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Zhen-Rui Li,1 Junhua Dong,1 Yafang Xu,2 Bingsuo Zou,3 and Yongyou Zhang 1,*

1Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology,
Beijing 100081, China

2College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
3MOE and Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, School of Physical Science

and Technology, Guangxi University, Nanning 530004, China

(Received 16 November 2021; revised 30 April 2022; accepted 9 May 2022; published 19 May 2022)

Quantum interference, responsible for a number of resonant optical phenomena, always intrigues researchers
because of its application in optical devices. This work studies it in multiwaveguide systems bridged by
Jaynes-Cummings emitters (JCEs) based on the scattering matrix theory. Two types of quantum interference
are distinguished here. The first is between the incident wave and those scattered from the JCEs, while the
second is only among those scattered waves. The first type leads to the two transmission valleys at the two
eigenfrequencies of the JCEs in single-waveguide–single-JCE coupled systems. However, the second type is
responsible for the narrow transmission peaks in single-waveguide–multi-JCE coupled systems, locating in the
above transmission valleys. This work first shows the properties of the second type of quantum interference in
detail and then discusses its two applications. On the one hand, the second type of quantum interference can be
used to tailor the transmission spectra to achieve the electromagnetically-induced-transparency-like line shapes
with a large group delay. On the other hand, it can also lead to the single-photon jumping between two certain
waveguides with a nearly 100% chance in multiwaveguide systems by switching on or off some of the couplings
of the JCEs to the waveguides. These applications with small peak widths commonly require a small loss and
might have potential in quantum informatics.
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I. INTRODUCTION

In the past few decades, the transport properties of
single photons (SPs) in optical waveguides (WGs) [1–5]
have attracted extensive interest due to the related potential
applications in quantum technologies, optical quantum com-
putation, and so on [6–16]. Platforms of optical quantum
WGs include optical nanofibers [9,17,18], superconducting
microwave transmission lines [6,19,20], and diamond WGs
[21,22]. Since the SPs in these WGs hardly interact with
the environment, they are often taken to be ideal carriers
of quantum information. To control the flight of SPs, quan-
tum emitters, such as optical cavities [2,5], two-level atoms
[12,23–30], quantum dots [31–33], Jaynes-Cummings emit-
ters (JCEs) [34–36], and superconducting qubits [37], are
commonly used. These quantum emitters scatter the inci-
dent SPs backward or forward. In single-WG systems, the
quantum interference between the incident wave and the
scattered ones can lead to the transmission valleys [23,38],
with zero transmissivity at the eigenfrequencies of quan-
tum emitters, which has potential in designing SP switches
[14,39,40], SP routers [36,39,41–47], electromagnetically in-
duced transparency (EIT) [48–50], Fano resonance [51–53],
atomic mirrors and cavities [54–57], and so on. In the case
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with multiple quantum emitters, the quantum interference
among the scattered waves from multiple quantum emitters
would unavoidably occur, and its physical origination dis-
tinguishes it from that between the incident wave and the
scattered ones. Accordingly, these two types of quantum inter-
ference will generate different phenomena for the SP transport
in WGs. To distinguish them, we call the quantum interference
between the scattered waves due to quantum emitters and the
incident one the first type and that only among the scattered
waves the second type throughout this work.

Quantum interference implies that all participating light
fields superpose to form a resultant field with greater, lower,
or similar amplitude. Constructive and destructive interfer-
ences stem from the interaction of fields that have identical
(or nearly identical) frequencies. Quantum interference af-
fects the transport properties of the SPs to a large extent.
As mentioned above, the first type of quantum interference
is responsible for the transmission valleys at the eigenfre-
quencies of quantum emitters [23,38]. However, the second
type can further produce the narrow transmission peaks
in the transmission valleys [5,26]. Hereafter, the transmis-
sion valleys always represent those due to the first type of
quantum interference, while the narrow transmission peaks
correspond to those due to the second type of quantum in-
terference for clarity. Generally speaking, the width of the
transmission valleys is much larger than that of the narrow
transmission peaks, which will be confirmed in the following
contexts.
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Researchers did not distinguish the second type of quantum
interference from the first type previously. This work will
mainly focus on the second type of quantum interference and
its influence on the SP transport in WG-JCE coupled systems,
including the single- and multi-WG cases. The JCE consists
of a cavity and an embedded two-level atom [58–60]. This
WG-JCE coupled system is more general than the structure
with a single WG coupled to a chain of two-level atoms [26].
Therefore, more potential applications can be expected, two
of which are discussed in this work. The first one is that the
second type of quantum interference can be used to tailor the
transmission line shape to achieve the EIT-like peaks with a
large group delay. The second one is that the second type of
quantum interference can induce an ∼100% chance for SP
jumping between two particular WGs.

To describe the present WG-JCE coupled system, we or-
ganize this work as follows. First, we extend the scattering
matrix theory previously reported [2,5,26] to suit the multi-
WG systems in Sec. II. In Sec. III, the structure of a single WG
coupled to several JCEs is taken as an example to show the key
characteristics of the second type of quantum interference. In
Sec. IV, we focus on the tailoring effect of the second type
of quantum interference on SP transmission in the single-WG
system and subsequently discuss a scheme for generating an
ultranarrow EIT-like transmission with a large group delay.
Section V shows how the second type of quantum interference
induces an ∼100% chance for a SP to jump between two
particular WGs, based on which a SP router is suggested. In
Sec. VI, the effect of losses in the system is discussed. Finally,
we arrive at a conclusion in Sec. VII.

II. MODEL AND SCATTERING MATRIX

The model consists of M identical WGs, which are bridged
by N identical JCEs. One example is depicted in Fig. 1(a)
with four WGs bridged by three JCEs. Obviously, it is more
general than structures with no more than two WGs [26,36].
The terminals of the WGs on the left (right) are denoted as the
input (output) ports, i.e., In-m (Out-m), with m = 1, 2, . . . , M,
and the JCEs are numbered from left to right, denoted by JCE-
n, with n = 1, 2, . . . , N . For clarity, the two WGs bridged by
JCE-n are denoted as WG-mn and WG-mn+1. The Hamilto-
nian for such a model reads

H = HWG + HJCE + HI, (1)

where HWG, HJCE, and HI describe the WGs, the JCEs, and
their interactions, respectively. The Hamiltonian of the WG
part has the form [5,35,45,61–63]

HWG =
M∑

m=1

∫
dx[L̂†

m(x)ω̂(+i∂x )L̂m(x)

+ R̂†
m(x)ω̂(−i∂x )R̂m(x)], (2)

where L̂m(x) and R̂m(x) [L̂†
m(x) and R̂†

m(x)] are the annihilation
(creation) field operators of the leftward- and rightward-
moving photons at coordinate x in WG-m. Since all WGs are
taken to be identical, their energy operators are identical too,
denoted as ω̂(±i∂x ) for the leftward- and rightward-moving
photons, respectively. We linearize ω̂(±i∂x ) at the wave vec-
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FIG. 1. (a) An example of a multi-WG model: four WGs with
four input terminals (In-m, m = 1, 2, 3, 4) and four output terminals
(Out-m) bridged by three JCEs (JCE-n located at xn, n = 1, 2, 3). The
JCEs are numbered from left to right. tm,n (rm,n) represents the ampli-
tude of the rightward-moving (leftward-moving) SP wave function in
WG-m between positions xn and xn+1. (b) Slice of the M-WG system
near JCE-n that bridges WG-mn and WG-mn+1. The amplitudes of
the SP wave function on the left (right) side of JCE-n are denoted by
tm,n−1 and rm,n−1 (tm,n and rm,n), with m = 1, 2, · · · , M. The coordi-
nate axis Ox is given above each panel.

tor ∓k0, that is, ω(∓k) = ω0 − vgk0 ∓ ivg
∂
∂x , with k being

the wave vector, vg being the photon group velocity, and ω0

being the intercept energy [2]. For ease of writing, the Plank
constant is set to h̄ = 1 throughout this work.

The Hamiltonian for the N JCEs reads [61,64,65]

HJCE =
N∑

n=1

[ωcĉ†
nĉn + ωeê†

nên + ωgĝ†
nĝn

+ �(ĉ†
nσ̂

−
n + σ̂+

n ĉn)], (3)

where ĉ†
n (ĉn) is the bosonic creation (annihilation) operator of

the cavity in JCE-n, with ωc being the eigenfrequency. ê†
n and

ĝ†
n (ên and ĝn) are the electron creation (annihilation) operators

in the excited and ground states with energies of ωe and ωg for
the two-level atom in JCE-n. The atomic raising (lowering)
ladder operator is defined as σ̂+

n ≡ ê†
nĝn (σ̂−

n ≡ ĝ†
nên). The

cavity-atom Rabi couplings in all JCEs are denoted as �. Note
that there are N JCEs considered in the system.

The interaction between the WGs and JCEs is described by
[36,65]

HI =
N∑

n=1

∫
dxV0δ(x−xn)ĉ†

n[L̂mn (x) + R̂mn (x)

+ L̂mn+1(x) + R̂mn+1(x)] + H.c. (4)

Here, the δ-type function V0δ(x−xn) is utilized to describe the
coupling between the nth cavity and the corresponding WG-
mn and WG-mn+1. It is suitable because the cavity width is
less than the wavelength of the WG photons [66].
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The single-particle eigenstate of H takes the following
form [2,65]:

|�〉 =
M∑

m=1

∫
dx[Rm(x)R̂†

m(x) +Lm(x)L̂†
m(x)]|∅〉

+
N∑

n=1

(Cnĉ†
n +Anσ̂

+
n )|∅〉. (5)

The vacuum state |∅〉 implies that there is no photon in either
the WGs or cavities and that all two-level atoms are in the
ground state. Cn (An) represents the excitation amplitude of
the nth cavity (atom). The rightward- and leftward-moving SP
wave functions Rm(x) and Lm(x) in WG-m read [26,36]

Rm(x) = eikx
[
tm,0θ (x1−x) + tm,Nθ (x−xN )

+
N−1∑
n=1

tm,nθ (x−xn)θ (xn+1−x)
]
, (6a)

Lm(x) = e−ikx

[
rm,0θ (x1−x) +

N−1∑
n=1

rm,nθ (x−xn)θ (xn+1−x)

]
.

(6b)

The unit step function θ (x) takes a value of 1 for x > 0, 0
for x < 0, and 1/2 for x = 0. tm,n and rm,n are the amplitudes
of the rightward- and leftward-moving SP wave functions in
WG-m between xn and xn+1 [see Fig. 1(b)]. They can be
found by substituting Eqs. (1) to (6) into the time-independent
Schrödinger equation [2,64],

H |�〉 = ω|�〉,

where ω is the photon energy.
For a multi-WG model with JCEs, it is not an easy task

to write down the solution explicitly, and thus, we turn to
the scattering matrix method. The starting point is to find the
transfer matrix Mn that connects the constructed vectors Fn

and Fn−1, namely,

Fn = MnFn−1, (7)

where

Fn = (tn, rn)T ,

tn = (t1,n, t2,n, . . . , tmn,n, tmn+1,n, . . . , tM,n)T ,

rn = (r1,n, r2,n, . . . , rmn,n, rmn+1,n, . . . , rM,n)T .

T gives the transposition of the vector. WG-mn and WG-mn+1
are bridged by JCE-n. The transfer matrix Mn is 2M × 2M,
and therefore, it can be divided into four M × M matrices,

Mn =
(

Mtt
n Mtr

n
Mrt

n Mrr
n

)
. (8)

Note that there is no JCE except JCE-n in the range
of (xn−1, xn] [see Fig. 1(b)]. Accordingly, these four

Mαβ
n (α, β = r, t ) present a block-diagonal form, i.e.,

Mαβ
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎝Imn−1

Y αβ
n

IM−mn−1

⎞
⎠ for αβ = rr or tt,

⎛
⎝Omn−1

Y αβ
n

OM−mn−1

⎞
⎠ for αβ = tr or rt,

(9)

where I j and O j denote the j × j unitary and zero matrices,
respectively. All Y αβ

n are 2 × 2. After some algebra, four Y αβ
n

can be derived as

Y tt
n =

(
1 − iV

ξ
− iV

ξ

− iV
ξ

1 − iV
ξ

)
,

Y tr
n =

(− iV
ξ

e−i2kxn − iV
ξ

e−i2kxn

− iV
ξ

e−i2kxn − iV
ξ

e−i2kxn

)
,

Y rr
n = (

Y tt
n

)∗
, Y rt

n = (
Y tr

n

)∗
, (10)

with effective coupling strength V ≡ V 2
0 /vg, atomic transition

energy ωa = ωe − ωg, and ξ ≡ ω − ωc − �2

ω−ωa
. The asterisk

(*) represents the conjugate operation. The zeroth points of
ξ ≡ ω − ωc − �2

ω−ωa
determine the two eigenfrequencies of

the JCE, i.e.,

ω± = 1

2
[ωc + ωa ±

√
(ωc − ωa)2 + 4�2]. (11)

Using Mn, one can naturally find the total transfer matrix
by multiplying them all and therefore can also find the system
transmissivities and reflectivities. However, all Mn tend to
diverge near the JCE eigenfrequencies ω±, and consequently,
the transfer matrix method is commonly infeasible for reliably
calculating the transport properties of the system. This diffi-
culty can be overcome by using the scattering matrix method.
Following Ref. [36], we define the scattering matrix Sn as(

tn

r0

)
= Sn

(
t0

rn

)
=

(
Stt

n Str
n

Srt
n Srr

n

)(
t0

rn

)
. (12)

Here, we also divide Sn into four M × M matrices Sαβ
n , which

can be found by an iteration method, that is [36],

Stt
n = (

W tt
n − Str

n−1W
rt
n

)−1
Stt

n−1,

Str
n = (

W tt
n − Str

n−1W
rt
n

)−1(
Str

n−1W
rr
n −W tr

n

)
,

Srt
n = Srt

n−1 + Srr
n−1W

rt
n Stt

n ,

Srr
n = Srr

n−1

(
W rt

n Str
n +W rr

n

)
,

(13)

where W n is the inverse of Mn, i.e.,

W n = M−1
n =

(
W tt

n W tr
n

W rt
n W rr

n

)
. (14)

Considering that there is no incidence on all the right termi-
nals Out-m (m = 1, 2, . . . , M), we can directly set rN ≡ 0.
Accordingly, the transmissivities from In-m′ to Out-m, T mm′ ,
and the reflectivities from In-m′ to In-m, Rmm′ , are equal to

T mm′ = ∣∣(Stt
n

)
mm′

∣∣2
, Rmm′ = ∣∣(Srt

n

)
mm′

∣∣2
. (15)
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For definiteness, we list the parameters kept unchanged
throughout the work here. The units of the energy, time,
wave vector, length, and group velocity, respectively, are ω0,
τ0 ≡ 2π/ω0, k0, λ0 ≡ 2π/k0, and ω0/k0. All JCEs are iden-
tical to each other, and so are all WGs. For the JCEs, we
take the cavity eigenfrequency ωc = ω0, the atomic transition
energy ωa = ω0, and the Rabi coupling between the cavity
and atom � = 0.02ω0. In addition, we assume the group ve-
locity of the WG photons vg = 0.6ω0/k0. The values of these
parameters are consistent with those chosen in previous works
[1,2,5,9,36,40].

III. SECOND TYPE OF QUANTUM INTERFERENCE

This section focuses on the properties of the second type
of quantum interference in the single-WG system coupled to
several identical JCEs. The key point is to understand the
narrow peaks induced by the second type of quantum inter-
ference, that is, those peaks near the JCE eigenfrequencies
(ω− = 0.98ω0 and ω+ = 1.02ω0) in Fig. 2 as two or more
JCEs are considered. The distances between any two adjacent
JCEs are all set to dn = 0.5λ0. For the case with one JCE, only
two transmission valleys appear at the JCE eigenfrequencies
due to the first type of quantum inference [see the black line
with N = 1 in Fig. 2(a)]. Figures 2(a) and 2(b) show that the
narrow peaks have the following main characteristics. (i) They
appear in the two transmission valleys and are near the JCE
eigenfrequencies ω± [see Fig. 2(a)]. (ii) The narrow peaks
near ω− locate on the right side of ω−, while those near
ω+ locate on the left side of ω+ [see the enlarged version
of Fig. 2(a) in Fig. 2(b)]. (iii) The number of narrow peaks
increases with an increase in the number of JCEs, equal to
N − 1. (iv) The widths of these peaks are much narrower with
respect to the effective coupling strength V between the WG
and cavities.

Although some of these characteristics were discussed in
Refs. [5,26], their origins have not been stated clearly enough.
Since these characteristics are strongly related to the poten-
tial applications of the second type of quantum interference,
we here discuss their origins in detail. We start from the
single-WG system coupled to two JCEs for simplicity. In this
case, only one narrow peak appears [5] [see the red lines in
Figs. 2(a) and 2(b)], which is consistent with the single-WG
structure coupled to a chain of two-level atoms [26]. For this
single-WG system coupled to two JCEs, the system transmis-
sivity reads

T = 1

{1 + V 2

ξ 2 [cos(2kd1) − 1]}2 + V 2

ξ 2

[
2 + V

ξ
sin(2kd1)

]2 . (16)

To find the 100% transmission peaks, we set T = 1 in the
above equation and obtain the condition as

cos(2kd1) = V 2 − ξ 2

V 2 + ξ 2
, sin(2kd1) = − 2V ξ

V 2 + ξ 2
. (17)

On the one hand, Eq. (17) can identify the 100% transmis-
sion peak at ω0. Because ξ ≡ ω − ωc − �2

ω−ωa
→ ±∞ when

ω → ω0, all terms containing V
ξ

in Eq. (17) are zero, implying
T = 1. This situation can always occur, regardless of the
values of the other parameters, for example, the distance d1
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FIG. 2. (a) SP transmission spectra for a single WG coupled to
a chain of N identical JCEs. (b) Enlarged version of (a) near the
two eigenfrequencies of the JCEs. The schematics of the single-WG
system coupled to several identical JCEs is drawn at the top. The
distances between any two adjacent JCEs are set to d1 = d2 = · · · =
dN−1 = 0.5λ0. For easy observation, the lines are offset from the
bottom with a step of 1. In (a) and (b), V = 0.005ω0 is adopted.

between the two JCEs (denoted in the schematic at the top
of Fig. 2). On the other hand, Eq. (17) can also identify the
narrow peaks near ω±. As ω → ω±, we have ξ → 0, and
accordingly, cos(2kd1) → 1, and sin(2kd1) → − 2ξ

V . Conse-
quently, the phase 2kd1 should approximate 2qπ (q is an
integer), which gives d1 ∼ 2qπ/2k0 ≡ qλ0/2. This is satisfied
by Fig. 2, in which all dn = 0.5λ0. Let us focus on the energy
point ω− = 0.98ω0. On this point, the wave vector k is a
little less than k0, leading to the phase 2kd1 being a little less
than 2π . Subsequently, sin(2kd1) is a small, negative quantity,
requiring a small, positive ξ [see Eq. (17)]. This indicates that
ω should be larger than ω−; that is, the narrow peaks should
locate on the right side of ω−, which is consistent with the
numerical results in Ref. [26]. The situation near the energy
point ω+ is the reverse of that near ω−, and the corresponding
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narrow peaks locate on the left side of ω+. Note that the first
type of quantum interference between the incident wave and
scattered ones from the JCEs is responsible for the wide trans-
mission valleys, in which the narrow peaks appear due to the
second type of quantum interference, which is only among the
scattered waves. The forward-scattering waves from the two
JCEs constructively interfere with each other. As more JCEs
are introduced, it is rational to expect more narrow peaks. The
conclusion is that the number of narrow peaks equals N − 1
near each eigenfrequency of the JCE [26] (N is the number of
JCEs).

The widths of the narrow peaks for the case with two
JCEs [denoted as w± for the right and left narrow peaks;
see Fig. 2(b)] can be obtained by Taylor expansion and are
approximately equal to

w±
2V

≈ (ω±
pos − ω±)2

V 2
, (18)

where ω+
pos (ω−

pos) denotes the position of the right (left) nar-
row peak. Since ω±

pos are very close to ω±, respectively, the

term |ω±
pos−ω±

V | in Eq. (18) is much smaller than 1, being about
5.1%. Therefore, the widths of the narrow peaks are only
about 0.26% times the widths of the transmission valleys,
which are about 2V . This narrow-width characteristic can
also be observed in the case with more JCEs, for example,
that with N = 7 in Fig. 2(b). The farther the narrow peaks
are away from ω±, the wider the narrow peaks become. For
N > 3, the complexity of the transmission formula makes it
difficult to find an explicit expression for all narrow peaks.
Accordingly, we will mainly study the potential applications
of these narrow peaks from the numerical view. Two cases will
be discussed in the following. One is transmission tailoring,
which can be used to achieve an EIT-like peak with a large
group delay. The other is ∼100% SP jumping between two
particular WGs, which can serve as a SP router by switching
on or off the couplings of the JCEs to the WGs. These two
cases are given in Secs. IV and V, respectively.

IV. TRANSMISSION TAILORING

The present section focuses on the transmission tailoring
of the second type of quantum interference. Since the distance
between adjacent JCEs d is a crucial parameter, we plot its in-
fluence on the transmission spectra in Fig. 3(a). This influence
was reported in several previous works [5,26,27,67], but their
key points were not the tailoring effect discussed here.

The spectra in Fig. 3(a) correspond to the structure of a
single WG coupled to two JCEs, the distance between which
is denoted as d1. Two characteristics can be identified when
d1 is away from 0.5λ0. One is that the narrow peaks gradually
transform into the asymmetric Fano line shape, and the other
is that the peak width becomes wider and wider. These two
characteristics can be understood from Eqs. (16) to (18). The
larger the value of | sin(2kd1)| is, the larger the value of
|ω±

pos − ω±| [see Eq. (18)] is, and therefore, the widths of the
narrow peaks increase. As the Fano peaks reach the edges
of the transmission valleys, they can tailor the steepness of
the valley edge. In the cases with d1 = 0.3λ0 and 0.4λ0, the
Fano peaks make the right edges steeper, while in the cases
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FIG. 3. (a) Transmission spectra of a single WG coupled to two
JCEs with different d . Lines are offset from the bottom with a step of
1. (b) Transmission spectra of a single WG coupled to three JCEs (red
solid line). For comparison, the bottom and top lines in (a) are copied
as the dashed black and dotted dark yellow lines, respectively. The
steepness of the transmission valleys is tailored. (c) Transmission
spectra of a single WG coupled to four JCEs. (d) Phase of the
transmission coefficient corresponding to (c). The two insets plot the
phase variations around the two narrow transmission peaks in (c).
(e) Photon group delay corresponding to (c) or (d). In all panels,
V = 0.005ω0 is adopted, and the model structures are similar to that
in Fig. 2.

with d1 = 0.6λ0 and 0.7λ0, the Fano peaks make the left ones
steeper. As a rational conjecture, can the Fano peaks make
both edges steeper? The answer is yes. The red solid line
in Fig. 3(b) provides an example in which three JCEs are
considered. The distance between the first two JCEs is set
to d1 = 0.3λ0 and that between the last two is set to d2 =
0.7λ0. The right and left valley edges should coincide with the
corresponding two-cavity cases with d1 = 0.3λ0 and 0.7λ0,
respectively. For comparison, we copy the bottom and top
lines in Fig. 3(a) as the black dashed and dark yellow dotted

053712-5



LI, DONG, XU, ZOU, AND ZHANG PHYSICAL REVIEW A 105, 053712 (2022)

lines in Fig. 3(b), respectively. Obviously, their corresponding
edges are consistent with those of the red solid line. This
tailoring effect from adjusting the distances between adjacent
JCEs leads to an approximate rectangular stop band for the
transmission.

Such a stop band not only displays an application as a
filter intuitively but also can be used to induce the ultranar-
row transmission peak. In order to demonstrate this, the four
JCEs are introduced to couple to a single WG, for which
the distances between adjacent JCEs are set to d1 = 0.3λ0,
d2 = 0.5λ0, and d3 = 0.7λ0 [see Fig. 3(c)]. On the one hand,
the stop bands are still retained. On the other hand, the left and
right narrow peaks appear near ω±. These two peaks have a
very small width, for which the ratio w±

2V is ∼7.9 × 10−6. With
respect to the ratio value of 0.26% for the two-cavity case [red
solid line in Fig. 2(a)], such an arrangement of the four JCEs
reduces the widths of the narrow peaks by ∼300 times. When
comparing this result with the narrowest peak in the case with
four JCEs shown in Fig. 2 (blue line with N = 4), one can also
find the peak width decreases ∼17 times. The more valuable
point may be the existence of only one narrow peak in each
transmission valley, that is, a lack of perturbation from other
narrow peaks.

Owing to the very small widths, the two narrow peaks
in Fig. 3(c) have a wonderful property for achieving a large
group delay. The phase of the transmission coefficient is
plotted as a function of the photon frequency in Fig. 3(d),
rapidly increasing around the two narrow peaks. For clar-
ity, the phase variations around the two narrow peaks are
enlarged; see the insets in Fig. 3(d). The first derivative of
the phase with respect to the photon energy gives the group
delay, which is shown in Fig. 3(e). As expected, two sharp
peaks are observed, with the values being about 4 × 106τ0

(τ0 ≡ 2π/ω0). This indicates that such a narrow transmission
peak due to the second type of quantum interference has a
potential application in photon storage [64].

To decrease the disturbance of other states on the narrow
peaks, one can increase the effective coupling strength V
between the WG and cavities to enlarge the width of the
transmission valley [see Fig. 4(a), where the black dashed
line is copied from Fig. 3(c) for comparison]. This is because
the width of the transmission valley is almost proportional to
V . When five JCEs are suitably arranged along the WG, two
narrow peaks can be expected in each transmission valley [see
Fig. 4(b), whose model structure is similar to that at the top
of Fig. 2]. The four distances between two adjacent JCEs are
set to d1 = 0.3λ0, d2 = d3 = 0.5λ0, and d4 = 0.7λ0. In fact,
if more JCEs are introduced, one can achieve more peaks in
each transmission valley.

On the whole, we prove here that the transmission spectra
can be tailored by using the second type of quantum interfer-
ence and show the potential application of the related narrow
peaks on achieving a large group delay.

V. SP JUMPING WITH ∼100% CHANCE

This section focuses on multi-WG systems to study the
SP jumping between two particular WGs where the second
type of quantum interference plays a key role. In multi-WG
systems, the second type of quantum interference can lead to
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(units of 0)

Δ Δ

d1 = 0.3 0

FIG. 4. (a) Transmission spectra of a single WG coupled to four
JCEs with different V . The width of the transmission valley increases
as V increases. (b) Transmission spectra of a single WG coupled to
five JCEs. Two narrow transmission peaks can be found in each trans-
mission valley; see the insets. In (a), we set d1 = 0.3λ0, d2 = 0.5λ0,
and d3 = 0.7λ0, the same as the values adopted in Fig. 3(c). In (b),
V = 0.005ω0 is adopted. Note that the model structures in (a) and
(b) are drawn in Fig. 2.

not only the narrow transmission peaks, as discussed above,
but also the narrow transmission valleys, as shown later.

The two-WG system is schematically drawn at the top of
Fig. 5, where the distances between any two adjacent JCEs
are all set to d1 = d2 = · · · = dN−1 = 0.5λ0. Since the two
WGs are identical, we have T11 = T22, T21 = T12, and R11 =
R21 = R12 = R22 [see Figs. 5(a)–5(c), respectively]. Let us
first focus on the case with two JCEs (i.e., N = 2). In this
case the expressions for the transmission and reflection can be
found as follows [36]:

T 11 = T 22 =
∣∣∣∣∣
1 + i 2V

ξ
+ 2V 2

ξ 2 (ei2kd1 − 1)

1 + i 4V
ξ

+ 4V 2

ξ 2 (ei2kd1 − 1)

∣∣∣∣∣
2

, (19a)

T 21 = T 12 =
∣∣∣∣∣

i 2V
ξ

+ 2V 2

ξ 2 (ei2kd1 − 1)

1 + i 4V
ξ

+ 4V 2

ξ 2 (ei2kd1 − 1)

∣∣∣∣∣
2

, (19b)

R11 = R22 = R21 = R12 =
∣∣∣∣∣

2V 2

ξ 2 (ei2kd1−1) + iV
ξ

(ei2kd1+1)

1 + i 4V
ξ

+ 4V 2

ξ 2 (ei2kd1 − 1)

∣∣∣∣∣
2

.

(19c)

Since ξ = 0 when ω = ω±, all T and R are equal to 1
4 ,

indicating that the first type of quantum interference cannot
induce SP jumping between the two WGs with an ∼100%
chance. However, T21 and T12 give narrow transmission peaks
near ω±. Meanwhile, T11, T22, and all R present the narrow
transmission valleys. These can be seen from the bottom black
curves in Figs. 5(a)–5(c). The SP jumping between the two
WGs with an ∼100% chance means T21 = T12 = 1. Consider-
ing ξ ≈ 0 for ω near ω±, we find the narrow peaks of T21 or
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FIG. 5. Spectra (a) of T11 = T22, of (b) T21 = T12, and (c) of
R11 = R21 = R12 = R22. The schematics of the two WGs coupled to
N identical JCEs is drawn at the top. The distance between any two
adjacent JCEs is set to 0.5λ0, i.e. d1 = d2 = · · · = dN−1 = 0.5λ0. For
convenience of observation, lines are offset from the bottom with a
step of 1. Note that V = 0.005ω0 is adopted in all cases.

T12 require

cos(2kd1) ≈ 1 − ξ 2

2V 2
, sin(2kd1) ≈ − ξ

V
. (20)

This condition is a little different from Eq. (17), where
cos(2kd1) ≈ 1 − 2ξ 2

V 2 and sin(2kd1) ≈ − 2ξ

V . Equation (20)
leads to the narrow peaks and valleys all locating on the right
side of ω− and the left side of ω+, consistent with those in
single-WG systems. Under such a condition, we have T21 =

T12 ≈ 1 − ξ 2

2V 2 . Because | ξ

V | � 1, the SP jumping between the
two WGs can reach ∼100%. Numerical calculations show that
it can be up to 99.3% for the two-WG structure with two JCEs.

When more than two JCEs are introduced, the line shapes
of the spectra become complicated. In the transmission spec-
tra, not only the narrow peaks but also the narrow valleys
can appear [see Figs. 5(a) and 5(b)]. There are several main
characteristics, listed here for clarity. (i) The chance of the SP
jumping between the two WGs (see the narrow peaks of T21

or T12 marked by the gray arrows) decreases as the number
of JCEs increases. In Fig. 5(b), the chance decreases from
99.3% for N = 2 to 94.5% for N = 7 because |ξ | increases
as the corresponding narrow peaks gradually move away from
ω±. This is consistent with the approximate expression T21 =
T12 ≈ 1 − ξ 2

2V 2 in the two-JCE case. (ii) The narrow peaks and
valleys alternately appear in each transmission spectrum, con-
sistent with the behavior of the common wave interference,
i.e., alternately constructive and destructive. (iii) The total
number of the narrow valleys and peaks equals N − 1 near
each eigenfrequency of the JCE, consistent with the result
in the single-WG system (see Fig. 2). (iv) The narrow peaks
(valleys) of T21 or T12 correspond to the narrow valleys (peaks)
of T11 or T22 [compare Fig. 5(b) with Fig. 5(a)]. (v) Only the
narrow valleys exist in the reflection spectra [see Fig. 5(c)].
This is intuitive since the positions of these narrow valleys
correspond to the narrow peaks of either T11 or T21 (or of either
T12 or T22).

It has been shown that the ∼100% SP hopping between
the two WGs can be achieved by using the transmission peaks
marked by the gray arrows in Fig. 5(b). Based on this, we
can further achieve the SP hopping in systems with more
than two WGs by switching on or off some of the couplings
of the JCEs to the WGs (see Fig. 6, where four WGs are
considered as an example). Without loss of generality, the
two-WG structure coupled to three JCEs, i.e., the case with
N = 3 in Fig. 5, is used to build the model in Fig. 6. That is,
any two adjacent WGs are bridged by three JCEs, which are
named group 1 (G-1), group 2 (G-2), and group 3 (G-3; see
Fig. 6). The distance between any two adjacent JCEs is set to
d = 0.5λ0. When the couplings of the three groups of JCEs
to the WGs are all switched off, the incident SP from In-1
can be transported only to Out-1, reflected by the spectra T11

in Fig. 6 (the bottom black line) with a 100% chance. When
the couplings of G-1 (G-1 and G-2) JCEs are switched on, the
peak values of T21 (T31) can reach 98.5% (96.7%), indicating
the SP can be transported from In-1 to Out-2 (Out-3) with high
efficiency. When all the couplings of the JCEs are switched
on, we can get the peak values of T41, which are about 94.8%.
As a result, a SP router can be achieved by switching on or off
the couplings of the JCEs to the WGs.

VI. EFFECTS OF LOSSES

Commonly, losses are unavoidable in experiments. This
section focuses on the effects of the cavity and atom losses on
the ultranarrow EIT-like transmission peak (Sec. IV) and the
SP jumping between two WGs (Sec. V). Since the eigenfre-
quency of each cavity and their corresponding two-level atoms
are tuning (ωa = ωc), the cavity and atom losses have almost
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FIG. 6. Transmission spectra from In-1 to Out-m (m = 1, 2, 3, 4)
while switching on or off some of the couplings between the WGs
and JCEs. The schematics of four WGs coupled to nine JCEs is
drawn at the top, and nine JCEs are separated into three groups: G-1,
G-2, and G-3. The distance between any two adjacent JCEs is set to
d = 0.5λ0, and V = 0.005ω0 is always adopted. Here, the index m in
Tm1 (m = 1, 2, 3, 4) also means that the former m − 1 groups of the
JCEs are switched on and the remaining groups are switched off.

the same influence when they are less than �, and thus, this
section takes only the effect of the atom loss as an example.
The dissipation of the atom γa can be added by changing ωa

to ωa − iγa in Eq. (10).
The effect of the atom losses on the EIT-like peaks in

Fig. 3(c) is plotted in Fig. 7(a), where the black solid line
is copied from Fig. 3(c) for comparison. In Fig. 7(a), a
single WG is coupled to four JCEs with dissipative atoms.
The FWHM of the black solid line in Fig. 7(a) is about
7.9 × 10−8ω0. It is obvious that the value of the EIT-like
narrow peaks decreases as the loss increases [see Fig. 7(a)].
When γa = 10−7ω0 is larger than the FWHM, the peak value
decreases to a small value. This can be understood intuitively
in physics since the loss commonly corresponds to the peak
width.

Such an understanding also applies to the SP jumping
between two WGs [see Fig. 7(b)] since the SP jumping is
also based on the narrow peaks. The model structure is drawn
at the top of Fig. 6, and only the couplings of the G-1 JCEs
are switched on. For comparison, we copy the red solid line

FIG. 7. (a) Transmission spectra of a single WG coupled to
four JCEs with dissipative atoms. The three distances between two
adjacent JCEs are set to d1 = 0.3λ0, d2 = 0.5λ0, and d3 = 0.7λ0,
consistent with those used in Fig. 3(c). The value of the narrow peak
decreases as the atom loss γa increases. (b) Transmission spectra of
the two-WG system coupled to three JCEs with the dissipative-atom
case. The structure is drawn at the top of Fig. 6, and only the
couplings of the G-1 JCEs are switched on. Note that V = 0.005ω0

is adopted in all cases.

in Fig. 6 as the black solid line in Fig. 7(b), whose FWHM
is about 2.5 × 10−4ω0. The peak value decreases with in-
creasing γa. Although the peak value has an obvious decrease
as γa = 3 × 10−4ω0, such a decrease is not large as γa =
10−4ω0. Considering the Q factor can reach 104 for many
types of optical cavities, the SP jumping between two WGs
can be achieved in experiments. Speaking simply, the smaller
the loss of the atoms and cavities in the system is, the easier
achieving the narrow EIT-like shape and SP jumping between
two WGs is. As a result, the narrow peaks in the transmission
lines due to the second type of quantum interference com-
monly need a high-Q cavity.

VII. CONCLUSION

Quantum interference plays an important role in quan-
tum phenomena and is responsible for a number of resonant
phenomena in optics. This work studied two potential ap-
plications in waveguide–Jaynes-Cummings-emitter coupled
systems based on existing scattering matrix theory. Two
types of quantum interferences were distinguished. One is
that between the incident wave and the scattered waves
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from the Jaynes-Cummings emitters, and the other is that
among only the scattered waves. We first derived the reso-
nant condition of the second type of quantum interference
in the case of a single waveguide coupled to two Jaynes-
Cummings emitters; namely, the phase deviation between
adjacent Jaynes-Cummings emitters should be ∼2qπ (q is
an integer). Then we discussed its two potential applications,
i.e., single-photon transmission tailoring and single-photon
jumping between two particular waveguides. The former
was implemented on the single-waveguide system cou-
pled to several Jaynes-Cummings emitters. By adjusting the
distance between the Jaynes-Cummings emitters, an ultranar-
row transmission peak was achieved in a transmission-stop
window, which can result in an electromagnetically-induced-
transparency-like transmission with a large group delay, up

to 4 × 106 times the photon oscillation period. The latter
application was implemented on the multiwaveguide system.
The second type of quantum interference can lead to the
chance of single-photon jumping between certain waveguides
reaching 95%, based on which a single-photon router can
be achieved by switching on or off the couplings of Jaynes-
Cummings emitters to waveguides. These two applications
need system losses that are approximately the same as or less
than the widths of the concerned transmission peaks. They
might extend the potential applications of waveguide systems
in quantum informatics.
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