take the integral over the time in Eq. (B10) using that

1

2π

∫ ∞

−∞
e−i(ω1+ω2−ω)t dt = δ(ω1 + ω2 − ω), (B11)

and find

(âδN̂e)ω =
∫ ∞

−∞
â(ω1)δN̂e(ω2)δ(ω1 + ω2 − ω)

dω1dω2

(2π )1/2 .

(B12)
Now we take the integral over dω2 in Eq. (B12) and come to

(âδN̂e)ω = 1

(2π )1/2

∫ ∞

−∞
â(ω1)δN̂e(ω − ω1)dω1. (B13)

Therefore (âδN̂e)ω is a convolution of operators â(ω) and
δN̂e(ω). In a similar way we find

(â†δN̂e)ω = 1

(2π )1/2

∫ ∞

−∞
â†(−ω1)δN̂e(ω − ω1)dω1. (B14)

Now we express the mean M = 〈â†(t )δN̂e(t )â(t )δN̂e(t )〉
through the Fourier components of â†(t ), â(t ) and δN̂e(t ).
First, we write

M = 1

2π

∫ ∞

−∞

〈
(â†δN̂e)ω1

(âδN̂e)ω2

〉
e−i(ω1+ω2 )t dω1dω2.

(B15)
We insert Eqs. (B13) and (B14) into Eq. (B15) and obtain

M = 1

(2π )2

∫ ∞

−∞

〈∫ ∞

−∞
â†(−ω1

′)δN̂e(ω1 − ω1
′)dω1

′

×
∫ ∞

−∞
â(ω1

′′)δN̂e(ω2 − ω1
′′)dω1

′′
〉

× e−i(ω1+ω2 )t dω1dω2. (B16)

The laser at low excitation does not generate coherent ra-
diation, 〈â〉 = 0, 〈v̂〉 = 0, so it follows from Eq. (6b) that

〈â(t )δN̂e(t )〉 = 0. Then applying the cumulant-neglected clo-
sure method [56,57] in Eq. (B16) we write

〈â†(−ω1
′)δN̂e(ω1 − ω1

′)â(ω1
′′)δN̂e(ω2 − ω1

′′)〉
≈ 〈â†(−ω1

′)â(ω1
′′)〉〈δN̂e(ω1 − ω1

′)δN̂e(ω2 − ω1
′′)〉,
(B17)

taking into account that operators â and â† commute with
δN̂e. Relation (B17) is reminiscent of the cluster expansion
for correlations in the time domain [15] when〈

â†âδN̂2
e

〉 ≈ 〈â†â〉〈δN̂2
e

〉 + 2〈â†δN̂e〉〈âδN̂e〉. (B18)

For the laser with a low excitation the second term on the right
in Eq. (B18) is zero so〈

â†âδN̂2
e

〉 = 〈â†â〉〈δN̂2
e

〉
. (B19)

Equation (B17) is a “cluster expansion” for the Fourier-
component operators.

According to Eqs. (B3) and (B6)

〈â†(−ω1
′)â(ω1

′′)〉
= n(ω1

′)δ(ω1
′ + ω1

′′),

〈δN̂e(ω1 − ω1
′)δN̂e(ω2 − ω1

′′)〉
= δ2Ne(ω1 − ω1

′)δ(ω1 − ω1
′ + ω2 − ω1

′′). (B20)

We insert Eq. (B20) into Eq. (B17) and Eq. (B17) into
Eq. (B16) and carry out the integration in Eq. (B16) taking
into account the delta functions and come to

M = 1

(2π )2

∫ ∞

−∞

(∫ ∞

−∞
n(ω′)δ2Ne(ω1 − ω′

1)dω′
)

dω

= 1

2π

∫ ∞

−∞
SaNe (ω)dω. (B21)

We see from Eq. (B21) that the spectrum SaNe (ω) of the
operator product â(t )δN̂e(t )

SaNe (ω) = 1

2π

∫ ∞

−∞
n(ω′)δ2Ne(ω1 − ω′

1)dω′ (B22)

is a convolution of spectra n(ω) and δ2Ne(ω) of operators â(t )
and δN̂e(t ).

The structure of formula (B22) and the interpretation
of n(ω) as a probability density [see Eq. (B5)] points
out the interpretation of SaNe (ω). We calculate S̄aNe =
(2π )−1

∫ ∞
−∞ SaNe (ω)dω and, by analogy with Eq. (B5), define

the probability

d paNe (ω) = SaNe (ω)dω/(2π S̄aNe ). (B23)

This is the probability of the event that an emitter and the field
are in the band of states with the total energy of the emitter and
the field in the interval from h̄(ω0 + ω) to h̄(ω0 + ω + dω),
and SaNe (ω)/(2π S̄aNe ) is the probability density for such an
event.

Now we will comment on our perturbation approach. To
find some mean value, as in the mean photon number n, we do
not need to solve time-dependent equations (4) for operators.
It is enough to calculate the spectrum n(ω) and use Eq. (B4).
So instead of the linearization of equations of motion for
operators, we approximately calculate spectra with the help
of Eq. (B22). We calculate the field spectrum n(ω) neglecting
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by the population fluctuations, which is a zero-order approxi-
mation in the perturbation approach. The spectrum δ2Ne(ω) of
the population fluctuations will be found using results of the
the zero-order approximation. Then, when we know n(ω) and
δ2Ne(ω) (though approximately), we will use Eq. (B22) for
calculations of the spectrum SaNe (ω) of the operator product
â(t )δN̂e(t ). Knowing SaNe (ω) we can find from Eqs. (12a) and
(12b) any spectrum and mean value in the first order on the
population fluctuations and in the stationary case. The proce-
dure may be repeated in the higher-order approximations.

To preserve the commutation relations for Bose operators
of the lasing mode we calculate corrections to zero-order
diffusion coefficients.

APPENDIX C: DIFFUSION COEFFICIENTS

Generalized Einstein relations [40] for the polarization of
emitters lead to〈

d

dt
v̂†v̂

〉
= −γ⊥

〈
v̂†v̂

〉 + 2Dv†v

= f

〈
d

dt
N̂e

〉
= f γ‖(PNg − Ne), (C1)

so the diffusion coefficient

2Dv†v = f [γ⊥Ne + γ‖(PNg − Ne)]. (C2)

In a similar way we find

2Dvv† = f [γ⊥Ng − γ‖(PNg − Ne)]. (C3)

Using the energy conservation law (9) we write

2Dv†v = f γ⊥[Ne + (2κ/γ⊥)n],

2Dvv† = f γ⊥[Ng − (2κ/γ⊥)n]. (C4)

Using diffusion coefficients (C4) we calculate

〈[â0, â†
0]〉 = 1 + (4κ/γ⊥)n

(1 + 2κ/γ⊥)(Nth − N )
. (C5)

So diffusion coefficients (C4) break the Bose commutation
relations for â0 and they cannot be used in the zero-order
approximation.

Without population fluctuations, when 〈 d
dt N̂e〉 = 0 in

Eq. (C1), we have 2D(0)
v†v

= f γ⊥Ne and 2D(0)
vv† = f γ⊥Ng. It is

shown in the main text that such zero-order diffusion coeffi-
cients preserve the commutation relations 〈[â0, â†

0]〉 = 1.
The sum of diffusion coefficients (C4)

2Dv†v + 2Dvv† = f γ⊥N0 (C6)

does not depend on the population fluctuations. The same
must be true for the sum 2D(1)

v†v
+ 2D(1)

vv† . This is why we chose
the same N1 in diffusion coefficients (23).

APPENDIX D: EQUATIONS FOR POPULATION
FLUCTUATIONS

Using Eqs. (4) and the usual rule of the differentiation of
products we write equations for 
̂, given by Eq. (5), n̂ = â†â
and D̂ = f −1 ∑

i �= j v̂
†
i v̂i. Neglecting population fluctuations

we replace the population operators N̂e,g by their means Ne,g

and obtain

˙̂n = −2κ n̂ + �
̂ + F̂n, (D1a)

˙̂
 = −(κ + γ⊥/2)
̂

+ 2� f (n̂N + D̂ + Ne) + F̂
, (D1b)

˙̂D = −γ⊥D̂ + �N
̂ + F̂D, (D1c)

where N = Ne − Ng. Nonzero diffusion coefficients 2Dαβ ,
α, β = {n, 
, D} in correlations of Langevin forces
〈F̂α (t )F̂β (t ′)〉 = 2Dαβδ(t − t ′) are

2Dnn = 2κn, 2D

 = f [2κD + γ⊥N0n + (2κ + γ⊥)Ne]

2DDD = γ⊥(N0D + 2NeNg), (D2)

2D
n = 2Dn
 = κ
, 2D
D = 2DD
 = (γ⊥/2)N0
.

Diffusion coefficients (D2) are the same as the ones found
from the generalized Einstein relations [40], apart from the
term ∼2NeNg in 2DDD, this term must be added when
we neglect population fluctuations. The derivation of diffu-
sion coefficients (D2) will be presented in a forthcoming
paper.

We separate mean values and fluctuation operators in n̂, 
̂,
and D̂

n̂ = n + δn̂, 
̂ = 
 + δ
̂, D̂ = D + δD̂, (D3)

insert (D3) into Eqs. (D1) and obtain equations for mean
values

0 = −2κn + �
, (D4a)

0 = −(κ + γ⊥/2)
 + 2� f (nN + D + Ne), (D4b)

0 = −γ⊥D + �N
, (D4c)

and for fluctuation operators δn̂, δ
̂, and δD̂

δ ˙̂n = −2κδn̂ + �δ
̂ + F̂n, (D5a)

δ ˙̂
 = −(κ + γ⊥/2)δ
̂ + 2� f (δn̂N + δD̂) + F̂
,

(D5b)

δ ˙̂D = −γ⊥δD̂ + �Nδ
̂ + F̂D. (D5c)

Solving linear Eqs. (D5) by Fourier transform we obtain
δ
̂(ω). With δ
̂(ω) and diffusion coefficients (D2) we find
the spectrum δ2
(ω)

〈δ
̂(ω)δ
̂(ω′)〉 = δ2
(ω)δ(ω + ω′). (D6)
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