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Accelerated adiabatic passage in cavity magnomechanics
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Cavity magnomechanics provides a readily controllable hybrid system, consisting of a cavity mode, magnon
mode, and phonon mode, for quantum state manipulation and transfer. To implement a fast-and-robust state trans-
fer between the hybrid photon-magnon mode and the phonon mode, we apply two accelerated-adiabatic-passage
protocols based on the counterdiabatic Hamiltonian for transitionless quantum driving and the Levis-Riesenfeld
invariant for inverse engineering. We construct the counterdiabatic Hamiltonian in a state-resolved way and
express it through the creation and annihilation operators rather than the system eigenstates and their time deriva-
tives. We can optimize the invariant-based inverse-engineering protocol with respect to the stability against the
systematic errors of the coupling strength and frequency detuning. Both protocols apply for continuous-variable
systems with arbitrary target states. We also discuss the decoherence effects from the thermal environment and
the counterrotating interactions on both protocols. Our work contributes to the quantum memory for photonic
and magnonic quantum information.
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I. INTRODUCTION

Hybrid cavity-magnon systems [1–3] based on the ex-
pedient control of coherent magnon-photon coupling have
recently attracted intensive attention. They have led to new
avenues for quantum computing [4], quantum communication
[5], and quantum sensing [6]. Analogous to cavity quantum
electrodynamics (QED) [7] and optomechanics [8], cavity
magnomechanics [9] developed rapidly as a mesoscopic plat-
form for quantum information processing for both theoretical
[10–13] and experimental [14–21] aspects. Active investi-
gations of magnon-based quantum information transfer are
focusing on the coupling between photons and magnons and
that between magnons and phonons in ferrimagnetic mate-
rials. Typical applications of these couplings include hybrid
entanglement and steering [22–25], the photon-phonon inter-
face [26,27], and the magnomechanical phonon laser [28].

In particular, a cavity magnomechanical system [9] con-
sists of a single-crystal yttrium iron garnet (YIG) sphere
placed inside a microwave cavity, where the magnon modes
formed by the excitations of the collective angular momentum
of the spins in such a magnetic-material sphere are coupled
with the deformation phonon modes via a magnetostrictive
force and also with the electromagnetic cavity modes via a
magnetic dipole interaction. The phonon in the YIG sphere
decays at a rate of about 100 Hz [9,22], which is much smaller
than its own frequency and those of the magnon and the pho-
ton. That enables the storage and transfer of the microwave
photonic and magnonic states as long-lasting modes, consti-
tuting a key step for future quantum communication networks
[29]. Inspired by the light-matter interface implemented in
cavity QED [30,31], optomechanical systems [32–34], and
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optical waveguides [35], stimulated Raman adiabatic passage
between a photon and a phonon [27] and magnon-assisted
photon-phonon conversion [26] have been proposed in cavity
magnomechanical systems. The use of adiabatic evolution or
elimination in these protocols, however, prolongs the expo-
sure to errors of quantum-mechanical origin, leading to the
environment-induced decoherence. This calls for a decrease in
the run time of the adiabatic paths in cavity magnomechanical
systems through shortcut-to-adiabatic (STA) protocols.

Various STA approaches [36,37], including the transition-
less quantum driving (TQD) based on the counterdiabatic
(CD) Hamiltonian [38–40] and the inverse-engineering meth-
ods by virtue of the Lewis-Riesenfeld (LR) invariant [41],
the time rescaling [42], or the noise-induced adiabaticity
[43–45], have been applied to several prototypes, such as
two- and three-level atomic systems [46–48], quantum har-
monic oscillators [49], optomechanical systems [50–52], and
coupled-waveguide devices [35]. In contrast to the exist-
ing STA methods, which are limited to discrete systems or
continuous-variable systems in a subspace of a fixed number
of excitations [51–53], our protocol in this work is indepen-
dent of the target state and adapts to any coupled harmonic
oscillators. In addition, the stability of our STA protocol in
the cavity magnomechanical system for state transfer can be
optimized with respect to its robustness against the systematic
errors [53–56] that result mainly from the intensity fluctuation
or inaccurate realization of the time-dependent driving laser.

The rest of this work is structured as follows. In Sec. II,
we introduce a hybrid quantum model for cavity magnome-
chanics and then provide an effective Hamiltonian describing
the interaction between the hybrid photon-magnon mode
and the phonon mode. The details of the derivation can be
found in the Appendix. Based on the effective Hamiltonian,
we propose two STA protocols in Sec. III for a fast-and-
faithful state transfer in cavity magnomechanical systems.
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FIG. 1. Schematic diagram of a YIG sphere placed in a mi-
crowave cavity near the maximum magnetic field of the cavity mode.
The uniform bias magnetic field exciting the Kittel mode in the YIG
and establishing the magnon-photon coupling is aligned along the
z axis. The photon mode is driven by a microwave source along
the x axis (with a Rabi frequency εp). The inset shows how the
dynamic magnetization of a magnon (vertical black arrows) causes
the deformation (compression along the y direction) of the YIG
sphere (and vice versa), which rotates at the magnon frequency.

In Sec. III A, we provide a transparent construction of the
counterdiabatic Hamiltonian for TQD, which can be rigor-
ously expressed by the creation and annihilation operators
of the bosonic modes. In Sec. III B, we derive a general
Levis-Riesenfeld invariant for a two-coupled-bosonic-mode
system, which also applies to arbitrary target states. Under
a general formalism for the systematic error of the effective
Hamiltonian, the error sensitivities of the π -pulse protocol,
TQD, and invariant-based STA are analyzed and optimized in
Secs. IV A, IV B, and IV C, respectively. In Sec. V, we discuss
the effects of thermal noise and counterrotating interaction
on the transport protocols using the master equation and nu-
merical simulation, respectively. This work is summarized in
Sec. VI.

II. MODEL

Consider a hybrid system in the cavity-magnonic setup
shown in Fig. 1, where a YIG sphere is inserted into
a microwave cavity. The system is constituted by the
microwave-mode photons, the magnons, and the mechanical-
mode phonons, which has been experimentally realized in the
dispersive regime [9]. The magnons are coupled to photons
via the Zeeman interaction and to phonons by the magne-
tization interaction. The temporally varying magnetization
induced by the magnon excitation inside the YIG sphere leads
to the deformation of its geometrical structure, which forms
the vibrational modes (phonons) of the sphere. The Hamilto-
nian of the full system is given by (h̄ ≡ 1)

H0 = ωaa†
1a1 + ωmm†

1m1 + ωbb†b + gmbm†
1m1(b + b†)

+ gma(a1m†
1 + a†

1m1) + i(εpa†
1e−iωpt − ε∗

pa1eiωpt ), (1)

where a1 (a†
1), m1 (m†

1), and b (b†) are the annihilation (cre-
ation) operators of the microwave cavity mode, the magnon

of the ground Kittel mode, and the mechanical mode with
transition frequencies ωa, ωm, and ωb, respectively. The
magnon-mode frequency is ωm = γ h, where γ is the gy-
romagnetic ratio and h is the external bias magnetic field.
Thus, the frequency ωm can be temporally tuned by the
external magnetic field. gma and gmb are, respectively, the
single-excitation coupling strengths of the photon-magnon
interaction and magnon-phonon interaction. The last term in
H0 describes the external driving of the photon mode, where
ωp is the driving frequency and εp is the Rabi frequency of the
driving field.

Following the standard linearization approach [8] and un-
der the proper driving conditions, we can extract an effective
Hamiltonian describing the interaction between a hybridized
photon-magnon mode and the phonon mode (the details can
be found in the Appendix):

H = (� − ωb)m†m + (gm†b + g∗mb†). (2)

Here m = sin φa1 − cos φm1 is the hybridized normal mode
with tan(2φ) ≡ 2gma/(ωa − ωm). g is the driving-enhanced
coupling strength between the hybrid mode m and the me-
chanical mode b,

g = gmbms cos2 φ − gmbas sin φ cos φ, (3)

where

ms = εp sin φ

i� + κm
, as = εp cos φ

i�′ + κa
, (4)

with the effective frequencies of the hybridized modes

� = ωa + ωm

2
− ωp −

√(ωa − ωm

2

)2

+ g2
ma,

�′ = ωa + ωm

2
− ωp +

√(ωa − ωm

2

)2

+ g2
ma

(5)

and the decay rates κm and κa.
It is important to emphasize that the hybrid-mode fre-

quency � and the coupling strength g can be modulated in
timely fashion by the external magnetic bias field h(t ) [22] and
the Rabi frequency of the driving field εp(t ) [48]. The effective
Hamiltonian in Eq. (2) can then be adapted to shortcut-to-
adiabatic methods for state manipulation. Formally, the state
transfer between the hybrid mode and the mechanical mode
could be started from the time-dependent Hamiltonian

H (t ) = �(t )m†m + g(t )m†b + g∗(t )b†m, (6)

where �(t ) ≡ � − ωb. In the framework of the following pro-
tocols for rapid-and-faithful state transfer, it is instructive to
transform the system Hamiltonian H (t ) into the rotating frame
with respect to U (t ) = exp[i

∫ t
0 ds�(s)/2(m†m − b†b)],

H (t ) = �(t )

2
(m†m − b†b) + g(t )m†b + g∗(t )b†m. (7)

III. THE STATE-TRANSFER PROTOCOLS

A straightforward method to achieve the state transfer is
to use a π pulse. In this case, one can require the driv-
ing frequency to be resonant with the hybrid mode m, i.e.,
�(t ) = 0 for all times in Hamiltonian (7). Then an initial state
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|ψ (0)〉 = (
∑

k Ck|k〉m)|0〉b with arbitrary normalized coeffi-
cients Ck could be converted to

|ψ (T )〉 = |0〉m

(∑
k

Cke−i kπ
2 |k〉b

)
(8)

after a desired period T as long as the coupling strength sat-
isfies

∫ T
0 dt |g(t )| = π/2. For example, for a flat π pulse one

can set g(t ) = π/(2T ). Note the final state for the mechanical
mode b in |ψ (T )〉 is not exactly the same as the one for the
hybrid mode m in the initial state |ψ (0)〉 regarding the dy-
namical phase kπ/2. However, the phase difference between
the final and initial states could be compensated with the local
dynamical phase e−ikωbτ by Hb = ωbb†b after a free evolu-
tion time τ , which satisfies ωbτ = 2nπ − π/2 with integer
n. We therefore do not distinguish the states

∑
k Cke−ikπ/2|k〉

and
∑

k Ck|k〉 when calculating the state-transfer fidelity. The
state-transfer fidelity or efficiency is thus measured by the
target-state population

P(t ) =
∑
Ck �=0

|〈0k|ψ (t )〉|2, (9)

where |ψ (t )〉 is the dynamical state determined by the initial
state |ψ (0)〉 and the effective Hamiltonian (7). Note that when
the target state is a Fock state |N〉, P becomes the conventional
fidelity.

The π -pulse protocol is straightforward but sensitive to the
systematic errors [54], which are caused by the fluctuations of
the Hamiltonian. The state transfer can also be achieved in an
adiabatic way, which is robust to the systematic errors, but is
prone to decoherence due to its long evolution time. The state-
transfer protocol can be improved by accelerated adiabatic
passages or shortcuts to adiabaticity that are believed to be
robust against both decoherence and systematic errors. In the
next two sections, we construct two STA protocols for TQD
and the LR invariant for our hybrid magnomechanical model.
Our results are presented with the state-transfer fidelity for the
number state (Fock state) and the cat state as a superposition
of both the coherent state and Fock state.

A. Transitionless quantum driving for continuous-variable
system

The TQD approach depending on full knowledge of the
instantaneous eigenstructure of the original Hamiltonian was
proposed in the first decade of this century. Conventionally,
if the original time-dependent Hamiltonian H (t ) could be
formally expressed in the spectral representation as H (t ) =∑

n En(t )|n(t )〉〈n(t )|, then assisted by an ancillary Hamilto-
nian, called the counterdiabatic Hamiltonian [36,38],

HCD(t ) = i
∑

n

[1 − |n(t )〉〈n(t )|]|ṅ(t )〉〈n(t )|, (10)

the system could keep track of the instantaneous eigenstates
of H (t ) at a much faster speed. This approach is also believed
to be highly robust against control-parameter variations [36].
One can understand that it usually applies to the discrete
systems, and it is explicitly represented by the eigenstates and
their time derivatives.

In this section, we obtain the CD term expressed by the op-
erators for the continuous-variable systems. With the unitary
transformation [57], the Hamiltonian in Eq. (7) is diagonal-
ized to be

H (t ) = ωAA†A + ωBB†B, (11)

where ωA,B = ±
√

�2 + 4g2/2 and

A ≡ cos θm + sin θb,

B ≡ sin θm − cos θb,
(12)

with tan(2θ ) = 2g(t )/�(t ). To simplify the formation of the
TQD protocol, the coupling strength g(t ) in this protocol is set
to be real, i.e., g(t ) = g∗(t ).

In the subspace with a fixed and arbitrary excitation num-
ber N , the CD Hamiltonian for the system Hamiltonian in
Eq. (11) can be written as HCD = i

∑N
n=0 |ε̇n〉〈εn|, where the

orthonormal eigenstates read

|εN−n〉 = 1√
(N − n)!n!

(A†)N−n(B†)n|0〉, (13)

with |0〉 being the vacuum state for both modes. Due to the
fact that

Ȧ = −θ̇ sin θm + θ̇ cos θb = −θ̇B,

Ḃ = θ̇ cos θm + θ̇ sin θb = θ̇A,
(14)

we have

|ε̇N−n〉 = −θ̇
√

(n + 1)(N − n)|εN−n−1〉
+ θ̇

√
n(N − n + 1)|εN−n+1〉. (15)

Then the CD Hamiltonian in Eq. (10) becomes

HCD = i
N∑

n=0

|ε̇n〉〈εn|

= −iθ̇
N−1∑
n=0

√
(N − n)(n + 1)|εN−n−1〉〈εN−n|

+ iθ̇
N∑

n=1

√
n(N − n + 1)|εN−n+1〉〈εN−n|.

(16)

According to the definition in Eq. (13), the first term in
Eq. (16) expands as

N−1∑
n=0

√
(N − n)(n + 1)|εN−n−1〉〈εN−n|

=
N−1∑
n=0

√
(N − n)(n + 1)

× (A†)N−n−1(B†)n+1|0〉〈0|AN−nBn

√
(N − n − 1)!(n + 1)!

√
(N − n)!n!

= B†
N−1∑
n=0

(A†)N−n−1(B†)n|0〉〈0|AN−n−1Bn

(N − n − 1)!n!
A

= B†IN−1A, (17)
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where IN−1 is the identity operator in the subspace with N − 1
excitations. Similarly, the second term in Eq. (16) turns out to
be

N∑
n=1

√
n(N − n + 1)|εN−n+1〉〈εN−n| = A†IN−1B. (18)

Note that N is arbitrary; then across subspaces with various
excitation numbers, the CD Hamiltonian can be expressed as

HCD = iθ̇ (A†B − B†A) = iθ̇ (b†m − m†b). (19)

Regarding the original Hamiltonian (7), the total Hamiltonian
for the transitionless quantum driving reads

Htot = H (t ) + HCD

= �(t )

2
(m†m − b†b) + [g(t ) − iθ̇]m†b

+ [g(t ) + iθ̇ )]mb†, (20)

where the time dependence and the boundary conditions of
the control parameter θ̇ ,

θ̇ = ġ� − �̇g

�2 + 4g2
, (21)

determine the pattern and the speed of the accelerated adi-
abatic passage. The system Hamiltonian in Eq. (7) can be
rewritten in the form

H (t ) = (m†, b†)

[
�(t )

2 g(t )
g(t ) −�(t )

2

](
m
b

)
. (22)

It is isomorphic to the Hamiltonian H (t ) = �(t )σz + g(t )σx,
for which the counterdiabatic term can be written as θ̇σy [36].
In a state-resolved way, we demonstrate a transparent and
rigorous connection between the original presentation [38]
and the operator presentation in Eq. (19).

By virtue of the definitions in Eqs. (12) and (13), the
adiabatic path from |k〉m|0〉b to |0〉m|k〉b under the total Hamil-
tonian (20) can be constructed as

|k(t )〉 = |εk (t )〉 = 1√
k!

(A†)k|0〉 = |εk〉 (23)

under the boundary conditions θ (t = 0) = 0 and θ (t = T ) =
π/2. And the system wave function can be written as

|ψk (t )〉 = e−iχk (t )|k(t )〉, (24)

where the quantum phase is

χk (t ) =
∫ t

0
dt ′Ek (t ′) − i

∫ t

0
dt ′〈εk (t ′)|∂t ′εk (t ′)〉

=
∫ t

0
dt ′Ek (t ′) = kχ (t ).

(25)

Here Ek (t ) is the instantaneous eigenvalue of eigenvector |εk〉,
〈εk (t ′)|∂t ′εk (t ′)〉 = 0, and χ (t ) ≡ ∫ t

0 dt ′ωA(t ′).
Alternatively, by setting θ (0) = π/2 and θ (T ) = 0, the

adiabatic path followed by the system can be constructed
as |k(t )〉 = |ε0(t )〉 = (B†)k|0〉/√k!. To be self-consistent, we
stick to the boundary conditions θ (0) = 0 and θ (T ) = π/2 in
this work.

FIG. 2. (a): The time dependence of the driving-enhanced cou-
pling strength g, the effective frequency of the lower-frequency
hybrid mode �, and the time derivative of the control parameter θ̇ ,
in units of the coupling strength � = π/T . (b)–(d) The target-state
population of the phonon mode b for the initial state of the hybrid
mode m prepared as the Fock state |n = 4〉, the cat state with ζ = 1,
and the cat state with ζ = 4, respectively.

In general situations, a superposed state |ψ (0)〉 =∑
k Ck|k0〉 with normalized coefficients Ck will evolve adia-

batically to

|ψ (T )〉 =
∑

k

Cke−iχk (T )|0k〉 (26)

at the desired moment T along the path in Eq. (23). Ck

is invariant with time. The quantum phase χk (T ) for the
Fock state with k excitations is proportional to k. Due to the
preceding analysis, the local phase difference can be periodi-
cally compensated by the bare Hamiltonian of the mechanical
mode. The state transfer thus has, indeed, been completed by
Eq. (26).

Now we can verify the TQD approach in the state transfer
from mode m to mode b by presenting the practical dynamics
of the target-state population P given in Eq. (9). By setting the
time dependence of the effective frequency � and the driving-
enhanced coupling strength g to be in a sinusoid shape and
using Eq. (21), we have

� = 2� cos(2θ ), g = � sin(2θ ), θ = π

2

t

T
, (27)

where � is the coupling strength determined by the desired
transfer time T as �T = π . The shape functions of �, g,
and θ̇ are plotted in Fig. 2(a). With various initial states of
mode m, the blue solid lines and the red dot-dashed lines
in Figs. 2(b)–2(d) describe the dynamics of the target-state
population under Htot in Eq. (20) with the counterdiabatic term
and that under H (t ) in Eq. (7) without the counterdiabatic
term, respectively.

One can find that practically, the accelerated state trans-
fer could be perfectly completed by the TQD approach for
both the Fock state and the superposed state. The latter is an
even cat state (|ζ 〉 + | − ζ 〉)/

√
2 + 2e−2ζ 2 , where |ζ 〉 is the

Glauber coherent state. For the Fock-state transfer |4〉m|0〉b →
|0〉m|4〉b in Fig. 2(b), P(T ) approaches 0.90 using the original
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Hamiltonian H (t ). Figures 2(c) and 2(d) for the cat states with
ζ = 1 and 4 show that P(T ) under the original Hamiltonian
approaches 0.98 and 0.65, respectively. Thus, the TQD ap-
proach manifests its power for a larger cat state by achieving
a perfect transfer population.

B. Invariant-based inverse engineering

Another mainstream accelerated adiabatic passage is
invariant-based inverse engineering [36,41], where the para-
metrical adiabatic path of the system is designed through a
Hermitian operator I (t ) termed the Levis-Riesenfeld invari-
ant. For an arbitrary time-dependent Hamiltonian H (t ), the
invariant satisfies

∂I (t )

∂t
= −i[H (t ), I (t )]. (28)

In the framework of invariant-based inverse engineering,
the wave function of a time-dependent Schrödinger equa-
tion i∂t |ψ (t )〉 = H (t )|ψ (t )〉 can be expressed as |ψ (t )〉 =∑

k Cke−iκk (t )|εk (t )〉, where Ck is a time-independent ampli-
tude, |εk (t )〉 is the eigenstates of the invariant I (t ), and κk is
the Lewis-Riesenfeld phase, defined by

κ̇k (t ) = 〈εk (t )|[−i∂t + H (t )]|εk (t )〉. (29)

To ensure the desired state transfer rather than the full-time
adiabatic passage, I (t ) and H (t ) have to share the same eigen-
states at both ends of the passage.

To carry out the derivation of a general LR invariant for our
two-coupled-resonator system with an arbitrary target state,
we rewrite the system Hamiltonian H (t ) (7) as

H (t ) = �(t )

2
m†m + [gR(t ) − igI (t )]m†b

+ [gR(t ) + igI (t )]mb† − �(t )

2
b†b, (30)

where gR(t ) and gI (t ) represent the real and imaginary parts
of the complex coupling strength g(t ), respectively.

The corresponding Lewis-Riesenfeld invariant is formu-
lated as

I (t ) = cos β(m†m − b†b) + sin β(e−iαm†b + eiαmb†)

= A†A − B†B,
(31)

where

A = cos

(
β

2

)
e

iα
2 m + sin

(
β

2

)
e− iα

2 b,

B = sin

(
β

2

)
e

iα
2 m − cos

(
β

2

)
e− iα

2 b

(32)

are the normalized annihilation operators for I (t ) and both
β ≡ β(t ) and α ≡ α(t ) are time-dependent functions to be
determined. Substituting Eq. (31) into Eq. (28), we have

β̇ = 2gI cos α − 2gR sin α,

α̇ = � − cot β(2gR cos α + 2gI sin α).
(33)

With the annihilation and creation operators in I (t ), the origi-
nal Hamiltonian (30) can be rewritten as

H = ω(A†A − B†B) + gABA†B + g∗
ABB†A, (34)

where

ω ≡ � cos β

2
+ gR sin β cos α + gI sin β sin α,

gAB ≡ � sin β

2
− gR(cos β cos α + i sin α)

− gI (cos β sin α − i cos α).

(35)

Then in the subspace with a fixed excitation number N , the
general solution of the Schrödinger equation can be expressed
as a superposition of the eigenstates of the invariant,

|ψN (t )〉 =
N∑

n=0

pn|εN−n〉e−iκN−n (t ), (36)

where pn is a normalized coefficient; |εN−n〉 is the normalized
eigenstates of the LR invariant, taking the same form as in
Eq. (13); and κN−n(t ) is the LR phase defined in Eq. (29).

We first consider the state transfer from |N〉m|0〉b to
|0〉m|N〉b. With the definitions in Eqs. (32) and (13), one can
construct a particular solution via

|ψN (t )〉 = |εN 〉e−iκN (t ) = e−iκN (t )

√
N!

(A†)N |0〉 (37)

under the boundary conditions β(0) = 0 and β(T ) = π . As
for the Lewis-Riesenfeld phase, we have

κ̇N = −i〈εN |∂t |εN 〉 + 〈εN |H |εN 〉

= −i

(
−iN

α̇ cos β

2

)
+ N

� cos β

2

+ N (gR sin β cos α + gI sin β cos α)

= N
gR cos α + gI sin α

sin β
= N κ̇,

(38)

with κ̇ ≡ (gR cos α + gI sin α)/ sin β, where we have applied
the time derivative of operators A and B,

∂

∂t
A† = − β̇

2
B† − iα̇

2
(cos βA† + sin βB†),

∂

∂t
B† = β̇

2
B† − iα̇

2
(sin βA† − cos βB†),

(39)

and Eqs. (33) and (34).
Given the time-dependent parameters β(t ), α(t ), and κ (t )

in Eqs. (33) and (38), the coupling strengths and the effective
frequency of the hybrid mode that are directly used in quan-
tum control are expressed as

gR = κ̇ cos α sin β − β̇

2
sin α,

gI = κ̇ sin α sin β + β̇

2
cos α,

� = α̇ + 2κ̇ cos β.

(40)

By virtue of their excitation-number independence, we can
further consider the transfer of an arbitrary superposed state
from mode m to mode b under the same boundary conditions.
Thus, in a general situation, an initial state

|ψ (0)〉 =
∑

k

Ck|k0〉 =
∑

k

Ck|ψk (0)〉, (41)
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FIG. 3. (a) The shapes of the real and imaginary parts of the
driving-enhanced coupling strength gR and gI and the effective fre-
quency of the hybrid mode �, in units of the coupling strength
� = π/T . (b) The dynamics of the state population of mode b
under various initial cat states of the hybrid mode m. Here the
control parameters are set as β = πt/T , α = −4/3 sin3 β, and κ =
β − sin(2β )/2.

where Ck is the time-independent normalized coefficient for
the number state |k〉, will evolve to

|ψ (T )〉 =
∑

k

Cke−ik(κ+α)|0k〉 (42)

at the final time T , according to Eqs. (37) and (32).
The state transfer assisted by the Lewis-Riesenfeld invari-

ant can be verified in Fig. 3 by the state population P of
phonon mode b given in Eq. (9). With the selected control
functions of β, α, and κ , one can find the time dependence
of the real and imaginary parts of the coupling strength gR

and gI and the frequency of the hybrid mode � through
Eq. (40), as plotted in Fig. 3(a). The initial states in Fig. 3(b)
are various cat states with ζ = 1, 2, 4. It is found that a perfect
transfer for a superposed state can always be achieved via the
LR-invariant-based inverse engineering.

IV. STATE TRANSFER UNDER SYSTEMATIC ERRORS

In practice, the ideal trajectory of the control parameters
cannot be exactly implemented because of the technical im-
perfections and constraints. These systematic errors pose the
need for studying the perturbation effect on transport proto-
cols and optimizing protocols that are robust with respect to
the stochastic fluctuation in the Hamiltonian [54]. In this sec-
tion, the Hamiltonian implemented in experiments is assumed
to be

Hexp = H (t ) + γ Hg + ηH�, (43)

where H (t ) = Hg + H� is the ideal or unperturbed Hamilto-
nian in Eq. (7) and Hg and H� are, respectively, the interaction
Hamiltonian between the hybrid mode and the phonon mode
and the bare Hamiltonian, i.e.,

Hg ≡ g(t )m†b + g∗(t )mb†,

H� ≡ �(t )

2
(m†m − b†b).

(44)

γ and η are dimensionless perturbation coefficients for the
coupling strength and the frequency detuning, respectively.

With the practical Hamiltonian (43), the evolved state is
obtained from the Schrödinger equation

i
∂

∂t
|�(t )〉 = [H (t ) + γ Hg + ηH�]|�(t )〉. (45)

Then the sensitivity to the systematic error is defined as

qg = −∂P(T )

∂ (γ 2)

∣∣∣∣
γ=0

, q� = −∂P(T )

∂ (η2)

∣∣∣∣
η=0

, (46)

where P(T ) is the state population evaluated by replacing the
evolved state in Eq. (9) with |�(T )〉 at the final time T . We
write P(T ) as P for simplicity in Secs. IV A, IV B, and IV C.

A. π pulse

Before working on the two accelerated adiabatic pas-
sages, we first consider a straightforward π pulse for the
state transfer. Then in Eq. (7), it is found that �(t ) = 0
and

∫ T
0 dtg(t ) = π/2. Accordingly, Eq. (43) becomes Hexp =

(1 + γ )Hg, which can be diagonalized with the normalized
operators A = (m + b)/

√
2 and B = (m − b)/

√
2, similar to

the transformation in Eqs. (11) and (12). The special initial
state |�(0)〉 = |N〉m|0〉b = |N0〉 can then be expanded by the
eigenstates in Eq. (13),

|N0〉 = 1√
2N

N∑
n=0

√
Cn

N |εN−n〉, (47)

where Cn
N = N!/n!/(N − n)!. The eigenvalue of |εN−n〉 is now

(N − 2n)(1 + γ )g(t ) due to Hexp. So we have

|�(T )〉 = 1√
2N

N∑
n=0

√
Cn

N e−i(N−2n)(1+γ ) π
2 |εN−n〉, (48)

using the Schrödinger equation (45). According to Eqs. (11)
and (12), the target state reads

|0N〉 = 1√
2N

N∑
n=0

(−1)n
√

Cn
N |εN−n〉. (49)

Then the transfer fidelity measured by the target-state popula-
tion P in mode b is

P = |〈0N |�(T )〉|2 = cos2N
(π

2
γ
)

(50)

by virtue of Eq. (9). And from Eq. (46), the systematic-error
sensitivity to the coupling strength for the Fock state |N0〉 is

qg = Nπ2

4
. (51)

The preceding derivation can be straightforwardly extended to
an arbitrary superposed state |ψ (0)〉 = ∑

k Ck|k0〉 by virtue of
its independence from the excitation number. Then in general
situations, we have

P =
∑
Ck �=0

|Ck|2 cos2k
(π

2
γ
)
,

qg = π2

4

∑
Ck �=0

k|Ck|2 = π2

4
n̄m.

(52)

It is interesting to find that the systematic-error sensitivity in
the π -pulse protocol is proportional to the average excitation
number n̄m of the initial state. In contrast to the constant result
in Ref. [54] for a two-level system, this indicates that the
continuous-variable system is more fragile without the assis-
tance from the counterdiabatic field or the inverse engineering.
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FIG. 4. State-transfer population P(T ) of the phonon mode b
as a function of the systematic errors associated with the coupling
strength γ or the frequency detuning η for various target states and
shape functions of the TQD protocol. In (a) and (b), the initial state
is the Fock state |4〉, and in (c) and (d), it is the cat state with ζ = 1.
T = π/�.

B. Transitionless quantum driving

Now we analyze the stability of the state transfer and error
sensitivity of the TQD protocol provided in Sec. III A. Note
that the unperturbed Hamiltonian H (t ) in the total Hamilto-
nian (20) is replaced by Hexp in Eq. (43). In Fig. 4, the TQD
protocols are carried out using the time dependence of the
effective frequency �(t ) and the driving-enhanced coupling
strength g(t ) (assumed to be real for TQD), which are deter-
mined by the shape functions of θ = π/2(t/T ) (see the blue
solid lines) or θ = π/2(t/T )2 (see the red dot-dashed lines).
In Figs. 4(a) and 4(c) η = 0, and in Figs. 4(b) and 4(d) γ = 0.
One can observe that the protocol stability is not sensitive to
the choice of target states. It is found that the impact of the
coupling-strength fluctuation of the interaction Hamiltonian
Hg is asymmetrical to the parameter γ in the negative and
positive axes. With the same magnitude, the decrement in the
state population P induced by a positive γ is clearly smaller
than that induced by a negative γ . In particular, P = 0.92 for
γ /� = 0.2, and P = 0.84 for γ /� = −0.2. In contrast, the
state-transfer population is roughly symmetrical to the energy
fluctuation η of the free Hamiltonian H�. Another difference
between Figs. 4(a) and 4(b) or between Figs. 4(c) and 4(d)
manifests in the error sensitivity to the shape of the control
parameter θ (t ). For a nonvanishing γ (η), the protocol is more
robust with the linear function θ = π/2(t/T ) [the quadratic
function θ = π/2(t/T )2] than that with the quadratic function
θ = π/2(t/T )2 [the linear function θ = π/2(t/T )].

In Fig. 5, we switch on simultaneously the systematic error
in both the interaction Hamiltonian and free Hamiltonian and
fix the target state as a cat state with ζ = 1. As expected, a
nearly unity state transfer is found in a remarkable regime
around γ ≈ η. It can be readily understood that when γ ≈ η,
the experimental Hamiltonian Hexp in Eq. (43) is approx-
imated by (1 + γ )H (t ), equivalent to a rescaling over the
whole original Hamiltonian that renders the same counterdia-
batic Hamiltonian HCD in Eq. (19).

FIG. 5. State-transfer population P(T = π/�) of the phonon
mode b in the space of the systematic-error parameters γ and η. The
target state is chosen as the cat state with ζ = 1.

From the results for various initial states and sources of
errors in Figs. 4 and 5, the state-transfer fidelity can be main-
tained above 0.95 with up to 10% fluctuations in the system
parameters. One can generally find that the TQD approach is
robust against the systematic errors.

C. Invariant-based inverse engineering

In this section, we construct an optimal protocol against
the systematic errors by using the Lewis-Riesenfeld invariant
in Eq. (31). Now we employ the ideal Hamiltonian H (t ) in
Eq. (30) with a complex coupling strength g(t ). The ideal
evolution operator reads

U0(s, t ) =
N∑

n=0

e−i(N−2n)[κ (s)−κ (t )]|εN−n(s)〉〈εN−n(t )|. (53)

Under the assumption that the initial state is |N〉m|0〉b and by
virtue of Eqs. (36) and (37), the unperturbed solution reads

|ψ (t )〉 = |εN (t )〉e−iNκ (t ), (54)

where κ is defined in the last line of Eq. (38). Considering
the practical Schrödinger equation in Eq. (45), the final-state
population (up to the second order of γ and η) is

P ≈ 1 − γ 2
N∑

n=1

∣∣∣∣
∫ T

0
dte−2niκ (t )〈εN−n(t )|Hg|εN (t )〉

∣∣∣∣
2

− η2
N∑

n=1

∣∣∣∣
∫ T

0
dte−2niκ (t )〈εN−n(t )|H�|εN (t )〉

∣∣∣∣
2

. (55)

By virtue of

〈εN−1(t )|Hg|εN (t )〉 = −
√

N κ̇ sin β cos β + i
√

N β̇

2
,

〈εN−n(t )|Hg|εN (t )〉 = 0, n �= 1,

〈εN−1(t )|H�|εN (t )〉 =
√

N α̇

2
sin β +

√
N κ̇ sin β cos β,

〈εN−n(t )|H�|εN (t )〉 = 0, n �= 1,

(56)

and the boundary conditions β(0) = 0 and β(0) = π , the
systematic-error sensitivities for |ψ (0)〉 = |N0〉 are found to
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be

qg = N

∣∣∣∣
∫ T

0
dt β̇ sin2 βe−2iκ

∣∣∣∣
2

,

q� = N

∣∣∣∣
∫ T

0
dt sin β

( α̇

2
+ κ̇ cos β

)
e−2iκ

∣∣∣∣
2

,

(57)

according to Eq. (46). When κ is constant, we restore the
result in the π -pulse case qg = Nπ2/4, irrespective of the
shape of β(t ).

It is interesting to find that qg = 0 can be attained when

κ (t ) = j

[
β − sin(2β )

2

]
(58)

with a nonzero integer j. And q� = 0 can be attained when

α̇

2
+ κ̇ cos β = 0. (59)

Equations (58) and (59) render α̇ = −4 jβ̇ cos2 β sin β.
An immediate choice is α = −4 j cos3 β/3. Therefore, the
invariant-based inverse engineering complemented by op-
timization that is robust against the systematic errors is
described by

β(0) = 0, β(T ) = π,

κ (t ) = j

[
β − sin(2β )

2

]
,

α(t ) = −4 j cos3 β

3
.

(60)

Consequently, the control protocol in Eq. (40) turns out to be

gR = 2β̇ sin3 β cos

(
4

3
sin3 β

)
+ β̇

2
sin

(
4

3
sin3 β

)
,

gI = −2β̇ sin3 β sin

(
4

3
sin3 β

)
+ β̇

2
cos

(
4

3
sin3 β

)
,

� = 0,

(61)

where we have set j = 1. More importantly, the optimized
protocol in Eq. (61) and the parametric setting in Eq. (60)
are independent of the excitation number. Thus, they apply
to a general superposed state |ψ (0)〉 = ∑

k Ck|k0〉 across the
whole Hilbert space. The fidelity is found to be

P = 1 − γ 2
∑
Ck �=0

|Ck|2
∣∣∣∣
∫ T

0
dt〈εk−1(t )|Hg|εk (t )〉

∣∣∣∣
2

. (62)

Note that in Eq. (61), � = 0 implies that P is strictly insensi-
tive to η.

In Fig. 6, we compare the systematic-error sensitivities
under various state-transfer protocols, including the flat π

pulse (blue solid lines), the transitionless quantum driving
protocol described by the parametric functions in Eq. (27)
(red dot-dashed lines), and the optimized protocol based on
the LR invariant described by Eq. (61) (orange dotted lines).
It is found that for both the Fock state and the cat state,
the optimized protocol assisted by the LR invariant demon-
strates a much stronger robustness than the TQD protocol.
In particular, in the range of the normalized coupling error

FIG. 6. State-transfer population P(T = π/�) of the phonon
mode b as a function of the systematic errors associated with the
coupling strength γ for various protocols. The initial state in (a) is
the Fock state |4〉, and in (b) it is the cat state with ζ = 1.

−0.15 � γ /� � 0.15, the transfer fidelity can be maintained
as P � 0.99 and P � 0.998 for the Fock state and the cat
state, respectively. The flat π pulse behaves as the most fragile
protocol.

An important common point shared by Figs. 4 and 6 is
that the robustness of these state-transfer protocols to the sys-
tematic errors is weakened by the average excitation number
of the target state. This is consistent with the result for the
π -pulse transfer in Eq. (52).

V. DISCUSSION

Alternatively, the robustness of the state-transfer protocols
can be tested by taking the effects of dissipative thermal baths
into account. Given the weak system-bath interaction in cavity
magnomechanical systems [9,22], we calculate the transfer
population with the standard Lindblad master equation under
the Born-Markovian approximation. The dynamical equa-
tion reads

∂ρ(t )

∂t
= −i[H (t ), ρ(t )]

+ [κm(n̄m + 1)L(m) + κmn̄mL(m†)]ρ

+ [κb(n̄b + 1)L(b) + κbn̄bL(b†)]ρ, (63)

where the superoperation for any Lindblad operator o, o =
m, b, is defined as

L(o)ρ ≡ oρo† − 1
2 o†oρ − 1

2ρo†o. (64)

Here ρ is the density operator of the two modes, and H (t ) is
the system Hamiltonian in Eq. (20) for the TQD protocol or
that in Eq. (30) for the invariant protocol. κm and κb represent
the decay rates of the hybrid mode m and phonon mode b,
respectively. In the numerical evaluation, we choose the mode
frequencies to be ωm/2π = 10 GHz and ωb/2π = 10 MHz
and the damping rates to be κb = 100 Hz and κm = 10 kHz
[9,22]. The two thermal baths are assumed to have a common
temperature Tth; then the average excitation number for mode
o is n̄o = [exp(ωo/kBTth ) − 1]−1. The evolution time is fixed
as �T = π , with �/2π = 1 MHz.

The transfer population defined in Eq. (9) for a special cat
state at various temperatures is plotted in Fig. 7. Comparing
Figs. 7(a) and 7(b), we see that the influences from the thermal
baths are almost the same for both protocols of accelerated
adiabatic passage, i.e., TQD and invariant STA. The trans-
fers are found to be robust against the thermal baths with
low temperatures. P(T ) can be maintained above 0.97 when
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FIG. 7. The dynamics of the target-state population in mode b in
the presence of thermal baths with various temperatures. In (a) we
use the TQD protocol as described in Fig. 2, and in (b) we use the
LR-invariant protocol as described in Fig. 3. Here the initial state is
set as the cat state with ζ = 1.

Tth � 0.1 K. Even under a comparative high-temperature, e.g.,
Tth = 1 K, the population is still above 0.88.

Our proposals are based on the system Hamiltonian (7)
under the rotating-wave approximation. Omitting the coun-
terrotating terms means the coupling strength g has to be kept
much smaller than the eigenfrequency ωb. However, g � ωb

might be violated during any accelerated adiabatic passage.
To consider the effect of the counterrotating terms, we should
go back to the linearized Hamiltonian in Eq. (A8) with two
hybrid modes and a phonon mode. After the unitary transfor-
mation with respect to U (t ) = exp[i

∫ t
0 ds�′(s)a†a], we have

H = �m†m + ωbb†b + g(m†b + m†b†) + g∗(mb† + mb)

+ g′{a†bei[
∫ t

0 ds�′(s)] + a†b†ei[
∫ t

0 ds�′(s)]}
+ g′∗{ab†e−i[

∫ t
0 ds�′(s)] + abe−i[

∫ t
0 ds�′(s)]}. (65)

Discarding the fast-oscillating terms and using the same con-
ventions as in Eq. (6), the Hamiltonian turns out to be

H = [ωb + �(t )]m†m + ωbb†b

+ g(t )m†(b + b†) + g∗(t )m(b + b†). (66)

Note it can be further reduced to the Hamiltonian (7) under a
rotating-wave approximation with a sufficiently large ωb.

Figure 8 demonstrates the effect of the counterrotating
terms under various transfer protocols and target states. The
TQD protocol and the invariant protocol use the same pa-
rameters as in Figs. 2(a) and 3(a), respectively. The transfer
populations for the Fock state |n = 1〉 and the superposed
state, i.e., the cat state with ζ = 1, are presented, respectively,
in Figs. 8(a)–8(d). Figures 8(a) and 8(c) show that the counter-
rotating Hamiltonian can be omitted for STA protocols with a
sufficiently large ωb. When ωb/� = 10, even the population
under the π -pulse protocol deviates slightly from the unit
transfer. When ωb decreases to ωb/� = 4, it is interesting to
find in Figs. 8(b) and 8(d) that the optimized invariant-based
protocol renders the most disappointing result among the three
protocols. In particular, when the initial state is the Fock state
|1〉m|0〉b, P becomes even smaller than 0.2. Yet the perfor-
mance of the TQD protocol is still perfect, showing great
robustness to the presence of the counterrotating interactions.

FIG. 8. The population dynamics in the presence of the counter-
rotating interaction for various state-transfer protocols. In (a) and (b),
the initial state is the Fock state |1〉, and in (c) and (d), it is the cat
state with ζ = 1. The phonon-mode frequency is set as ωb/� = 10
in (a) and (c) and as ωb/� = 4 in (b) and (d). �T = π .

VI. CONCLUSION

In summary, we have applied two shortcut-to-adiabatic
protocols to the cavity magnomechanical system to realize
a fast-and-faithful transfer for arbitrary states, where the
magnon mode is simultaneously coupled to a microwave cav-
ity mode and the mechanical-vibration mode in the same YIG
sphere. Our work demonstrates how to construct the counter-
diabatic Hamiltonian in terms of the creation and annihilation
operators in a state-resolved way, which explicitly shows two
evolution paths or quantum trajectories in the state space.
We derived in detail the Levis-Riesenfeld invariant, based on
which inverse engineering of arbitrary initial states of the
continuous-variable systems can be performed. In terms of
the systematic error, we obtained the optimized regimes or
conditions for both the TQD protocol and LR-invariant-based
protocol. The LR protocol outperforms the TQD protocol with
the same systematic error in the coupling strength. However,
the TQD protocol overwhelms the LR protocol in the pres-
ence of counterrotating interactions. The robustness of both
protocols to the systematic error declines with the average
excitation number of the target state. We also estimated the up-
per bound of the bath temperature under which these protocols
can be implemented in the cavity magnomechanical system.

Our work in pursuit of quantum state transfer and pro-
tection provides an important application of the hybrid
magnomechanical system as a promising hybrid platform for
real-time control. It also applies to constructing accelerated
adiabatic passages in a general continuous-variable system.
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APPENDIX: EFFECTIVE HAMILTONIAN FOR STATE
TRANSFER IN THE HYBRID MAGNOMECHANICAL

SYSTEM

This Appendix contributes to deriving the effective Hamil-
tonian (2) for state transfer in the cavity magnomechanical
system in Fig. 1. With respect to the transformation U =
exp[iωpt (a†

1a1 + m†
1m1)], the original Hamiltonian in Eq. (1)

turns out to be

H0 = �aa†
1a1 + �mm†

1m1 + ωbb†b + gma(a1m†
1 + a†

1m1)

+ gmbm†
1m1(b + b†) + i(εpa†

1 − ε∗
pa1), (A1)

where �a = ωa − ωp and �m = ωm − ωp. In the strong-
coupling regime for the magnon-photon interaction, we have
gma � κ1, κ2, where κ1 and κ2 represent the decay rates of the
photon and magnon, respectively. The magnon mode, i.e., the
collective spin-wave excitations, can efficiently interface with
microwave photons, thereby consolidating the strength of the
dispersive interaction to produce well-separated hybridized
modes. These dressed normal modes read

m = sin φa1 − cos φm1, a = cos φa1 + sin φm1, (A2)

where tan(2φ) ≡ 2gma/(�a − �m) and φ ∈ [0, π/2]. Then
the Hamiltonian of the hybrid photon-magnon-phonon system
in Eq. (A1) can be rewritten as

H = �′a†a + �m†m + ωbb†b

+ iεp(cos φa† + sin φm†) − iε∗
p(cos φa + sin φm)

+ gmb(b + b†)(sin2 φa†a − sin φ cos φa†m

− sin φ cos φam† + cos2 φm†m), (A3)

with

� = ωa + ωm

2
− ωp −

√(ωa − ωm

2

)2

+ g2
ma,

�′ = ωa + ωm

2
− ωp +

√(ωa − ωm

2

)2

+ g2
ma.

(A4)

Due to the input-output theory or the Heisenberg-Langevin
equation, the time evolution of the system operators satisfies

ȧ = −(i�′ + κa)a + εp cos φ − igmb sin2 φa(b + b†)

− igmb sin φ cos φm(b + b†) +
√

2κaain,

ṁ = −(i� + κm)m + εp sin φ − igmb cos2 φm(b + b†)

− igmb sin φ cos φa(b + b†) +
√

2κmmin,

ḃ = −(iωb + κb)b − igmb(sin2 φa†a − sin φ cos φa†m

− sin φ cos φam† + cos2 φm†m) +
√

2κbbin, (A5)

where κa = κ1 cos2 φ + κ2 sin2 φ, κm = κ1 sin2 φ + κ2 cos2 φ

[9], and κb are the decay rates of the modes a, m, and b,
respectively.

The steady-state values as ≡ 〈a〉, ms ≡ 〈m〉, and bs ≡ 〈b〉
are determined by letting ȧ = ṁ = ḃ = 0. We have

− (i�′ + κa)as + εp cos φ − igmbas(bs + b∗
s ) sin2 φ

− igmbms(bs + b∗
s ) sin φ cos φ = 0,

− (i� + κm)ms + εp sin φ − igmbms(bs + b∗
s ) cos2 φ

− igmbas(bs + b∗
s ) sin φ cos φ = 0,

− (iωb + κb)bs − igmb(|as|2 sin2 φ − a∗
s ms sin φ cos φ

− asm
∗
s sin φ cos φ + |ms|2 cos2 φ) = 0. (A6)

Due to the fact that gmb � ωb [9], the last equation yields bs ≈
0. Then we have

ms = εp sin φ

i� + κm
, as = εp cos φ

i�′ + κa
. (A7)

Following the standard linearization approach [8], we can
rewrite the linearized Hamiltonian with the hybrid modes,

H = �′a†a + �m†m + ωbb†b + (g′a† + g′∗a)(b + b†)

+ (gm† + g∗m)(b + b†), (A8)

by substituting the steady-state values in Eq. (A7) into the
Hamiltonian (A3) and ignoring all the high-order terms of
fluctuations and operators. The coupling strengths turn out to
be

g = gmbms cos2 φ − gmbas sin φ cos φ,

g′ = gmbas sin2 φ − gmbms sin φ cos φ.
(A9)

According to Eq. (A4), the two hybrid modes a (with a
higher frequency) and m (with a lower frequency) are well-
separated polaritonic modes, characterizing level repulsion
by the strong magnon-photon coupling �′ − � � 2gma �
κa, κm. Then under either the blue-detuning driving (with a
higher ωp yielding negative �′ and �) or the red-detuning
driving (with a lower ωp yielding positive �′ and �), one
can determine four different situations when exacting a pair of
nearly resonant modes, m and b or a and b. It should be noted
that our state-transfer approaches are applicable to all of them.
Now we choose the situation under the red-detuning driving,
and the higher-frequency hybrid mode is far off resonant from
b; that is, we have �′ − ωb ≈ 2gma/ sin 2φ � 0.

Transforming the Hamiltonian (A8) into the interac-
tion picture with respect to U = exp[i

∫ t
0 ds�′(s)a†a +

iωb(m†m + b†b)t], we have

H = (� − ωb)m†m

+ g′{a†bei[
∫ t

0 ds�′(s)−ωbt] + a†b†ei[
∫ t

0 ds�′(s)+ωbt]}
+ g′∗{ab†e−i[

∫ t
0 ds�′(s)−ωbt] + abe−i[

∫ t
0 ds�′(s)+ωbt]}

+ g(m†b + m†b†e2iωbt ) + g∗(mb† + mbe−2iωbt ). (A10)

After we discard the fast-oscillating terms, the Hamiltonian
turns out to be

H = (� − ωb)m†m + (gm†b + g∗mb†). (A11)

That is exactly the effective Hamiltonian in Eq. (2) describ-
ing the lower-frequency hybrid mode coupled to the phonon
mode.
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