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Collection efficiency of optical photons generated from microwave excitations
of a Bose-Einstein condensate
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Stimulated Raman scattering on � atoms is a promising tool for generating optical photons from a microwave
excitation in the ground-state hyperfine manifold. We consider an atomic Bose-Einstein condensate coupled to a
microwave field that scatters photons into the guided modes of a nearby optical fiber. Due to momentum transfer
to the condensate, stimulated photon scattering can occur outside of the phase-matched direction, which can be
used to separate the converted photons from the strong Raman readout pulse. Conversely, in the phase-matched
direction, superradiant scattering due to bosonic enhancement leads to an increased collection efficiency in the
guided modes of the fiber, for which we determine optimal conditions.
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I. INTRODUCTION

A quantum network consists of a set of quantum process-
ing and storage nodes distributed at different locations and
connected by optical fibers that transmit quantum informa-
tion via photons [1–3]. Various platforms with experimentally
verified relevant quantum capabilities have been proposed for
the implementation of the nodes. These include nuclear mag-
netic resonance systems [4], single trapped ions [5], neutral
atoms in optical lattices [6], single atoms in optical cavities
[7], quantum dots [8,9], color centers in crystals [10], and,
perhaps the most promising, superconducting circuits [11,12].
The latter platform operates in the microwave regime, and
quantum-coherent microwave-to-optical converters [13] will
play a key role in the realization of a quantum network
with superconducting-circuit nodes [14]. This is, however,
a daunting task since for the microwave-to-optical conver-
sion at a single-photon level, strong and coherent coupling
is needed between quantum degrees of freedom differing by
many orders of magnitude in energy. The most promising
recent experiments employed hybrid systems to realize trans-
ducers, demonstrating remarkable achievements, including
bidirectional operation [15], coherent coupling [16,17], and
efficient conversion [18,19]. Moreover, there has also been re-
cent progress in systems outside atomic, molecular and optical
physics realizing microwave-to-optical transducers by means
of radiation pressure [20,21].

Neutral alkali or alkaline-earth atoms have strong optical
transitions and also microwave resonances between hyperfine
sublevels and thereby provide a natural platform for realiz-
ing a quantum transducer at a single-photon level [22]. In
many situations of interest, such atoms can be modeled as
three-level systems with a � configuration of levels. A single
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microwave photon [23,24] can be converted into a spin-wave
excitation of the atomic hyperfine sublevels, which, in turn,
can be transferred to a single optical photon in a stimu-
lated Raman process that is inherently reversible [25,26]. In
Refs. [27,28], Rydberg transitions of the atoms were proposed
as an alternative route to achieve strong dipole coupling to a
microwave field.

In the � configuration, a hyperfine transition of a single
atom does not have sufficient interaction strength with a mi-
crowave photon to make a practically useful transducer. The
natural mitigation is to use large ensembles of atoms [22,28].
In this paper we study the generation of an optical photon
from a spin-wave-like microwave excitation of a degenerate
quantum gas [a Bose-Einstein condensate (BEC)] with large
coherence length compared to the optical wavelength. Trap-
ping an atomic BEC in the vicinity of a superconducting
waveguide resonator and coupling the hyperfine atomic states
to the microwave resonator field [29,30] has already been
achieved [31].

Already in the early days of Bose-Einstein condensation
experiments, two essential features of light scattering on a
BEC were noted: superradiance due to bosonic enhancement
and the possibility for the light to excite density waves that
extend coherently over the whole atomic sample [32,33].
We note that phenomena of the same physical origin were
more recently found to lead to dynamical phase transitions
and exotic phases when the BEC interacts with a resonator
field [34–41] instead of the free-space electromagnetic field,
whereas the quantum state of the BEC can be imprinted on
that of the light [42–44].

Here we consider a BEC in a stimulated Raman pro-
cess. Since the generated optical photons are envisaged for
applications in quantum communication, we consider how
efficiently such photons can be coupled into guided Gaus-
sian modes focused on an optical fiber by a paraxial optical
array [22]. We focus on the spatial profile of the gener-
ated radiation, which is encoded not only in the spatial
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dependence of the readout Gaussian mode but also in the
overlap integrals between the condensate state at different
stages. As the core of our work consists of the analysis of the
geometrical factors, we formulated our results independently
of the explicit form of the time-dependent internal dynamics,
concentrating on the incoupling efficiency and not on the
efficiency of a microwave-optical transduction. Although the
internal dynamics is formally similar to the ones encountered
in stimulated Raman adiabatic passage (STIRAP) or electro-
magnetically induced transparency (EIT), a full treatment of
the coupling of the internal dynamics and the atomic motional
degrees of freedom is beyond the scope of this work: here we
restrict ourselves to a perturbative treatment. Our results will
thus be relative to that of a single-atom scheme, extracting the
consequences of having many atoms with the spatial extension
of a BEC cloud.

Since the light scattering can create excitations in the BEC
that are associated with atomic momentum, the condensate
participates in the momentum balance of the stimulated Ra-
man process. In particular, the BEC can take away almost
arbitrary momentum from the photonic part of the process
without significantly altering its energetics. This is because
the dispersion relation of the BEC excitations is extremely flat
on the momentum scale relevant to optical photons due to the
large atomic mass. The photon scattering can then occur in
the directions other than the phase-matched one determined
by the readout light. This side scattering has an intensity
proportional to the number of atoms in the condensate. For
the forward-scattering case, with the photon emitted in the
phase-matched direction, however, we find a superradiant be-
havior, with the condensate returning to the ground state and
the scattered intensity being proportional to the square of the
atom number in the BEC. Exact momentum conservation can
be violated because the BEC state is not an atomic momentum
eigenstate, and a Gaussian beam is not a momentum eigen-
state for the light. We identify situations where, due to these
weak violations of the momentum conservation, the direction
of the maximum of even the forward-scattered intensity devi-
ates from the direction of the readout pulse.

This paper is organized as follows. In Sec. II, we in-
troduce the scheme mixing the microwave field, the optical
readout pulse, the generated optical photon, and the BEC
excitation. We use a second-quantized description in which
the equations of motion can be written straightforwardly in
the single-excitation subspace. In Sec. III, we introduce our
theory for emission of the generated optical photon into parax-
ial guided (Gaussian) modes. Since for a given direction such
modes still form a broadband one-dimensional continuum
around the frequency of the emitted radiation, the radiated
intensity can be written in the Born-Markov approximation,
similar to free-space spontaneous emission. We distinguish
two cases: (i) side scattering with the BEC left with a single
free-particle excitation and (ii) forward scattering with the
BEC returning to its initial state. In Sec. IV, we present our
numerical results and discuss the findings.

II. THE FOUR-WAVE MIXING SCHEME

We consider a Bose-Einstein condensate of atoms with the
ground state |g〉, a hyperfine state in the ground-state manifold

FIG. 1. Level scheme depicting the many-body states available
to the system starting from |G〉 ≡ |0, 0, 0〉. The other states are
defined as |S〉 ≡ |0, 1, 0〉, |Ek〉 ≡ |0, 0, 1k〉, and |Gk〉 ≡ |1k, 0, 0〉.
Black lines with arrows show the transitions induced by the
interaction with the microwave cavity, the drive, and the free elec-
tromagnetic fields.

|s〉, and an excited state |e〉 in the � configuration of levels
(see Fig. 1). Transition |g〉 → |s〉 is coupled to a microwave
resonator mode ĉ of frequency ωc with coupling strength
η. The hyperfine magnetic substates |g〉 and |s〉 are coupled
by electric dipole transitions to the excited state |e〉. An ex-
ternal laser of frequency ωd resonantly drives the transition
|s〉 → |e〉 with Rabi frequency �d. The transition |g〉 → |e〉 is
coupled to the free-space modes of the electromagnetic field
âk,λ of frequency ωk with strength gk,λ. Setting h̄ = 1, the
single-atom Hamiltonian is

H = P2

2M
+ U (r) (|g〉〈g| + |s〉〈s|) + ωgs|s〉〈s| + ωge|e〉〈e|

+
(

η ĉ e−iωct |s〉〈g| + �d e−iωdt eikdr|e〉〈s|

+
∑
k,λ

gk,λ(r) âk,λ e−iωkt |e〉〈g| + H.c.

)
, (1)

where P2/2M is the kinetic energy the atom can acquire from
the momentum transfer from the electromagnetic radiation
and U (r) is an optical dipole trapping potential for the atom
in states |g〉 and |s〉, while the atom in the excited state is
assumed to be free. The diagonal terms of the Hamiltonian
proportional to ωgs and ωge can be eliminated in a rotating
frame, leading to

H = P2

2M
+ U (r) (|g〉〈g| + |s〉〈s|)

+
(

η ĉ |s〉〈g| + �d eikdr|e〉〈s|

+
∑
k,λ

gk,λ(r) âk,λ e−i(ωk−ωge )t |e〉〈g| + H.c.

)
, (2)

where we assumed resonant interactions ωc = ωgs and
ωd = ωse.

The second-quantized Hamiltonian can be derived from
Eq. (2) as Ĥ = ∫

dV �̂†(r)H �̂(r) using the field-operator
ansatz (written in spinor notation that formally yields a
ket in the Hilbert space of internal atomic states; see, e.g.,
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Ref. [45])

�̂(r) =
√

N |g〉φBEC(r) +
∑
p �=0

|g〉φp(r) b̂gp

+
∑

p

|s〉φp(r) b̂s p +
∑

p

|e〉φp(r) b̂e p, (3)

where N is the number of atoms; φBEC(r) is the macro-
scopically populated BEC wave function normalized as∫

dV |φBEC(r)|2 = 1; b̂gp, b̂s p, and b̂e p are the annihilation
operators corresponding to states with atoms in the inter-
nal states |g〉, |s〉, and |e〉 and with the external degrees of
freedom p; and φp(r) ∝ eip·r are the corresponding motional
wave functions which are the momentum eigenfunctions. The

condensate wave function φBEC(r) includes the atom-atom
interaction, and it is a broad function filling the trap and
having large overlap with the single-particle ground state of
the trap and with the zero-momentum eigenfunction φ0(r).
We can therefore take p = 0 out of the summation over the
free motional states for the ground state |g〉. The tiny overlap
with other free motional states with low momentum p ≈ 0 can
be safely neglected as it has no effect on the forward-photon-
scattering amplitude. We can also neglect the influence of
the s-wave scattering of free atoms off the condensate. In the
following, we will use in place of the zero-momentum wave
function φ0(r) the BEC wave function φBEC(r) for states |s〉
and |e〉. We then obtain the second-quantized Hamiltonian

Ĥ =
∑

p

p2

2M
(b̂†

gp b̂gp + b̂†
e p b̂e p) +

{√
N η ĉ b̂†

s + �d

∑
p

b̂†
e p b̂s

∫
dVeikdr φ∗

p (r) φBEC(r)

+
√

N
∑

p

∑
k,λ

âk,λ e−i(ωk−ωge )t b̂†
e p

∫
dV gk,λ(r) φ∗

p (r) φBEC(r)

+
∑

p
p′ �=0

∑
k,λ

âk,λ e−i(ωk−ωge )t b̂†
e p b̂gp′

∫
dV gk,λ(r) φ∗

p (r) φp′ (r) + H.c.

}
, (4)

where we used the fact that the motional wave functions
are the orthonormal eigenfunctions of the kinetic energy and
neglected the momentum transfer for the microwave tran-
sition |g〉 → |s〉 leading to the atoms in state |s〉 having a
nonvanishing wave function φ0(r) ≈ φBEC(r). Let us confine
the description to the single-excitation space, where the state
vector of the system can be expanded as

|�〉 = δN |0, 0, 0〉|1c〉|0〉 + ςN |0, 1, 0〉|0c〉|0〉
+

∑
p

εN ;p|0, 0, 1p〉|0c〉|0〉

+
∑
p′ �=0

∑
k,λ

α
p′
N ;k,λ

|1p′ , 0, 0〉|0c〉|1k,λ〉

+
∑
k,λ

α0
N ;k,λ|0, 0, 0〉|0c〉|1k,λ〉, (5)

where the five terms on the right-hand side have the following
physical meanings:

(i) |0, 0, 0〉|1c〉|0〉 denotes the state of the system of ul-
tracold atoms in the pure BEC state, a single photon in the
microwave resonator, and no photons in the free radiation
field.

(ii) |0, 1, 0〉|0c〉|0〉 denotes the state of the ensemble with
a single atom in the internal state |s〉 due to the absorption of
the microwave photon.

(iii) |0, 0, 1p〉|0c〉|0〉 denotes the state of the ensemble with
a single atom in state |e〉 with momentum p.

(iv) |1p′ , 0, 0〉|0c〉|1k,λ〉 denotes the state of the ensemble
with an atom in state |g〉 having momentum p′, plus an optical
photon in the mode with wave vector k and polarization λ.

(v) |0, 0, 0〉|0c〉|1k,λ〉 denotes a state with all the atoms in
the pure BEC state with no excitations, plus an optical photon
in the mode with wave vector k and polarization λ.

Note that the last two states account for the two possible
photon emission channels corresponding to the system of
ultracold atoms returning to the BEC state φBEC(r) with no
excitation (forward scattering) or to a single motional exci-
tation state φp′ �=0(r) (side scattering), which is illustrated in
Fig. 1.

Since the kinetic energy p2

2M associated with the atomic
motion is negligible in comparison to the optical radiation
frequencies ωc and ωd, the diagonal terms of Eq. (4) can
be omitted.1 Then the time evolution of the amplitudes is
obtained from the Schrödinger equation i d|�〉

dt = Ĥ |�〉, with
the initial conditions δN (t = 0) = 1 and ςN (0) = εN ;p(0) =
α

p′ �=0
N ;k,λ(0) = α0

N ;k,λ(0) = 0 for all p, p′, k, and λ, as

i∂tδN =
√

N η∗ςN , (6a)

i∂tςN =
√

N η δN +
∑

p

εN ;p �∗
d

∫
dVe−ikdrφp(r) φ∗

BEC(r),

(6b)

i∂tεN ;p = ςN �d

∫
dVeikdrφ∗

p (r) φBEC(r) +
∑
p′ �=0

∑
k,λ

α
p′
N ;k,λ

× e−i(ωk−ωge )t
∫

dV gk,λ(r)φ∗
p (r) φp′ (r)

1 p2

2M can be expressed as
ω2

d
2Mc2 , so the ratio p2/2M

ωd
is very small

because of the large rest mass of the atoms.
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+
√

N
∑
k,λ

α0
N ;k,λ e−i(ωk−ωge )t

×
∫

dV gk,λ(r)φ∗
p (r) φBEC(r), (6c)

iαp′ �=0
N ;k,λ =

∑
p

∫ t

0
dt ′εN ;p(t ′) ei(ωk−ωge )t ′

×
∫

dV g∗
k,λ(r)φp(r) φ∗

p′ (r), (6d)

iα0
N ;k,λ =

√
N

∑
p

∫ t

0
dt ′εN ;p(t ′) ei(ωk−ωge )t ′

×
∫

dV g∗
k,λ(r)φp(r) φ∗

BEC(r). (6e)

The first three equations account for the atomic dynamics,
while the last two equations describe the generation of the
optical radiation field from the atomic source and are inte-
grated to obtain directly the field amplitudes. As seen from
Eq. (6e), apart from the nontrivial dependence on N through
the amplitude εN ;p, there is a multiplicative factor of

√
N

due to the bosonic enhancement of photoemission when the
condensate returns to state φBEC(r).

Our main focus is the spatial profile of the emitted radiation
that is collected by Gaussian optics. In Eqs. (6d) and (6e)
for the field amplitudes, their spatial profiles are encoded in
the overlap integrals and in the amplitudes εN ;p(t ), where the
latter also depends on time. At this point, concerning Eqs. (6),
there are two ways to treat this problem: one which can handle
the general case, where the time and spatial dependence of
the amplitudes are not necessarily separable, and which is
demanding to solve numerically because we have a continuum
set of momentum states and one which solves analytically
the equations of motion in certain limits in such a way that
the amplitudes become separable in their time and spatial
variables. In this work we choose the second implementation
because we are interested in how the geometrical parameters
affect the incoupled photon rate, regardless of the internal
dynamics of the system.

To this end, we separate the temporal and spatial depen-
dences in these formulas; we have to separate the temporal
and wave-vector dependences of the amplitudes εN ;p(t ). This
is a good approximation in the perturbative limit, considering
a short time at the beginning of the process, when the time
evolution (6a)–(6c) can be approximated by the content of the
initially fully occupied amplitude δN being transferred into the
initially empty amplitudes ςN and εN ;p:

i∂tςN ≈
√

Nη(t ), (7a)

i∂tεN ;p ≈ ςN �d(t )
∫

dVeikdrφ∗
p (r) φBEC(r), (7b)

where Eq. (6a) is eliminated, with δN being treated simply as
a decaying amplitude, and we introduced the time-dependent
drive η(t ) by the product of the microwave coupling strength
η and the depleting initial-state amplitude δN . We assumed
that during this short period, in the time evolution of ςN

and εN ;p only the first, leading-order terms will contribute.
Performing the time integration, the amplitude corresponding

FIG. 2. The geometry of the system of atoms, paraxial optics,
and the fiber.

to the intermediate state {|e〉; p} reads

εN ;p(t ) ≈ −
√

N
∫ t

0

∫ t ′

0
dt ′dt ′′�d(t ′)η(t ′′)

×
∫

dVeikdrφ∗
p (r) φBEC(r)

≡
√

N ε(t )
∫

dVeikdrφ∗
p (r) φBEC(r)

=
√

N
ε(t )√

V

∫
dVeikdre−iprφBEC(r)

=
√

N
ε(t )√

V
φ̃BEC(p − kd) , (8)

where we used the momentum eigenstates 1/
√

V eipr for the
wave function of the intermediate states, we denoted the
Fourier transform of φBEC by φ̃BEC, and we have factorized
the N and wave-number p dependence out of the amplitude
εN ;p(t ) by introducing ε(t ), depending only on time.

Hereafter, we focus on the spatial profile of the generated
radiation and on the atom-number dependence of the process:
calculating the photon rate of the two channels defined in
Eqs. (6d) and (6e) and coupled into an optical fiber, using the
amplitude εN ;p from Eq. (8) for the |g〉 → {|e〉; p} part of the
photon conversion.

III. RADIATION INTO GAUSSIAN MODES

The aim is to collect the emitted radiation into an
optical fiber. The modes of a single-mode fiber form a one-
dimensional manifold which can be parametrized by a scalar
wave number k. The important parameters are the size of the
fiber core and the orientation of the fiber with respect to the
axis of the driving field that determines the phase-matched
emission direction. To model the incoupling process, we as-
sume a generic paraxial optical array, which transforms a set
of free, nearly paraxial beams to the strongly confined guided
mode (see Fig. 2). The fiber modes confined in the core of size
dcore are transformed in free space to Gaussian modes with
waist w0 determined by the parameters of the optical array at
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the position of the ensemble:2

dcore, k @ fiber entrance

⇐⇒ w0, k @ position of the BEC.

On the basis of the foregoing considerations, from the full
set of free-space modes we can separate a set of guided modes
with wave vectors aligned with the axis of the fiber that are
coupled by the optical array into the fiber. These modes can
be well approximated by Gaussian modes with wave number
k and waist w0, with mode function

fk (r) = zR

q∗(z)
exp

(
ik

[
z + ρ2

2 q∗(z)

])

= i
w0

w(z)
exp

[
ikz − ρ2

w(z)2

+ i
kρ2

2R(z)
− iφGouy

]
≡ ϕG(r) eikz, (9)

where z is the position along the direction of the fiber
axis, ρ =

√
x2 + y2 is the radial coordinate, q(z) = z + izR is

the complex beam parameter with the Rayleigh range zR =
kw2

0/2, w(z) = w0

√
1 + z2/z2

R is the transverse beam size,

R(z) = z + z2
R/z is the radius of curvature of the wave front,

and φGouy = arctan(z/zR) is the Gouy phase. For a given opti-
cal array, with a well-defined beam waist w0 and axis, we can
claim that the set of Gaussian modes parametrized by k forms
an orthonormal set, which is important to ensure the correct
commutation relation for the electric field. The amplitudes of
the guided modes corresponding to the N- and p′-dependent
free-space amplitudes α

p′ �=0
N ;k,λ and α0

N ;k,λ are denoted by β
p′ �=0
N ;k,λ

and β0
N ;k,λ. The β amplitudes simply replace the α’s in Eqs. (6)

in the case when all electromagnetic processes are confined to
the guided modes.

The expectation value of the positive-frequency part of the
electric field that is coupled into the fiber reads

E+
G (r) = i

∑
p′

∑
k,λ

√
ω

2ε0V
β

p′
N ;k,λ

(t ) eλ fk (r), (10)

where V = AL is the mode volume, with A = πw2
0/4 being

its cross-sectional area and L being the fictitious quantization
length along the propagation axis, and there is a sum for all
subchannels labeled by all the possible momenta p′; with the
BEC acting as a momentum reservoir, there is no constraint
for the absorbable momentum p′. The fiber-coupled modes
form a broadband continuum, and the field EG can be treated
similarly to that of the three-dimensional electromagnetic vac-
uum surrounding the atom [47]. Irreversible photon emission
from an excited-state atom into the fiber takes place, and
the photon emission rate is determined by the local coupling

2According to the ABCD rule of paraxial optics [46], this trans-
formation depends on the wave number, but in our case the relevant
wave numbers are very strongly confined to the vicinity of the two-
photon resonance; hence, we neglect this dependence.

between the atom and the modes,

gk,λ(rA) =
√

ω

2ε0V
dgeeλ fk (rA) = gk,λ fk (rA). (11)

When the newly introduced amplitudes β
p′ �=0
N ;k,λ

and β0
N ;k,λ re-

place the corresponding α’s in Eqs. (6d) and (6e), the coupling
constants have to be written as Eq. (11).

The total photon numbers generated during a small time
interval �t , denoted �n(t ) and �n0(t ) in the side- and
forward-scattering channels, respectively, read

�n(t ) =
∑
p′ �=0

∑
k,λ

∣∣�β
p′
N ;k,λ

(t )
∣∣2

=
∑
p′ �=0

∑
k,λ

∣∣∣∣
∫ t

t−�t
dt ′βp′

N ;k,λ
(t ′)

∣∣∣∣
2

, (12a)

�n0(t ) =
∑
k,λ

∣∣�β0
N ;k,λ(t )

∣∣2

=
∑
k,λ

∣∣∣∣
∫ t

t−�t
dt ′β0

N ;k,λ(t ′)
∣∣∣∣
2

. (12b)

A. Free final state of the atom

Let us first consider the case when the ensemble of ul-
tracold atoms excited into state |e〉, on emitting a photon,
does not return to the BEC state φBEC(r) but ends up in an
arbitrary free state with momentum p′ (side scattering). The
total photon number �n(t ) according to Eq. (12a) reads

�n(t ) =
∑

p′

∑
k,λ

∣∣�β
p′
N ;k,λ

(t )
∣∣2

=
∑

p′

∑
p1,p2

∑
k,λ

|gk,λ|2
∫ t

t−�t
dt1ε

∗
N ;p1

(t1) ei(ωk−ωge )(t−t1 )

×
∫ t

t−�t
dt2εN ;p2 (t2) ei(ωk−ωge )(t2−t )

∫
dV fk (r)φ∗

p1
(r)

× φp′ (r)
∫

dV ′ f ∗
k (r′)φp2 (r′)φ∗

p′ (r′), (13)

where for the amplitudes β
p′
N ;k,λ

(t ) we used Eq. (6d) with the
coupling constants gk,λ(r) defined in Eq. (11). The coupling
constant gk,λ is a flat function of the wave number k, whereas
the overlap integrals [the last two terms of Eq. (13)] result
in a function which has a bandwidth 1/�, where � is the
characteristic length corresponding to the BEC. However, the
summation over all possible final momenta p′ ensures that
the fiber-coupled modes form a broadband continuum around
the transition frequency ωge with a bandwidth much larger
than the inverse of the short time interval �t . We also assume
weak coupling and neglect the reabsorption of photons within
the cloud. The summation over the wave number k together
with the time integrals thus creates a situation analogous to the
calculation of spontaneous emission in the three-dimensional
free-space modes. Hence, we can adopt the Born-Markov
approximation to evaluate the sum in Eq. (13). Because of
the broadband summation over k of the exponential terms
ei(ωk−ωge )(t2−t1 ), only the time instant t1 ≈ t2 contributes to the
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combined summation over k and the time integrals over t1,2.
The atomic amplitudes ε(t1,2) are thus taken at the same
time, and furthermore, because the variation in the period
�t is infinitesimal, both amplitudes can be replaced by ε(t )

and taken out of the time integrals. The remaining time in-
tegrals can be carried out, one of them giving a Dirac δ

in frequency space and the other one being simply �t , as
follows:

�n(t ) ≈ N
∑

p′

∑
p1,p2

ε∗
N ;p1

(t )εN ;p2 (t )
∑
k,λ

|gk,λ|2
∫ t

t−�t
dt1

∫ t

t−�t
dt2ei(ωk−ωge )(t2−t1 )

×
∫

dV fk (r)φ∗
p1

(r)φp′ (r)
∫

dV ′ f ∗
k (r′)φp2 (r′)φ∗

p′ (r′)

= N
∑

p′

∑
p1,p2

ε∗
N ;p1

(t )εN ;p2 (t )
∑

λ

L

2π

∫
dk

ωk

2ε0 V
(dgeeλ)2�t2πδ(ωk − ωge)

×
∫

dV fk (r)φ∗
p1

(r)φp′ (r)
∫

dV ′ f ∗
k (r′)φp2 (r′)φ∗

p′ (r′)

= N �
σA

A �t
∑

p′

∣∣∣∣∣
∑

p

εN ;p(t )
∫

dV f ∗
kge

(r)φp(r)φ∗
p′ (r)

∣∣∣∣∣
2

. (14)

Here the sum over the polarization λ was simplified by assum-
ing the optimum configuration: the driving laser is linearly
polarized perpendicular to the plane of Fig. 2, i.e., the plane
spanned by the propagation of the driving laser beam kd and
the fiber-coupled modes. The induced atomic dipole moment
dge then has the same out-of-plane direction. One of the two
possible polarizations of the fiber-coupled modes is also per-
pendicular to this plane and hence is parallel to the dipole
moment dge. The other one is in plane, being orthogonal and
thus decoupled from the atomic dipole. The remaining deriva-

tion follows the standard Born-Markov (Wigner-Weisskopf)
procedure. We identify the free-space atomic spontaneous
emission rate � = ω3

ge d2
ge/(6πε0c3) and the radiative cross

section of the atomic dipole σA = 3λ2/(2π ) in order to put
the final result in a compact form.

Using the approximation (8) for the amplitudes
εN ;p(t ), the rate of photons I = �n/�t coupled into the
fiber is

I (t ) = N � |ε(t )|2 σA

A
∑

p′

∣∣∣∣∣ 1

V
√

V

∑
p

φ̃BEC(p − kd)
∫

dV ϕ∗
G(r)ei(p−kge−p′ )r

∣∣∣∣∣
2

= N � |ε(t )|2 σA

A
∑

p′

∣∣∣∣
∫

dV
1√
V

φBEC(r)ϕ∗
G(r)ei(kd−kge−p′ )r

∣∣∣∣
2

= N � |ε(t )|2 σA

A

∫
dV |φBEC(r)ϕG(r)|2 ≡ N � |ε(t )|2 σA

A ξ . (15)

We thus find that the photon-scattering rate into the fiber is
proportional to (i) the number of atoms N , (ii) the single-
atom photon-scattering rate � |ε(t )|2 in the full solid angle,
(iii) the ratio of the atomic radiative cross section and
the cross section of the fiber-coupled beam, and (iv) a
geometrical factor ξ which includes the nontrivial condi-
tion on the spatial matching of light beams and the atom
cloud.

It is remarkable that, in the plane of the driving laser and
the fiber-coupled mode, the intensity I (t ) is independent of the
angle between the wave vector kd and the fiber axis. The rea-
son is that momentum conservation in the photon-scattering
process is not restrictive in the case of a BEC initial state
of the atomic ensemble. Due to its extremely flat dispersion

relation compared to that of the photons, the BEC acts as a
momentum reservoir that can absorb away any momentum
mismatch without significantly altering the energetics of the
photon-scattering process. A broad angular distribution has
a significant consequence in practical applications: the gen-
erated photon can be easily separated from the driving laser
beam, without the need for narrowband spectral filters, which
necessarily degrade the coupling efficiency into the fiber. We
note that this isotropic distribution (or dipole pattern in the
case of a fixed direction of the atomic dipole moments) holds
only for the first photon; already, the second photon, encoun-
tering the Bragg grating created by the excitation left by the
first photon, will preferentially scatter in the same direction
[48].
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B. BEC final state of the atom

A case of special interest is when the final state of the
atoms after the photon emission coincides with the BEC state
as in the beginning. Although the final state is now a single
motional state φBEC and not a broad continuum, the scat-
tered intensity is sizable because of the bosonic enhancement.
The probability of this transition is strongly enhanced by the
macroscopic part of the atomic population in the BEC state.
The generated field amplitude in the fiber is given by Eq. (6e).
When going through the same steps as in Eqs. (14) and (15)
to get �n0(t ), extra care must be taken in applying the Born-
Markov approximation. Unlike the previous case of a free
final state, now there is no summation over the broadband
continuum of momentum states p′, i.e.,

�n0(t ) =
∑
k,λ

∣∣�β0
N ;k,λ(t )

∣∣2

=
∑
p1,p2

∑
k,λ

|gk,λ|2
∫ t

t−�t
dt1ε

∗
N ;p1

(t1) ei(ωk−ωge )(t−t1 )

×
∫ t

t−�t
dt2εN ;p2 (t2) ei(ωk−ωge )(t2−t )

∫
dV fk (r)

× φ∗
p1

(r)φBEC(r)
∫

dV ′ f ∗
k (r′)φp2 (r′)φ∗

BEC(r′).

(16)

The wave-number summation has a finite support which orig-
inates from the overlap integrals. Physically, this bandwidth is
determined by (i) the width 1/� of the BEC wave function in
momentum space and (ii) the width of the intermediate states
p1,2. The latter incorporates the drive-laser pulse width and
the BEC bandwidth. The Born-Markov approximation can be
adopted to simplify the above equation if the characteristic
timescale to generate a photon in this four-wave mixing pro-
cess is much longer than the correlation time τc where (cτc)−1

is the effective bandwidth of the fiber mode continuum just
discussed. Under this condition, the intensity in this photon-
scattering channel reads

I0(t ) =
∑
k,λ

∣∣�β0
N ;k,λ(t )

∣∣2
/�t

= N2 � |ε(t )|2 σA

A

∣∣∣∣
∫

dV |φBEC(r)|2ϕ∗
G(r)ei(kd−kge )r

∣∣∣∣
2

≡ N2 � |ε(t )|2 σA

A |ξ0|2. (17)

Note that the intensity scales now quadratically with the num-
ber of atoms, while the geometric factor ξ0 involves the BEC
wave function in a different power compared to Eq. (15).
Moreover, the geometric factor is no longer isotropic: there
is no momentum transfer to the final BEC state that would
compensate the momentum mismatch of the readout and
emitted photon, so the outgoing photon has to take the
momentum of the absorbed photon from the driving laser,
resulting in predominantly forward scattering. This result for
the photon-scattering rate allows for justifying the validity of
the Born-Markov approximation a posteriori. If the photon
generation process in the forward direction becomes very ef-
ficient, i.e., I0τc ∼ 1, the Born-Markov approximation breaks

down. This can happen, for example, for a large number of
atoms. The underlying physical picture is that the photon re-
absorption cannot be neglected for the case of strong coupling
between the BEC and the optical modes. However, this is a
favorable case in which the optical photon can be generated
on a short timescale by means of an appropriate laser pulse.

C. Analytical approximations for the scattered intensity

In order to proceed with analytic expressions, we approx-
imate the BEC wave function by a Gaussian corresponding
to the ground state of a noninteracting gas in a harmonic trap
with cylindrical symmetry,

φBEC(r) = 1

(2π )3/4 σσ
1/2
z

exp

(
− x2 + y2

4σ 2
− z2

4σ 2
z

)
, (18)

where σx = σy = σ and σz are the oscillator lengths of the
trap. We consider the configuration in which the axis of the
optical fiber coincides with the long axis of the condensate
(see Fig. 2), characterized by the oscillator length σz. In the
case of a free-atom final state, the geometric factor ξ reads

ξ =
∫

dV |φBEC(r)ϕG(r)|2

= w2
0

(2π )3/2σ 2σz

∫
dV

1

w(z)2

× exp

[
− x2 + y2

2

(
1

σ 2
+ 1

w(z)2

)
− z2

2σ 2
z

]

= w2
0√

2πσz

∫
dz

exp
(− z2

2σ 2
z

)
σ 2 + w(z)2

≈ w2
0

σ 2 + w2
0

, (19)

where the last approximation is valid in the typical case when
the longitudinal length σz of the condensate is much smaller
than the Rayleigh range, so that the transverse beam size
w(z) can be approximated by the beam waist w0. The result
shows that the geometrical factor ξ � 1. The larger the beam
waist is, the better the geometrical coupling factor is. This
is reasonable as the optics that couples into the fiber collects
light from a larger solid angle.

If the ensemble of ultracold atoms returns to the BEC state,
the geometric factor, within the same approximations, is

ξ0(θ ) =
∫

dV |φBEC(r)|2ϕ∗
G(r)ei(kd−kge )r

= zR

(2π )3/2σ 2σz

∫
dV

1

q(z)

× exp

[
− x2 + y2

2

(
1

σ 2
+ i

kd

q(z)

)

− z2

2σ 2
z

+ ikd(cos θ − 1) z + ikd sin θ x

]

= zR√
2πσz

∫
dz

1

q(z) + ikdσ 2
exp

[
− ik2

dσ
2q(z)

2(q(z) + ikdσ 2)

× sin2 θ + ikd(cos θ − 1) z − z2

2σ 2
z

]
, (20)
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where θ is the angle between the direction of the incoming
driving field kd and the direction of the optical fiber k. For
the forward-scattering direction, θ = 0, which was already
calculated in [22], we have

ξ0 = zR

(2π )3/2σ 2σz

∫
dV

1

q(z)

× exp

[
− x2 + y2

2

(
1

σ 2
+ i

kd

q(z)

)
− z2

2σ 2
z

]

= −i

√
π

2

zR

σz
e

(zR+kdσ2 )2

2σ2
z erfc

(
zR + kdσ

2

√
2σz

)

≈ w2
0

2σ 2 + w2
0

, (21)

where in last line we again used the approximation that the
longitudinal length σz of the condensate is much smaller than
the Rayleigh range zR.

So far we have seen that for every (kd, kge) the radiation
collected by the Gaussian optics has two components: one
which is independent of the angle θ and is proportional to N
and one which is confined to a small solid angle around θ = 0
and is proportional to N2. Certainly, the latter dominates the
photon emission in the forward direction for a sufficiently
large atom number.

IV. NUMERICAL RESULTS AND DISCUSSION

We consider a cylindrically symmetric harmonic trap and
an optical fiber oriented in the z direction and address the
question of which part of the incoupled intensity, Eq. (15)
or Eq. (17), gives the larger contribution to the collected
radiation for a given trap geometry σ, σz and beam waist w0

at different angles θ . It was already shown in [22] that the
intensity of the forward scattering is optimized if the beam
waist equals

√
2σ . So in the following we are going to fix

w0 = √
2σ . In the limit of small longitudinal size relative

to the Rayleigh range, the geometrical factors (19) and (21)
become ξ = 2/3 and |ξ0|2 = 1/4, respectively. To compare
the two radiation channels, we study the distinct parts of
the intensities (15) and (17), namely, the geometrical factors
|ξ0(θ )|2 and ξ/N (see Fig. 3), with dimensionless quantities
defined as σ = kd σ , σ z = kd σz, and w0 = kd w0.

If the BEC has an oblate or a nearly spherical shape,
the superradiant part of the geometrical factor takes a maxi-
mum value of 1/4 in the forward direction θ = 0, while the
isotropic channel results in ξ = 2/3. In this case σ 2 > σ z,
which is equivalent to the setup in which the Rayleigh range
is much larger than the longitudinal size σz. As the spheroid
becomes prolate and σz becomes comparable to zR, the geo-
metrical factors of both channels decrease. At a certain point
where the shape of the BEC becomes very elongated, the max-
imum of the anisotropic radiation is displaced to a nontrivial
angle. The reason for this is that the curvature and the Gouy
phase term of the Gaussian beam become significant, which
can be compensated for in Eq. (20) only by a nonzero θ .

Around θ = 0 the dominant contribution comes from su-
perradiant emission from the BEC, but above a particular
angle θ∗, which depends on the trap geometry, the isotropic

(a)

(b)

FIG. 3. Angular dependence of the geometrical factor |ξ0(θ )|2
(curves) corresponding to the superradiance and the value of the
geometrical factor ξ/N (horizontal lines) for the isotropic radiation
for a fixed number of atoms N = 10 for various values of (a) the
transverse size σ z and (b) the longitudinal size σ . θ is measured in
radians.

radiation exceeds the superradiant one. This critical angle
increases if the geometrical parameters σ and σz decrease.

For a small number of atoms, only the isotropic part is sig-
nificant for nearly all angles θ (see Fig. 4). But as the number
of atoms increases, the superradiance becomes important in
an ever-widening range around the forward direction, as it is
amplified by a factor of N compared to the isotropic radiation.

Finally, we make some remarks about the possibility of
converting microwave photons to optical ones with the present
scheme. The efficiency of such a process is ultimately de-
termined by how valid the simplifying assumptions made in
our modeling are in an experiment and at what rate technical
imperfections enter. Indeed, if we assume that a single excita-
tion in the microwave mode ĉ has an infinite lifetime and the
whole scheme can be maintained indefinitely, then, however
slowly, the microwave photon will always be transformed into
an emitted optical photon by the system leaking through states
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FIG. 4. The dependence of the critical angle θ∗ (the two chan-
nels have the same contribution) on the atom number N for fixed
geometry σ = 50, σ z = 100. θ∗ is measured in radians.

|s〉 and |e〉 and ending up back in |g〉 after what is essentially
a two-photon optical pumping process. The real question is
therefore not the efficiency but the rate of the conversion,
which needs to be higher than the rate at which the conditions
degrade in an experiment or factors excluded from our model
come into play. According to Eqs. (15) and (17), the photon-
creation rate is proportional to the rate of populating state |e〉.
Optimizing this is analogous to population transfer: one has
to optimize the shape of the pulse �d(t ) with respect to the
pulse η(t ), that is, the temporal envelope of the microwave
photon interacting with the atom. Compared to conventional
EIT and STIRAP schemes, here the optimization problem is

complicated by the presence of a continuum of momentum
states of the BEC.

V. CONCLUSIONS

To summarize, we have considered the photon emission by
a Raman process with � atoms in a BEC. In addition to the
internal atomic state, we have taken into account the atomic
external, motional degree of freedom in order to describe the
momentum transfer in the photon recoil. We performed the
analysis in the perturbative, weak-excitation limit, in which
we were able to separate the spatial dependence of the emitted
radiation from its temporal dynamics. Under these approxi-
mations, we have shown that there are two channels for the
converted radiation: the superradiant one, which corresponds
to the phase-matched photon scattering in the forward di-
rection, and the isotropic one, in which the Bose-Einstein
condensate takes away an arbitrary momentum mismatch be-
tween the incoming and emitted radiation. The contribution of
the latter is more significant in the side-scattering directions,
while the width of this region varies with the number of atoms
in the condensate and with the dimensions of the harmonic
trap.
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