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Universal model of strong coupling at the nonlinear resonance in open cavity-QED systems
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Many molecular, quantum-dot, and optomechanical nanocavity-QED systems demonstrate strong nonlinear
interactions between electrons, photons, and phonon (vibrational) modes. We show that such systems can be
described by a universal model in the vicinity of the nonlinear resonance involving all three degrees of freedom.
We solve the nonperturbative quantum dynamics in the strong-coupling regime of the nonlinear resonance, taking
into account quantization, dissipation, and fluctuations of all fields. We find analytic solutions for quantum states
in the rotating-wave approximation which demonstrate tripartite quantum entanglement once the strong-coupling
regime is reached. We show how the strong coupling at the nonlinear resonance modifies photon emission and
vibrational spectra, and how the observed spectra can be used to extract information about relaxation rates and
the nonlinear coupling strength in specific systems.
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I. INTRODUCTION

Nonlinear optical interactions acquire qualitatively new
features in the strong-coupling regime of cavity quantum
electrodynamics (QED), especially when utilizing an extreme
field localization achievable in nanophotonic cavities. Even in
the standard cavity-QED scenario of the strong coupling at
the two-wave resonance between only two degrees of free-
dom, e.g., between an electronic or vibrational transition in
a molecule and an electromagnetic (EM) cavity mode, strong
coupling has been shown to modify the properties of Raman
scattering, generation of harmonics, four-wave mixing, and
nonlinear parametric interactions, with applications in photo-
chemistry, quantum information, and quantum sensing; see,
e.g., [1–12].

The dynamics becomes more complicated but also more
interesting when the strong-coupling regime is realized at
the nonlinear resonance between three or more degrees of
freedom. One possible example where it can be realized is a
molecule or an ensemble of molecules placed in a photonic or
plasmonic nanocavity, e.g., [11–18]. In this case the fermion
system may comprise two or more electron states forming
an optical transition at frequency ωe, and the nonlinear para-
metric process may involve, e.g., a decay of the electron
excitation into a cavity photon at frequency ω and a phonon
of a given vibrational mode of a molecule at frequency �,
under the nonlinear resonance condition ωe = ω + �, or an
absorption of a photon with simultaneous creation of electron
and phonon excitations, given by the nonlinear resonance
condition ω = ωe + �. When the strength of such a nonlinear
three-wave interaction is higher than the dissipation rates, hy-
brid electron-photon-phonon states are formed. If the phonon
mode is classical, the parametric process is simply the modu-
lation of the electron-photon coupling by molecular vibrations
which serve as an external driving force for the electron-

photon quantum dynamics. If the phonon mode is quantized,
the strong coupling between photon, phonon, and electron
degrees of freedom near the nonlinear resonance ωe = ω ±
� leads inevitably to the formation of tripartite entangled
states belonging to the family of Greenberger-Horne-Zeilinger
(GHZ) states [19].

Another route to the nonlinear resonance is within the
framework of cavity optomechanics, e.g. [20–25], and quan-
tum acoustics [26–28]. It can occur in the situations where
mechanical oscillations of a cavity parameter at frequency
� modulate the frequency of the photon cavity mode. Here
again the nonlinear resonance ωe = ω ± � at strong coupling
should give rise to tripartite entangled states of the electrons,
photons, and mechanical vibrations [29]. While quantiza-
tion of all three degrees of freedom in experiment remains
an unsolved challenge, strong coupling and entanglement of
acoustic phonons [30,31], resolving the energy levels of a
nanomechanical oscillator [28], or cooling a macroscopic sys-
tem into its motional ground state [32] have already been
demonstrated.

Yet another situation leading to the nonlinear resonance
is when the phonons or molecular vibrations modulate the
electron transition frequency. This coupling is typically intro-
duced via the Huang-Rhys theory; see the Hamiltonian (14)
below. The same type of the Hamiltonian is often used to
describe the effect of phonons on the coupling of a quantum
dot or an optically active defect in a solid matrix to the EM
cavity field [33–37]. The exciton-photon coupling strength
(Rabi frequency) in nanocavities can be even high enough to
exceed the phonon frequency, which brings the system to the
ultrastrong-coupling regime with respect to the phonon mode
[37].

There are a great variety of models and formalisms de-
scribing these diverse physical systems, and attempts have
been made to establish connections between different models.
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For example, it was shown in [24] that plasmon-enhanced
Raman scattering on individual molecules can be mapped
onto a cavity optomechanics Hamiltonian when the plasmon
frequency is far detuned from the electronic transition in a
molecule, i.e., no electrons are excited. In this case the vi-
brational mode of a molecule is analogous to the mechanical
oscillations of a cavity parameter. In [3] it was argued that
Stokes Raman scattering in molecules under the condition
of a strong coupling between the vibrational mode and the
cavity mode is equivalent to the parametric decay of the pump
photon into the Stokes photon and the vibrational quantum. In
both cases, a simple linear resonance ω = � was assumed and
the EM field was far detuned from any electronic transition
in a molecule, thus excluding any real electron excitation. In
[12] resonant Raman scattering of single molecules when the
two-wave exciton-photon coupling frequency is comparable
to the vibrational frequency was analyzed. The situation when
the Rabi frequency becomes comparable to the vibrational
frequency was also considered in [19].

In this paper we deal with the strong coupling at the nonlin-
ear three-wave resonance ωe = ω ± � when the excitation of
the electron transition and energy exchange between all three
degrees of freedom are of principal importance. We show that
in the rotating-wave approximation (RWA) (i.e., excluding
ultrastrong-coupling regimes) all physical models of electron-
photon-vibrational coupling in molecular, optomechanical,
and any other coupled three-mode system can be mapped
onto the universal “parametric” Hamiltonian, independently
on the specific physical mechanism of coupling. This result
is surprising as the original Hamiltonians describing these
systems have a very different structure; see the next section.

We call this Hamiltonian “parametric” for lack of a better
word because it resembles the structure of the Hamiltonian de-
scribing spontaneous parametric down-conversion of a pump
photon field into signal and idler photons, assuming that all
three fields are quantized [38]. However, one should keep
in mind that in our case one of the degrees of freedom is
fermionic (quantum emitter) and we are interested in the
nonperturbative regime of strong coupling when the excitation
of the quantum emitter is not small. This is the regime most
interesting for quantum technology applications as it actively
involves the fermionic qubit in the processes of writing, read-
ing, and transferring the information encoded in a quantum
state.

Note that the system must be in the RWA regime for the
nonlinear resonance and all associated physics to exist and
make sense. Otherwise, the three-wave and two-way reso-
nances overlap [19] and the GHZ-like entangled states cannot
be created. Also, it becomes impossible to build a universal
Hamiltonian. That is why the ultrastrong-coupling regimes are
not of interest to us in this paper.

When solving for the quantum dynamics of the resulting
nonlinear coupled system, we include the effects of deco-
herence and coupling of each dynamic subsystem (electrons,
photons, and phonons) to its own reservoir in the Markov
approximation. Previous works (see, e.g., [35,37]) included
the non-Markovian effects in the coupling of the two-wave
exciton-photon resonance to the phonon reservoir. In our case
the phonon mode, which is strongly coupled to the exciton
and photon modes through the nonlinear resonance, is part of

the dynamical system. One could say that the phonon effect
on the dynamics is “extremely non-Markovian,” except that
this terminology ceases to have any meaning in this case. The
Markov approximation is of course related only to (weak)
coupling of all components of the dynamic system to their
dissipative reservoirs.

Within the formalism of the stochastic equation of evolu-
tion for the state vector we are able to find the general analytic
solution for the nonperturbative dynamics of the open quan-
tum system. This approach is well known [39], but it is usually
applied for numerical Monte Carlo simulations [40–48]. We
recently developed a version of stochastic Schrödinger equa-
tion suitable for analytic solutions in open strongly coupled
cavity-QED problems [19,49]. We calculate the photon and
phonon emission spectra to obtain the experimentally observ-
able signatures of the strong-coupling regime and tripartite
quantum entanglement.

The effect of the phonon reservoir leads to qualitatively
new features in both photon and phonon emission spectra at
the nonlinear resonance that are not present in the standard
Rabi oscillations regime and were not found in our recent
work [19]. In particular, the intermediate relaxation pathways
result in a richer multipeak structure. Since we are able to
find analytic solutions for the quantum dynamics in systems
of coupled electron, photon, and phonon excitations including
dissipation and fluctuation effects in all subsystems, we can
retrieve all experimental parameters from the relative ampli-
tudes and positions of the spectral peaks, namely, transition
energies and frequencies, matrix elements of the optical tran-
sitions, the spatial structure of the field modes, relaxation rates
for all constituent subsystems, ambient temperatures, etc. We
believe that the results obtained in this paper will be useful for
designing and interpreting the experiments on a broad range
of cavity-QED systems.

The paper is structured as follows. In Sec. II we present
the Hamiltonian for coupled quantized fermion, photon, and
phonon fields near the nonlinear resonance for one particular
mechanism of three-wave coupling. In Sec. III we show that a
large variety of different three-wave coupling mechanisms and
physical systems are reduced to the same Hamiltonian which
therefore can serve as a universal model of the strongly cou-
pled nonlinear resonance. Section IV includes the effects of
dissipation, decoherence, and fluctuations within the stochas-
tic equation for the state vector which describes the evolution
of an open system in contact with dissipative reservoirs. As
compared to our recent work [19,49], we develop a model of
fluctuations and dissipative processes which includes all ef-
fects of phonon dissipation on the dynamics of the parametric
process and the emission spectra. In Sec. V we describe the
formation of entangled electron-photon-phonon states for an
open system. Section VI calculates the emission spectra of
photons and phonons resulting from the nonlinear parametric
decay of an electron excitation. Appendixes A and B contain
the derivation details.

II. UNIVERSAL HAMILTONIAN OF THE NONLINEAR
RESONANCE

Consider a simple model of three interacting quantum sub-
systems which includes (1) an electron transition in a quantum

053707-2



UNIVERSAL MODEL OF STRONG COUPLING AT THE … PHYSICAL REVIEW A 105, 053707 (2022)

FIG. 1. A sketch of nonlinear resonance for a molecule in a
cavity showing the decay of the electron excitation at frequency ωe

into a cavity mode photon at frequency ω and a phonon of a given
vibrational mode at frequency �. The relaxation rates of the electron,
photon, and vibrational excitations are γ , μω, and μ�, respectively.

emitter such as an atom, molecule, optically active impu-
rity, quantum dot, etc., which we will model as a two-level
system, (2) a single-mode electromagnetic (EM) field in a
cavity, and (3) a mode of mechanical, acoustic, or molecular
vibrations (“phonons”). Although in this section we write the
Hamiltonian for a specific model, in the next section we show
that the same Hamiltonian describes the nonlinear parametric
coupling in a variety of physical systems.

The generalization to many bosonic modes or fermionic
degrees of freedom is straightforward and still allows analytic
solution within the rotating-wave approximation (RWA), but
it leads to more cumbersome algebra (see, e.g., [50]), so we
will keep only three degrees of freedom for clarity.

Figure 1 shows a generic model of parametric decay of an
electron excitation in a quantum emitter (e.g., a molecule) into
a photon of a cavity mode at frequency ω and a phonon of a
given vibrational mode at frequency �, under the condition of
the nonlinear resonance ωe ≈ ω + �.

In the absence of coupling, the partial Hamiltonians are as
follows.

A. Two-level fermion system

It is described by a standard effective Hamiltonian

Ĥe = h̄ωeσ̂
†σ̂ . (1)

Here σ̂ = |0〉〈1|, σ̂ † = |1〉〈0|; |0〉 and |1〉 are the eigenstates
of an “atom” with energies 0 and h̄ωe, respectively. The
Hamiltonian Eq. (1) corresponds to the dipole moment op-
erator

d̂ = d(σ̂ † + σ̂ ), (2)

where d = −e〈1|r|0〉, and r is a coordinate for the finite
motion of a bound electron.

B. EM field

Here we consider a single-mode EM field for simplic-
ity, although including many bosonic field modes does not
present any principal difficulties. Besides, in a microcavity

or nanocavity other EM modes will be far detuned from the
nonlinear resonance. The Hamiltonian is

Ĥem = h̄ωĉ†ĉ. (3)

Here ĉ and ĉ† are standard bosonic annihilation and creation
operators of photons or plasmons in the EM mode of fre-
quency ω. The electric field operator is

Ê = E(r)ĉ + E∗(r)ĉ†. (4)

The spatial structure of the normalization amplitude of the
field E(r) is determined by solving the boundary value prob-
lem. The normalization condition is∫

V

∂[ω2ε(ω, r)]

ω∂ω
E∗(r)E(r)d3r = 4π h̄ω. (5)

Here V is the quantization volume, and ε(ω, r) the dielectric
function of the dispersive medium which fills in the resonator.
Equation (5) is derived, e.g., in [51–54].

C. Phonons

We again assume a single bosonic mode of a vibrational
field for the same reasons,

Ĥp = h̄�b̂†b̂, (6)

where b̂ and b̂† are phonon annihilation and creation opera-
tors. Depending on the situation, they may define, e.g., the
radius vector of oscillations of the center of mass of an atom
[5,19,55] or a geometric parameter of the optomechanical
cavity [22,24],

R̂ = Qb̂ + Q∗b̂†. (7)

The normalization amplitude Q depends on the system; its
absolute value can be expressed through an effective mass of
the quantum mechanical oscillator [22]: |Q|2 = h̄

2meff �
.

D. Coupling

The coupling between subsystems is strongest at res-
onance. Since usually ω,ωe � �, the two most relevant
resonances are a two-wave resonance

ωe ≈ ω (8)

and a three-wave (nonlinear) resonance

ωe ≈ ω ± �. (9)

There could be also resonances at the harmonics of the phonon
frequency: ωe ≈ ω ± M�, where M is integer. The modula-
tion of the system parameters by a classical phonon field at
frequency � was studied, e.g., in [49], and we do not consider
the classical field here.

The two-wave resonance in the RWA [40] is described by
the Jaynes-Cummings (JC) Hamiltonian [56]

Ĥ = h̄ωĉ†ĉ + h̄ωeσ̂
†σ̂ + h̄

(
�

(2)
R σ̂ †ĉ + H.c.

)
. (10)

The electric dipole coupling between the electron and EM
subsystems is expressed here through the effective Rabi fre-
quency for the two-wave coupling �

(2)
R = − d·E(r0 )

h̄ , where r0

is the coordinate of a pointlike atom.
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A three-wave (parametric) resonance appears in many dif-
ferent scenarios. As we show in the next section, various
models existing in the literature can be described with one
universal Hamiltonian. One of the scenarios leading to the uni-
versal three-wave coupling Hamiltonian is when a quantized
phonon (vibrational) mode modulates the coupling strength
between the electron transition and the EM field mode. In this
case the JC Hamiltonian is generalized to the following form
[3,19]:

Ĥ = h̄ωĉ†ĉ + h̄ωeσ̂
†σ̂ + h̄�b̂†b̂ + h̄

(
�

(3)
R σ̂ †ĉb̂ + H.c.

)
,

(11)
where �

(3)
R is the coupling parameter for the three-wave res-

onance, which depends on the specific coupling mechanism.
The above interaction term is written for the decay of an elec-
tron transition into the photon and the phonon, i.e., assuming
that the electron excitation energy is the largest of the three.
This decay process corresponds to the upper (plus) sign in the
resonant condition Eq. (9). If we choose the lower (minus)
sign in Eq. (9), the three-wave coupling Hamiltonian will
become h̄(�(3)

R ĉ†b̂σ̂ + H.c.).
Note that the three-wave coupling term in Eq. (11) has

the structure formally equivalent to the parametric down-
conversion (PDC) Hamiltonian describing the parametric
decay of the quantized pump field into quantized signal and
idler modes [38,57]. Of course, one difference is that all fields
in the photonic PDC process are described by bosonic opera-
tors whereas the electron excitation in Eq. (11) is described by
fermionic operators, giving rise to its specific nonlinearities.

The strong-coupling regime at the nonlinear resonance is
realized when the three-wave coupling parameter in Eq. (11)
is larger than a certain combination of the relaxation constants
γ , μω, μ� of all subsystems. The exact criterion can be re-
trieved from the analytic solution presented in Secs. V and VI
below.

The specific form of the parameter �
(3)
R depends on the

nonlinear coupling mechanism. For example, a phonon mode
can modulate the position of the center of mass of an “atom”
within a spatially nonuniform distribution of the EM field of
a cavity mode. It can be realized for all kinds of quantum
emitters: an electron transition in a molecule, a quantum dot
or defect in a solid matrix, an optomechanical system with a
varying cavity parameter, etc. In this case, in the limit of a
small amplitude of vibrations, one can obtain that [19]

�
(3)
R = −1

h̄
[d(Q · ∇)E]r=r0

. (12)

The Hamiltonian in Eq. (11) is valid if the three-wave
resonance is well separated from the two-wave one. The con-
ditions for that are [19]

|ωe − ω − �| � |ωe − ω|, ∣∣�(2,3)
R

∣∣ � �. (13)

In the next section we will see that if the conditions
Eq. (13) are satisfied, other models of three-wave coupling can
be reduced to the universal parametric Hamiltonian Eq. (11).
Note that in plasmonic nanocavities the two-wave or/and
three-wave Rabi frequency �

(2,3)
R can become higher than the

vibrational or phonon frequency �, which would violate the
last of inequalities Eq. (13); see [12,19,37].

III. THE MODELS DESCRIBED BY THE UNIVERSAL
PARAMETRIC HAMILTONIAN

In addition to the three-wave coupling mechanism consid-
ered in the previous section, there are other ways for phonons
or any mechanical oscillations to affect the coupling between
the EM cavity field and the quantum emitter. Here we give
several examples, assuming without loss of generality that the
amplitudes Q in the expression for the position displacement
operator in Eq. (7) are real functions.

A. Phonons modulate the energy of the electron transition

For a single-phonon mode the Hamiltonian is

Ĥ = h̄ωĉ†ĉ + h̄ωeσ̂
†σ̂ + h̄�b̂†b̂ + h̄

(
�

(2)
R σ̂ †ĉ + H.c.

)
+ h̄

√
S�σ̂ †σ̂ (b̂ + b̂†). (14)

Here S is the Huang-Rhys factor, which determines the depen-
dence of the transition energy on the dimensionless amplitude
b̂ + b̂† of the phonon oscillations. There are numerous studies
of this type of modulation; see, e.g., [5,12–15,55,58] and
references therein. The same type of coupling is also used
in a Holstein-Tavis-Cummings model, e.g., [59–61]. Let us
call Eq. (14) the “molecular” Hamiltonian, although it also de-
scribes the exciton-phonon coupling in quantum-dot systems
[34–37].

B. Phonons modulate some geometric parameter of the cavity

This type of coupling is usually described by the Hamilto-
nian of the type

Ĥ = h̄ωĉ†ĉ + h̄ωeσ̂
†σ̂ + h̄�b̂†b̂ + h̄

(
�

(2)
R σ̂ †ĉ + H.c.

)
− h̄gĉ†ĉ(b̂ + b̂†) (15)

or its multimode extension. Here the factor g determines the
linear dependence of the resonant frequency of the cavity
on some geometric parameter G modulated by mechanical
vibrations:

g = −Q
∂ω

∂G
.

There are numerous studies of this model as well; see, e.g.,
[21–24] for examples of classical and recent papers, reviews,
and numerous references therein. We will call Eq. (15) the
“optomechanical” Hamiltonian.

The Hamiltonians Eq. (14) and (15) appear to be very
different from Eq. (11). Indeed, they both contain the standard
two-wave resonance as opposed to Eq. (11) and their three-
wave coupling terms are completely different. Moreover, the
nonlinear coupling in Eq. (15) does not even involve the
fermionic degree of freedom. Nevertheless, we will show that
when the conditions Eq. (13) are satisfied, the “molecular”
and “optomechanical” Hamiltonians are equivalent to the uni-
versal Hamiltonian in Eq. (11).

To prove this statement, we write the Hamiltonian Eq. (11)
in the interaction representation

Ĥint = eiĤ0tV̂ e−iĤ0t , (16)

where

Ĥ0 = h̄ωĉ†ĉ + h̄ωeσ̂
†σ̂ + h̄�b̂†b̂, V̂ = h̄

(
�

(3)
R σ̂ †ĉb̂ + H.c.

)
.
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This yields

Ĥint = h̄
(
�

(3)
R σ̂ †ĉb̂ei(ωe−ω−�)t + H.c.

)
. (17)

Next, we write the Hamiltonians in Eqs. (14) and (15)
in the interaction representation by defining the unperturbed
Hamiltonian as

Ĥ0 = h̄ωĉ†ĉ + h̄ωeσ̂
†σ̂ + h̄�b̂†b̂ + h̄

(
�

(2)
R σ̂ †ĉ + H.c.

)
.

(18)
This gives

V̂ = V̂mol = h̄
√

S�σ̂ †σ̂ (b̂ + b̂†) (19)

for the “molecular” Hamiltonian and

V̂ = V̂optom = −h̄gĉ†ĉ(b̂ + b̂†) (20)

for the optomechanical one.
The operator Ĥ0 given by Eq. (18) is not diagonal. In this

case one should generally diagonalize Ĥ0. However, some-
times a slightly different approach is simpler. Indeed, consider
the Hamiltonian given by

Ĥ = Ĥ0(Â1, . . . , ÂN ) + V̂ (Â1, . . . , ÂN ), (21)

where Âi are certain operators related to coupled subsystems
(here we assume that Hermitian conjugated operators are as-
signed different numbers “i”). For any interaction operator V̂ ,
which can be expanded in a series

V̂ =
∑

j

k j

Nj∏
i=1

(Âi )
n ji

(here n ji are positive integers), the following relationships are
true:

Ĥint = eiĤ0tV̂ (Â1, . . . , ÂN )e−iĤ0t

=
∑

j

k j

Nj∏
i=1

eiĤ0t (Âi )
n ji e−iĤ0t

=
∑

j

k j

Nj∏
i=1

(eiĤ0t Âie
−iĤ0t )n ji ,

from which one obtains

Ĥint = V̂ (̂Ã1, . . . ,
̂̃AN,), (22)

where ̂̃Ai(t, Â1, . . . , ÂN ) = eiĤ0t Âie
−iĤ0t . (23)

The operators ̂̃Ai satisfy the Heisenberg equations

∂̂̃Ai

∂t
= i

h̄
[Ĥ0,

̂̃Ai] (24)

for the initial conditions ̂̃Ai(t = 0) = Âi. In particular, for the
Hamiltonian Ĥ0 given by Eq. (18) one obtains

∂̂̃σ
∂t

= −iωễσ − i�(2)
R

̂̃c(1 − 2̂̃σ †̂̃σ ), (25)

∂̂̃c
∂t

= −iω̂c̃ − i�(2)∗
R

̂̃σ , (26)

where we used the integral of motion ̂̃σ †̂̃σ + ̂̃σ̂̃σ † = 1. Taking
into account the condition |�(2)

R | � |ωe − ω| which follows
from Eqs. (13), when solving for the operators ̂̃c and ̂̃σ one

can neglect the terms of the order of | �
(2)
R

ωe−ω
|2. For the initial

conditions ̂̃σ (t = 0) = σ̂ and ̂̃c(t = 0) = ĉ the solution ex-

panded in series in powers of the small parameter | �
(2)
R

ωe−ω
| takes

the form

(̂̃σ̂̃c
)

= ̂̂M(
σ̂

ĉ

)
, (27)

where

̂̂M =
(

e−iωet 0
0 e−iωt

)
−

(
0 �

(2)
R

ωe−ω
(1 − 2σ̂ †σ̂ )(e−iωt − e−iωet )

�
(2)∗
R

ωe−ω
(e−iωt − e−iωet ) 0

)
+ o

(∣∣∣∣ �
(2)
R

ωe − ω

∣∣∣∣2)
. (28)

There is an exact solution for the operator ̂̃b:̂̃b = eiĤ0t b̂e−iĤ0t = b̂e−i�t . (29)

Now we substitute the three-wave coupling Hamiltonian
Eq. (19) into Eq. (22) and use Eqs. (27)–(29). The condi-
tions Eq. (13) combined with the RWA allow one to keep
only slowly varying terms ∝ei(ωe−ω−�)t in the final expres-
sion. Taking into account that σ̂ †σ̂ † = σ̂ σ̂ = 0 and taking

1
ωe−ω

≈ 1
�

in Eq. (28), we obtain the following expression for
the “molecular” Hamiltonian in the interaction picture:

(Ĥint )mol = −h̄
(√

S�
(2)
R σ̂ †ĉb̂ei(ωe−ω−�)t + H.c.

)
. (30)

A similar derivation for the “optomechanical” Hamiltonian
given by Eq. (20) leads to the following result:

(Ĥint )optom = −h̄

(
g�(2)

R

�
σ̂ †ĉb̂ei(ωe−ω−�)t + H.c.

)
. (31)

Clearly, in both cases the Hamiltonian has the same structure
as the parametric Hamiltonian Eq. (17), in which

(
�

(3)
R

)
mol = −

√
S�

(2)
R or

(
�

(3)
R

)
optom = − g

�
�

(2)
R . (32)
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Therefore, one can use the universal parametric Hamiltonian
Eq. (11) for all kinds of three-wave couplings after choosing
an appropriate expression for the coupling parameter �

(3)
R .

We emphasize again that the universal character of the
parametric Hamiltonian Eq. (11) holds as long as inequalities
Eq. (13) are satisfied, which ensure that the three-wave nonlin-
ear resonance can be separated from the two-wave resonance.
The structure of the nonlinear coupling term in Eq. (11) could
be expected if all three modes are bosonic fields, as in spon-
taneous parametric down-conversion process. However, the
fact that the same Hamiltonian can be extended to two-level
(fermionic) transitions with their specific nonlinearity dictated
by the Pauli principle is unusual and unexpected.

IV. INCLUDING DISSIPATION AND FLUCTUATIONS
WITHIN THE STOCHASTIC EQUATION FOR THE

STATE VECTOR

A. Stochastic equation for the state vector

Many quantum information applications are based on the
strong-coupling regime in which the relaxation times τ are
much longer than the dynamical coupling times T between the
subsystems. For two- and three-wave couplings those times
are determined by effective Rabi frequencies, T −1 ∼ |�(2,3)

R |.
As shown in [19,49], the method of the stochastic equation for
the state vector is often the most convenient way to de-
scribe the nonperturbative dynamics of open strongly coupled
systems; it leads to simpler derivations for the observables
and characterization of entanglement than the operator-valued
Heisenberg-Langevin equations or the master equation for the
density matrix.

Indeed, when applied to strongly coupled systems the
Heisenberg approach leads to the nonlinear operator-valued
equations even in the simplest case of a single two-level
atom coupled to a single-mode field [40]. In contrast, the
equations for the state-vector components are always linear;
they contain much fewer variables as compared to the density
matrix equations and are split into low-dimensional blocks in
the RWA, leading to analytic solutions for both two-wave [40]
and three-wave [19,49] resonant coupling.

One potential difficulty with this approach is that dissi-
pation and fluctuations may lead to the coupling between
different blocks of equations for the state-vector components
that were uncoupled in a closed system. However, in the
strong-coupling regime the coupling through dissipative reser-
voirs is weak (scales as a small parameter T/τ ) and can be
taken into account perturbatively [19,49].

Following [19,49], we apply the stochastic equation for the
state vector to derive analytic solution for the parametric cou-
pling of a two-level fermionic quantum emitter to two boson
fields. The stochastic equation has the following general form:

d

dt
|
〉 = − i

h̄
Ĥeff |
〉 − i

h̄
|R〉. (33)

Here |
〉 is the state vector; |R〉 is the noise term satisfy-
ing |R〉 = 0, where the bar means averaging over the noise
statistics; Ĥeff = Ĥ + Ĥ (ah) is an effective Hamiltonian which
is a non-Hermitian operator. Its non-Hermitian component
Ĥ (ah) describes the effects of relaxation. The expressions for
Ĥ (ah) and |R〉 must be consistent with each other to guarantee

the conservation of the noise-averaged norm 〈
(t )|
(t )〉 = 1,
and ensure that the system reaches a physically meaningful
steady state in the absence of any external driving force.
To calculate the observables from the state vector given by
Eq. (33), one should apply a standard procedure but with
an important extra step: averaging over the noise statistics,
i.e., q = 〈
|q̂|
〉, where q̂ is a quantum-mechanical operator
corresponding to the observable q.

Perhaps the most popular version of the stochastic
approach to derive the state vector, i.e., the stochastic
Schrödinger equation (SSE), is its application for numeri-
cal Monte Carlo simulations within the method of quantum
jumps [40–48]. The stochastic equation in a different form, the
Schrödinger-Langevin equation (SLE), was suggested to de-
scribe the Brownian motion of a quantum particle in a constant
field [62,63]. Generally, using some version of the stochastic
equation fits within the narrative of the Langevin method [64].
Within the Langevin approach which describes the system
with stochastic equations of evolution, the averaging over the
reservoir degrees of freedom is equivalent to averaging over
the statistics of the noise sources [65]. This paradigm allows
one to describe open systems without relying on the density
matrix.

B. Comparison with the Lindblad formalism

It was shown in [19] that one can choose the form of Ĥ (ah)

and |R〉 in such a way that the observables calculated with
Eq. (33) will coincide with those obtained by solving the
master equation in the Lindblad approximation. The corre-
sponding master equation has the form [40]

d

dt
ρ̂ = − i

h̄
[Ĥ , ρ̂] + L̂(ρ̂), (34)

where L̂(ρ̂) is the relaxation operator (Lindbladian) which can
be represented as

L̂(ρ̂ ) = − i

h̄

(
Ĥ (ah)ρ̂ − ρ̂Ĥ (ah)†

) + δL̂(ρ̂). (35)

The equivalence (in the above sense) between the stochastic
equation and the Lindblad approach exists if we substitute
the anti-Hermitian part of the Hamiltonian from Eq. (35) into
Eq. (33), and postulate the following correlation properties for
the noise source:

|R(t ′)〉〈R(t ′′)| = h̄2δ(t ′ − t ′′)δL̂(ρ̂ )ρ̂�⇒|
〉〈
|. (36)

C. Parametric decay of the electron excitation into a photon
and a phonon

We will describe the dynamics near the three-wave
electron-photon-phonon resonance by the stochastic Eq. (33)
with the parametric Hamiltonian Eq. (11). We will seek the
state vector in the form


 =
∞,∞∑
n,α=0

(Cαn0|α〉|n〉|0〉 + Cαn1|α〉|n〉|1〉),

where the order of indices corresponds to

Cphonon photon fermion|phonon〉|photon〉|fermion〉.
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Consider the initial state with an excited electron and no
bosonic excitations, of the type |
(0)〉 = |0〉|0〉|1〉. Near
the resonance ωe ≈ ω + � the three-wave coupling leads to
the excitation of the state |1〉|1〉|0〉. In the zero-temperature
limit, which is valid when the reservoir temperature is much
lower than the transition frequency (for optical frequencies it
is satisfied even at room temperature), relaxation processes
could populate only the states with lower energies: |0〉|1〉|0〉,
|1〉|0〉|0〉, and |0〉|0〉|0〉. Therefore, for this initial condition the
state vector will have five components:

|
(t )〉 = C000(t )|0〉|0〉|0〉+C010(t )|0〉|1〉|0〉+C100(t )|1〉|0〉|0〉
+C110(t )|1〉|1〉|0〉 + C001(t )|0〉|0〉|1〉. (37)

Note that we are not restricting the basis in any way
and only considering the initial conditions leading to single-
photon and -phonon states to simplify algebra: see, for
example, the Appendix in [50] where arbitrary multiphoton
states are considered in the same way, leading of course to
more cumbersome expressions. Another reason to consider
such initial conditions is that single-photon states are used
in most applications, whereas generating multiphoton Fock
states remains a major challenge.

To determine the anti-Hermitian part Ĥ (ah) of the
Hamiltonian which describes relaxation and the correla-
tor |R(t ′)〉〈R(t ′′)| describing fluctuations, we will use the
expression for the total Lindbladian of the system in-
cluding a two-level “atom,” photons, and phonons [40].
For simplicity we will assume zero temperature of dis-
sipative reservoirs, which is satisfied at T � h̄ω. The
finite-temperature expressions are given in [19,49]. Then the
Lindbladian is

L(ρ̂ ) = Le(ρ̂ ) + Lem(ρ̂ ) + Lp(ρ̂ ), (38)

Le(ρ̂ ) = −γ

2
(σ̂ †σ̂ ρ̂ + ρ̂σ̂ †σ̂ − 2σ̂ ρ̂σ̂ †), (39)

Lem(ρ̂ ) = −μω

2
(ĉ†ĉρ̂ + ρ̂ĉĉ† − 2ĉρ̂ĉ†), (40)

Lp(ρ̂ ) = −μ�

2
(b̂†b̂ρ̂ + ρ̂b̂b̂† − 2b̂ρ̂b̂†), (41)

where γ , μω, and μ� are relaxation rates of corresponding
subsystems.

Then the stochastic equation for the state vector takes the
form⎛⎝ d

dt 0 0
0 d

dt + iω010 + γ010 0
0 0 d

dt + iω100 + γ100

⎞⎠⎛⎝C000

C010

C100

⎞⎠
= − i

h̄

⎛⎝R000

R010

R100

⎞⎠, (42)

(
d
dt + iω110 + γ110 i�(3)∗

R

i�(3)
R

d
dt + iω001 + γ001

)(
C110

C001

)
= − i

h̄

(
R110

R001

)
, (43)

where

Rαni = 〈αni |R〉;
ω010 = ω, ω100 = �, ω110 = ω + �, ω001 = ωe;

γ010 = 1
2μω, γ100 = 1

2μ�, γ110 = 1
2 (μω + μ�), γ001 = 1

2γ .

The correlators of the noise sources in Eqs. (42) and (43) are

R∗
αni(t

′)Rβm j (t ′′) = h̄2Dαni,βm j (t
′)δ(t ′ − t ′′), (44)

where the quantities Dαni,βm j are determined using Eqs. (36)
and (38)–(41). For the diagonal elements of the correlators we
obtain

D110,110 = D001,001 = 0,

D100,100 = μω|C110|2,
D010,010 = μ�|C110|2,
D000,000 = γ |C001|2 + μω|C010|2 + μ�|C100|2. (45)

The off-diagonal elements are given by

Dαni,βm j = D∗
βm j,αni,

D110,αni = D001,αni = D100,010 = 0,

D000,100 = μωC∗
010C110,

D000,010 = μ�C∗
100C110. (46)

The dependence of quantities Dαni,βm j in the right-hand side
of Eq. (44) on time t ′ is due to the time dependence of ampli-
tudes Cαni which enter Eqs. (45) and (46). The derivation of
the stochastic equation for the state vector including pure de-
phasing processes and the finite temperature of the reservoirs
has been discussed in [19,49].

Equations (43) describe the dynamic generation of
an entangled state of the type |MIX 〉 = A(t )|0〉|0〉|1〉 +
B(t )|1〉|1〉|0〉 whereas Eqs. (42) describe the relaxation dy-
namics leading to relaxation of populations to states with
lower energies. The quantities D010,010 and D100,100 in
Eqs. (45) are associated with processes of the relaxation
to states |0〉|1〉|0〉 and |1〉|0〉|0〉 from the entangled state
|MIX 〉. The structure of the expression for D000,000 corre-
sponds to the relaxation of the system from the entangled state
to the ground state via both “direct” pathway |0〉|0〉|1〉 →
|0〉|0〉|0〉 and multistep pathways |1〉|1〉|0〉 → |0〉|1〉|0〉 →
|0〉|0〉|0〉 and |1〉|1〉|0〉 → |1〉|0〉|0〉 → |0〉|0〉|0〉, as illustrated
in Figs. 3 and 5 below.

D. Expressions for noise sources in the stochastic equation

In addition to the expressions for noise correlators, it is
convenient to know more detailed expressions for the random
functions describing the noise sources Rαni(t ). The effect of
the reservoir on the dynamic system is characterized by the
matrix elements of the operator which determines coupling
to the reservoir. For a weak coupling these matrix elements
are linear with respect to the matrix elements of the operators
describing the dynamical system. Therefore, the functions
Rαni(t ) should depend linearly on the components of the state
vector of the system.

Here we again consider the low-temperature case when the
relaxation processes can bring the populations only down, not
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up. When the reservoirs for each subsystem are statistically
independent, one can try the following ansatz:

Rαni(t ) = h̄
√

γCαn(i+1)(t ) fe(t ) + h̄
√

μωCα(n+1)i(t ) fem(t )

+ h̄
√

μ�C(α+1)ni(t ) fp(t ), (47)

where fe,em,p = 0. Here fe,em,p(t ) are random functions that
are determined by the statistics of noise in unperturbed elec-
tron, photon, and phonon reservoirs. The functions fe,em,p

should not depend on the set of variables Cαni within the above
approximations.

The linear dependence of the noise term on the state vector
was also assumed in SLE [62,63], in which the noise terms
had the form

|R〉 = Û (r, t )|
〉, (48)

where Û (r, t ) is the fluctuating component of the potential.
To ensure that Eq. (47) leads to the correlators Eq. (44)–

(46) that are consistent with the Lindblad master equation, one
needs first to define the correlators of the random functions in
Eq. (47) in the following way:

f ∗
κ (t ′) fλ(t ′′) = δκλδ(t ′ − t ′′), (49)

where κ, λ = e, em, p, i.e., the fluctuations in different reser-
voirs are independent and Markovian. Second, one has to
assume that the correlations are factorized when calculating
the averages

C∗
αni(t

′)Cβm j (t ′′) f ∗
κ (t ′) fλ(t ′′) = C∗

αni(t
′)Cβm j (t ′′) f ∗

κ (t ′) fλ(t ′′).
(50)

Equation (49) looks obvious, whereas the factorization in
Eq. (50) is valid only in linear approximation with respect to
relaxation constants γ and μω,�. However, the Lindbladian
of the form given in Eqs. (38)–(41) is itself valid within the
same approximation. Therefore, Eqs. (47), (49), and (50) lead
to all expressions in Eqs. (45) and (46). One also has to keep
in mind that with our choice of our initial conditions the
amplitudes Cαni = 0 for all states with energies above those
in states |1〉|1〉|0〉 and |0〉|0〉|1〉.

V. DYNAMICS OF ENTANGLED
FERMION-PHOTON-PHONON STATES IN A

DISSIPATIVE SYSTEM

Here we write an explicit solution of Eqs. (42) and (43) for
the initial state vector |
(0)〉 = |0〉|0〉|1〉, when C001(0) = 1,
C000(0) = C010(0) = C100(0) = C110(0) = 0. Assuming exact
resonance at ωe = ω + �, and omitting intermediate steps
described in Appendix A, we obtain the solution for the five-
component state vector:

|
〉 = e−iωet e− γ110+γ001
2 t

{[
cos (�̃Rt ) + γ110 − γ001

2�̃R
sin (�̃Rt )

]
|0〉|0〉|1〉 + ie−iθ sin (�̃Rt )|1〉|1〉|0〉

}
+ δC001|0〉|0〉|1〉 + δC110|1〉|1〉|0〉 + C000|0〉|0〉|0〉 + C100|1〉|0〉|0〉 + C010|0〉|1〉|0〉, (51)

where

δC001 = δC110 = C000 = C100 = C010 = 0, (52)

|δC001|2 = |δC110|2 = 0. (53)

Here the effective Rabi frequency �̃R =√
|�(3)

R |2 − (γ110−γ001 )2

4 and θ = Arg[�(3)
R ].

It follows from Eq. (51) that in the entangled state
|MIX 〉 = A(t )|0〉|0〉|1〉 + B(t )|1〉|1〉|0〉 the amplitudes A(t )
and B(t ) oscillate at the effective Rabi frequency and decay
with the decay rate

γMIX = γ110 + γ001

2
= 1

4
(μω + μ� + γ ). (54)

The occupation probabilities |C001|2 and |C110|2 are plotted in
Fig. 2 as a function of normalized time �̃Rt , along with the
real parts of their eigenfrequencies obtained from Eqs. (43)
as a function of detuning from the nonlinear resonance ω +
� − ωe. Although the plots look like standard anticrossing
behavior and decaying Rabi oscillations, one should keep
in mind that (1) the anticrossing occurs not at the stan-
dard exciton-photon or phonon-photon resonance, but at the
nonlinear resonance, which is controlled by the nonlinear cou-
pling strength �

(3)
R and entangles three degrees of freedom;

(2) the relaxation rates of each individual subsystem enter

the analytic expressions plotted in Fig. 2 and the decay rate
of an entangled state in a nontrivial way, as is obvious from
Eq. (54). The presented solution provides the way to retrieve
the analytic dependence of any observable on the relaxation
and coupling parameters and determine correctly the criterion
for observing the strong parametric coupling and entangle-
ment in frequency or time domain. Two obvious examples for
such observables are photon and phonon emission spectra that
are derived and plotted in Sec. VI (see Figs. 4 and 6).

The expressions for the occupation probabilities |C100|2,
|C010|2, and |C000|2 that are valid under the condition �̃R �
γani are presented in Appendix A.

VI. EMISSION SPECTRA OF PHOTONS AND PHONONS
FROM THE PARAMETRIC DECAY OF THE ELECTRON

EXCITATION

A. Derivation of the emission spectra from the solution of the
stochastic equation for the state vector: A general scheme

Consider for definiteness the EM radiation out of a cavity.
Its power spectrum received by the detector is given by [40,66]

P(ν) = AS(ν),

where

S(ν) = 1

π
Re

∫ ∞

0
dτ eiντ

∫ ∞

0
dt K (t, τ ), (55)
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(a)

(b)

FIG. 2. (a) Real parts of eigenstate frequencies of Eqs. (43),
shifted by the electron transition frequency ωe and normalized by
|�(3)

R |, as a function of detuning from the nonlinear resonance ω +
� − ωe normalized by |�(3)

R |. The relaxation rates are μω = μ� =
0.3|�(3)

R | and γ = 0.2|�(3)
R |. (b) Occupation probabilities |C001|2 and

|C110|2 from Eqs. (A2) and (A3) as a function of normalized time �̃Rt
for the same relaxation rates.

K = 〈ĉ†(t )ĉ(t + τ )〉, 〈. . . 〉 is a quantum-mechanical averag-
ing. The coefficient A includes the Q factor of a cavity, spatial
structure of the outgoing field, and the position and properties
of the detector.

To calculate the power spectrum one needs to know
the solution of the Heisenberg-Langevin equations for the
field operators ĉ(t ) and ĉ†(t ), then calculate the correla-
tor, and average it over the statistics of Langevin noise:
K ⇒ 〈ĉ†(t )ĉ(t + τ )〉. However, as we already discussed,
the Heisenberg-Langevin equations become nonlinear in the
strong-coupling regime. Therefore, it may be more conve-
nient to obtain the spectra from the solution of the stochastic
Eq. (33) for the state vector. The general procedure is as
follows.

First, we need to transform the correlator

K (t, τ ) = 〈ĉ†(t )ĉ(t + τ )〉 = 〈
(0)|ĉ†(t )ĉ(t + τ )|
(0)〉
(56)

to the Schrödinger picture without taking into account dis-
sipation and fluctuations. If Û (t ) is the unitary operator of
evolution of the system, one can write

K = 〈
(0)|Û †(t )ĉ† Û (t )Û †(t + τ )ĉ Û (t + τ )|
(0)〉
= 〈ĉ 
(t )|Û (t )Û †(t + τ )|ĉ 
(t + τ )〉, (57)

where ĉ is the Schrödinger’s (constant) operator which we will
treat as an initial condition for the Heisenberg operator ĉ(t ) at
t = 0. We will use the notation Û (t ) ≡ Ût0 (t ′), where we indi-
cate explicitly the initial moment of time t0 and the duration of
evolution t ′ = t − t0. This will lead to the following replace-
ments in Eq. (57): Û (t ) �⇒ Û0(t ), Û (t + τ ) �⇒ Û0(t + τ ).
Furthermore, we obviously have

Û0(t + τ ) = Ût (τ )Û0(t ) (58)

which gives

K = 〈ĉ 
(t )|Û0(t )(Ût (τ )Û0(t ))†|ĉ 
(t + τ )〉
= 〈ĉ 
(t )|Û0(t )Û †

0 (t )Û †
t (τ )|ĉ 
(t + τ )〉.

Taking into account Û0(t ′)Û †
0 (t ′) = 1, we obtain

K = 〈Ût (τ )ĉ 
(t ) |ĉ 
(t + τ )〉. (59)

Second, introducing the notations


Ĉ (t ) = ĉ 
(t ),�(t, τ ) = Ût (τ )
Ĉ (t ), (60)

we arrive at

K (t, τ ) = 〈�(t, τ ) |
Ĉ (t + τ )〉. (61)

Therefore, in order to calculate the correlator K through the
solution of the equation for the state vector, one has to perform
the following steps:

(a) Find vector |
Ĉ (t + τ )〉 = ĉ
(t + τ ), where 
(t +
τ ) is the solution for the state vector |
〉 at the time interval
[0, t + τ ] with initial condition |
(0)〉.

(b) Find vector |�(t, τ )〉. To do that, one has to solve for
the state vector |
〉 at the time interval [t, t + τ ] with initial
condition |
Ĉ (t )〉. The vector |
Ĉ (t )〉 is the same as in part
(a), but instead of the time interval [0, t + τ ] one has to take
the time interval [0, t].

To check Eq. (61) for consistency, we note that in the
absence of dissipation one can go back from this equation to
the standard expression which follows directly from the initial
Eq. (56):

K (t, τ ) = 〈
(0)|ei Ĥ
h̄ t ĉ†ei Ĥ

h̄ τ ĉe−i Ĥ
h̄ (t+τ )|
(0)〉.

If the dynamic system is open, then a complete closed
system “the dynamic system + reservoir” has its own unitary
operator of evolution Ût0 (t ′) . Therefore, Eq. (61) should be
valid for a complete system as well which includes the reser-
voir variables. Now we apply the Langevin method which
assumes that the averaging over the statistics of noise sources
entering a stochastic equation [in this case Eq. (33)] is equiv-
alent to averaging over the reservoir variables. Therefore,
we can solve Eq. (33) and, following the above steps, find
the functions 
Ĉ (t ), 
Ĉ (t + τ ), and �(t, τ ) which are now
dependent on the noise sources. Then we substitute the latter
two functions into Eq. (61) and perform averaging over the
noise statistics. As a result, we obtain

K (t, τ ) = 〈 �(t, τ ) |
Ĉ (t + τ )〉. (62)

B. Photon emission spectra for the parametric decay of an
excited electron

Here we apply the general recipe of calculating K (t, τ ) for-
mulated in the previous section to a particular example of the
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parametric decay of an initially excited fermionic two-level
system under strong coupling to a nonlinear electron-photon-
phonon resonance. In [19] we used a simplified model to
analyze the fermion-photon-phonon entanglement, in which
all relaxation pathways to the ground state |0〉|0〉|0〉 are
assumed to be “direct,” which corresponds to taking all
correlators equal to zero except D000,000. This approach is es-
sentially the Weisskopf-Wigner method, modified in order to
conserve the norm of the state vector. It gives a correct result
for the decay rate γMIX of the entangled state. At the same
time, including multistep decay pathways changes the spectra
qualitatively and is of principal importance when interpreting
the emission spectra.

Omitting intermediate derivation steps outlined in Ap-
pendix B, we obtain

S(ν) = 1

π
Re

∫ ∞

0
dτ eiντ

∫ ∞

0
dt K (t, τ )

= S1(ν) + S2(ν) + S3(ν), (63)

where

S1(ν) = 2�̃2
R

π�
(
4�̃2

R + �2
)Re

� + μ�

2 − i(ν − ω)

[γac − i(ν − ω)]2 + �̃2
R

,

S2(ν) = �̃2
R

π�
(
4�̃2

R + �2
) μ�

μ2
ω

4 + (ν − ω)2
, (64)

S3(ν) = μ��̃2
R

π�(γ 2
d + �̃2

R)(4�̃2
R + �2)

×
{

− Re
�d [γac − i(ν − ω)] + 2�̃2

R − γd�

[γac − i(ν − ω)]2 + �̃2
R

+ �d
μω

2
μ2

ω

4 + (ν − ω)2

}
.

The parameters �, γac, γd , and �d are expressed through the
relaxation rates of the electron, photon, and phonon subsys-
tems μω, μ�, and γ as

� = γ110 + γ001 = 1

2
(μω + μ� + γ ), γac = γ100 + �

2
= 1

4
(μω + γ ) + 3

4
μ�,

γd = γ100 + �

2
− γ010 = 1

4
(γ − μω ) + 3

4
μ�, �d = � + 2γd = 2μ� + γ .

The expression for the power spectrum S(ν) contains three
terms S1,2,3. The term S3(ν) consists of two terms which
have the same spectral shapes as the functions S1(ν) and
S2(ν), respectively. Therefore, including the term S3(ν) in
Eq. (63) leads only to corrections to the amplitudes of the
functions S1,2(ν); moreover, under the strong-coupling con-
ditions �̃R � γani these corrections are small: of the order of
∼μ�(�+γac )

�̃2
R

for the function S1(ν) and of the order of ∼�d μω

�̃2
R

for

the function S2(ν). For qualitative discussion we will neglect
the contribution of S3(ν) and keep only the terms S1(ν) and
S2(ν), although all terms are included in the spectra plotted in
Fig. 4.

Figure 3 indicates all transitions that give contributions to
the photon emission. The function S1(ν) describes the emis-
sion spectrum at the transition |1〉|1〉|0〉 → |1〉|0〉|0〉, which is
split due to Rabi oscillations. The width of the peaks located at
frequencies ν = ω ± �̃R is equal to γac = μ�

2 + �
2 . Here �

2 =
1
4 (μω + μ� + γ ) = γMIX is the decay rate of the entangled
state |MIX 〉 = A(t )|0〉|0〉|1〉 + B(t )|1〉|1〉|0〉 [see Eq. (51)],
and μ�

2 is the broadening of the state |1〉|0〉|0〉 due to re-
laxation. The spectrum given by S1(ν) agrees with the one
obtained in [19].

The function S2(ν) describes the emission due to a two-
step relaxation process described in Sec. IV C: |1〉|1〉|0〉 →
|0〉|1〉|0〉 → |0〉|0〉|0〉. The photons are emitted at the tran-
sition |0〉|1〉|0〉 → |0〉|0〉|0〉, which is not affected by Rabi
oscillations; see Fig. 3. Therefore, this contribution has a
standard Lorentzian shape of an emitter at frequency ω:

S2(ν) ∝ 1

γ 2
010 + (ν − ω)2 = 1

μ2
ω

4 + (ν − ω)2
.

In the strong-coupling regime �̃R � γani the ratio of the
amplitude of this central peak at frequency ν = ω to the
amplitudes of the split peaks at frequencies ν = ω ± �̃R is
given by

S2(ω)

S1(ω ± �̃R)
≈ μ�(μω + γ + 3μ�)

μ2
ω

. (65)

When μ� → 0, Eq. (65) gives S2(ω)
S1(ω±�̃R )

→ 0: indeed with-
out phonon relaxation the state |0〉|1〉|0〉 cannot be populated
from |1〉|1〉|0〉; therefore, the two-step radiation channel is
suppressed. In the opposite limit of a fast phonon relax-
ation, when μ� � μω, γ , we obtain S2(ω)

S1(ω±�̃R )
� 1, i.e., the

FIG. 3. Energy levels of |phonon〉|photon〉|electron〉 states in-
volved into the photon emission in the parametric decay of a
single-electron excitation in a coupled phonon-photon-electron sys-
tem. Bold red arrows indicate photon emission transitions with their
peak frequencies labeled. Wavy purple arrows indicate various relax-
ation pathways.
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FIG. 4. Normalized photon emission spectra �̃2
RS(ν ) as a func-

tion of normalized detuning ν−ω

�̃R
from the cavity-mode frequency ω,

for two different values of the phonon relaxation rate: μ� = 0.3 (red
solid line) and μ� = 0.02 (blue dashed line). Other relaxation rates
are μω = 0.2 and γ = 0.1. All relaxation constants are in units of
�̃R.

side peaks are weaker and more broadened than the central
peak. The latter statement is true despite the large Rabi fre-
quency �̃R � μ�. Indeed, when �̃R � μ� the interaction
has the time to mix the states |1〉|1〉|0〉 and |0〉|0〉|1〉 be-
fore the phonon relaxation kicks in. Nevertheless, if μ� �
μω, γ the phonon relaxation is able to transfer population to
state |0〉|1〉|0〉 faster than the radiative transition |1〉|1〉|0〉 →
|1〉|0〉|0〉 corresponding to the Rabi-split spectrum.

This behavior is illustrated in Fig. 4 which shows photon
emission spectra given by Eqs. (63) and (64) as a function of
frequency detuning ν − ω from the cavity-mode resonance,
for two different values of the phonon relaxation rate: μ� =
1.5μω (red solid line) and μ� = 0.1μω (blue dashed line).
The electron relaxation rate is kept at γ = 0.1 and its exact
value is not important for the overall shape of the spectra,
although it affects absolute values and widths of the peaks.
All quantities are normalized by �̃R.

The relative magnitudes of the peaks and their widths de-
pend sensitively on different combinations of the relaxation

rates γ , μω, μ�. The onset of the strong-coupling regime in
the frequency domain is determined by the visibility of non-
linear Rabi splitting between the side peaks in Fig. 4, i.e.,
the condition �̃R >

γac

2 . We point out again that the relaxation
rates of the individual subsystems enter the quantum dynam-
ics in a very nontrivial way, and one needs to know all of them
to evaluate the feasibility of strong coupling in any particular
system. The reverse is also true: once the strong-coupling
regime is reached, measurements of the photoluminescence
spectra yield both the relaxation rates and the nonlinear cou-
pling strength in the system.

A more detailed discussion of the feasibility of strong
coupling at the nonlinear resonance in particular systems can
be found in [19]. Here we only point out that in dielectric
microcavities the photon relaxation rates can be very low, in
the μeV range, and the strong-coupling threshold is likely
to be determined by relaxation of the electron or vibrational
transitions. In plasmonic nanocavities the photon relaxation
rate can easily be tens of meV and will likely dominate the
strong-coupling threshold. On the other hand, the nonlinear
coupling strength �

(3)
R is much higher in plasmonic nanocavi-

ties because of greatly enhanced electric field localization and
electric field gradient. One can obtain the magnitude of �

(3)
R

of the order of 100 meV for the field localization in the few
nm range, which is now routinely demonstrated in plasmonic
nanocavities.

C. Phonon emission spectra

There is a complete symmetry for the two bosonic fields in
the decay process close to the nonlinear resonance ωe = ω +
�. Therefore, we can obtain the phonon emission spectrum
from the expressions for the photon emission spectrum Eqs.
(63) and (64), after replacing

ω ⇐⇒ �, μω ⇐⇒ μ�, γ010 ⇐⇒ γ100.

This results in

Sp(ν) = S1p(ν) + S2p(ν) + S3p(ν), (66)

where

S1p(ν) = 2�̃2
R

π�
(
4�̃2

R + �2
)Re

� + μ�

2 − i(ν − �)

[γ̃ac − i(ν − �)]2 + �̃2
R

,

S2p(ν) = �̃2
R

π�
(
4�̃2

R + �2
) μω

μ2
�

4 + (ν − �)2
,

S3p(ν) = μω�̃2
R

π�
(
γ̃ 2

d + �̃2
R

)(
4�̃2

R + �2
){

−Re
�̃d [γ̃ac − i(ν − �)] + 2�̃2

R − γ̃d�

[γ̃ac − i(ν − �)]2 + �̃2
R

+ �̃d
μ�

2
μ2

�

4 + (ν − �)2

}
,

γ̃ac = γ010 + �

2
= 1

4
(μ� + γ ) + 3

4
μω, γ̃d = γ010 + �

2
− γ100 = 1

4
(γ − μ�) + 3

4
μω,

�̃d = � + 2γ̃d = 2μω + γ . (67)

Similarly to the photon spectrum, the term S3p(ν) is the sum
of two terms which have the same spectral shape as S1p(ν)
and S2p(ν), but much smaller magnitudes if �̃R � γani.

Therefore, we will again include only the first two terms in
qualitative discussion, but include all terms when plotting the
spectra.
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FIG. 5. Energy levels of |phonon〉|photon〉|electron〉 states in-
volved into the phonon emission in the parametric decay of a
single-electron excitation in a coupled phonon-photon-electron sys-
tem. Bold red arrows indicate phonon emission transitions with their
peak frequencies labeled. Wavy purple arrows indicate various relax-
ation pathways.

Figure 5 shows all transitions giving contributions to the
phonon emission spectrum, with their peak frequencies in-
dicated. The function S1p(ν) describes the phonon emission
spectrum due to the transition |1〉|1〉|0〉 → |0〉|1〉|0〉, which
demonstrates Rabi splitting. The width of the peaks cen-
tered at frequencies ν = � ± �̃R is equal to γ̃ac = μω

2 + �
2 .

The function S2p(ν) describes phonon emission due to a
two-step relaxation |1〉|1〉|0〉 → |1〉|0〉|0〉 → |0〉|0〉|0〉. The
phonons are emitted at the second step, i.e., the transition
|1〉|0〉|0〉 → |0〉|0〉|0〉, which is not affected by Rabi oscilla-
tions. Therefore, the spectrum due to this contribution is a
standard Lorentzian line, similarly to the case of photons:

S2(ν) ∝ 1

γ 2
100 + (ν − �)2 = 1

μ2
�

4 + (ν − �)2
.

The ratio of the amplitude of the central peak at ν = � to
those of the side peaks at frequencies ν = � ± �̃R at �̃R �
γani is given by the expression equivalent to Eq. (65) after
substituting ω ⇐⇒ � and μω ⇐⇒ μ�:

S2p(�)

S1p(� ± �̃R)
≈ μω(μ� + γ + 3μω )

μ2
�

. (68)

The phonon emission spectra are plotted in Fig. 6 as a
function of frequency detuning ν − � from the cavity-mode
resonance. This time we keep the phonon relaxation rate fixed
at μ� = 0.2 and plot the spectra for two values of the photon
relaxation rate, greater and smaller than μ�: μω = 0.3 (red
solid line) and μω = 0.02 (blue dashed line). All quantities are
normalized by �̃R. The numbers are chosen to prove the point
that the phonon and photon spectra are symmetric with respect
to replacement indicated in the beginning of this section.

In experiment, measuring the ratios given by Eqs. (65) and
(68) allows one to determine the relationships between all
relaxation rates μ�, γ , and μω. Indeed, one can obtain from
Eqs. (65) and (68) that

ξ�x3 + 2x2 − 2x − ξω = 0, y = ξ�x2 − 3 − x,

where x = μ�

μω
, y = γ

μω
, ξω = S2(ω)

S1(ω±�̃R )
, ξ� = S2p(�)

S1p(�±�̃R )
.

FIG. 6. Normalized phonon emission spectra �̃2
RSp(ν ) as a

function of normalized detuning ν−�

�̃R
from the vibrational mode

frequency �, for two different values of the photon relaxation rate:
μω = 0.3 (red solid line) and μω = 0.02 (blue dashed line). Other
relaxation rates are μ� = 0.2 and γ = 0.1. All relaxation constants
are in units of �̃R.

D. Effects of pure dephasing and finite temperature
of dissipative reservoirs

Pure dephasing processes do not affect the populations
of states with energies below the energy of state |100〉; see
Figs. 3 and 5. Therefore, they will not change the parameters
of the central peaks in photon and phonon power spectra in
Figs. 4 and 6. At the same time, pure dephasing may affect
the dynamics of Rabi oscillations between states |100〉 and
|110〉. Using the analysis in [19,49,50], one can show that
pure dephasing (elastic scattering) can be taken into account
by replacing γ

2 −→ γ

2 + γ (el ) in the equations for the state-
vector amplitudes C001,110, where γ (el ) is the inverse scattering
time for pure dephasing processes. The same replacement rule
for relaxation constants has to be applied in the expressions
for the side peaks in photon and phonon emission spectra in
Figs. 4 and 6.

It is straightforward to include the effects of finite tempera-
ture of dissipative reservoirs; see, e.g., [19] where the general
expressions for the relaxation constants and noise correla-
tors are given for arbitrary temperature. However, when the
inequalities h̄ω, h̄ωe � T are satisfied (here T is in energy
units), thermal parts of the noise terms have negligible effect
on the amplitudes of excited states C001,010,110. Therefore, un-
der these conditions one can neglect finite-temperature effects
on the dynamics of Rabi oscillations, photon emission spectra,
and two side peaks of the phonon spectra. If, in addition,
h̄� � T , all temperature effects are negligible. When h̄� �
T , finite temperature will enhance the amplitude of the central
peak of the phonon spectra due to thermal redistribution of
populations between states C100 and C000.

VII. CONCLUSIONS

We developed a universal model of strong coupling at
three-wave nonlinear resonance which is applicable to a vari-
ety of cavity-QED systems with coupled electron, photon, and
vibrational degrees of freedom, such as molecular quantum
emitters, quantum dots, and cavity optomechanics systems.
We obtained the analytic solution for the nonperturbative
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quantum dynamics of such systems in the vicinity of the
nonlinear resonance, taking into account dissipation and fluc-
tuations for all degrees of freedom in Markov approximation.
The presented solution can be used to derive the explicit
analytic expression for any observable. As an example, we
calculated photon and phonon emission spectra which have
a characteristic three-peak form once the strong coupling is
reached. We showed how the relative heights and widths of the
peaks can be used to extract information about all relaxation
rates in the system and the nonlinear coupling strength, or
to establish the threshold for reaching the strong-coupling
regime.
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APPENDIX A: SOLUTION FOR THE STOCHASTIC STATE
VECTOR IN THE PRESENCE OF DISSIPATION AND NOISE

1. Derivation of probability amplitudes

The coefficients in the five-component state vector Eq. (51)
are given by

C000(t ) = − i

h̄

∫ t

0
R000(t ′)dt ′,

C010(t ) = − i

h̄

∫ t

0
R010(t ′)e−iω(t−t ′ )−γ010(t−t ′ )dt ′, (A1)

C100(t ) = − i

h̄

∫ t

0
R100(t ′)e−i�(t−t ′ )−γ100(t−t ′ )dt ′,

C001(t ) = e−iωet e− γ110+γ001
2 t

[
cos (�̃Rt ) + γ110 − γ001

�̃R
sin (�̃Rt )

]
+δC001, (A2)

C110(t ) = e−iωet e− γ110+γ001
2 t (ie−iθ ) sin (�̃Rt ) + δC110, (A3)

where the effective Rabi frequency �̃R =√
|�(3)

R |2 − (γ110−γ001 )2

4 , θ = Arg[�(3)
R ], and the terms δC100,110

are linear with respect to random functions R001 and R110.
The term proportional to γ110−γ001

�̃R
in the first of Eqs. (A2)

can be omitted when calculating most observables when the
dissipation is weak �̃R � γani (see, e.g., [19]). However, one
has to keep in mind that this term is needed for Eqs. (A2) to
satisfy an exact integral of motion of Eqs. (43):

d

dt
(|C001|2 + |C110|2) = −2γ001|C001|2 − 2γ110|C110|2.

Note that when averaged over the period 2π

�̃R
the integral is

conserved even without this term.

2. Derivation of occupation probabilities |C100,010,000|2

A number of correlators of the random functions in
Eq. (51) are zero due to Eqs. (45) and (46):

δC∗
110(t ′)Rαmi(t ′′) = δC∗

001(t ′)Rαmi(t ′′) = 0, (A4)

δC∗
001(t ′)δC001(t ′′) = δC∗

110(t ′)δC110(t ′′)

= δC∗
001(t ′)δC110(t ′′) = 0, (A5)

δC∗
001(t ′)C000(t ′′) = δC∗

110(t ′)C100(t ′′) = δC∗
001(t ′)C010(t ′′)

= δC∗
110(t ′)C000(t ′′)

= δC∗
110(t ′)C100(t ′′) = δC∗

110(t ′)C010(t ′′)

= 0. (A6)

Equations (A4)–(A6) ensure that the variables δC100 and δC110

cannot contribute to the values of any observables and there-
fore can be omitted.

The other correlators are given by the equations that follow
from Eqs. (A1):

d

dt
C∗

100C010 = −(γ100 + γ010)C∗
100C010 + D100,010,

d

dt
C∗

100C000 = −γ100C∗
100C000 + D100,000,

d

dt
C∗

010C000 = −γ010C∗
010C000 + D010,000,

d

dt
|C000|2 = D000,000,

d

dt
|C010|2 = −2γ010|C010|2 + D010,010,

d

dt
|C100|2 = −2γ100|C100|2 + D100,100.

Using Eqs. (45) and (46), we arrive at

d

dt
C∗

100C010 = −μω + μ�

2
C∗

100C010,

d

dt
C∗

100C000 = −μ�

2
C∗

100C000 + μωC∗
110C010, (A7)

d

dt
C∗

010C000 = −μω

2
C∗

010C000 + μ�C∗
110C100,

d

dt
|C000|2 = γ |C001|2 + μω|C010|2 + μ�|C100|2,

d

dt
|C010|2 = −μω|C010|2 + μ�|C110|2,

d

dt
|C100|2 = −μ�|C100|2 + μω|C110|2. (A8)

Taking into account Eqs. (A6), one can obtain that C∗
110C010 =

C∗
110C100 = 0 in Eqs. (A7); as a result, for our initial condi-

tions Eqs. (A7) yield

C∗
100C010 = C∗

100C000 = C∗
010C000 = 0. (A9)
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The last two equations in Eqs. (A8) give

|C010|2 = μ�e−μωt
∫ t

0
eμωτ |C110|2dτ,

|C100|2 = μωe−μ�t
∫ t

0
eμ�τ |C110|2dτ.

Substituting here the function from Eq. (A2) and taking into
account Eqs. (A5) and (A6) results in

|C100|2 = μωe−μ�t
∫ t

0
e

μ�−μω−γ

2 τ sin2 (�̃Rτ )dτ,

|C010|2 = μ�e−μωt
∫ t

0
e

μω−μ�−γ

2 τ sin2 (�̃Rτ )dτ.

For further integration we use the limit γαni

�̃R
� 1, leading to

|C100|2 ≈ μω

μ� − μω − γ

(
e− μ�+μω+γ

2 t − e−μ�t
)
, (A10)

|C010|2 ≈ μ�

μω − μ� − γ

(
e− μ�+μω+γ

2 t − e−μωt
)
. (A11)

Note that Eqs. (A10) and (A11) do not contain any divergence
when [±(μω − μ�) − γ ] −→ 0. Indeed,

lim
(μ�−μω−γ )−→0

[
e− μ�+μω+γ

2 t − e−μ�t

μ� − μω − γ

]
= 1

2
te−μ�t ,

lim
(μω−μ�−γ )−→0

[
e− μ�+μω+γ

2 t − e−μωt

μω − μ� − γ

]
= 1

2
te−μωt .

Now we return to the first of Eqs. (A8), which yields

|C000|2 =
∫ t

0
(γ |C001|2 + μω|C010|2 + μ�|C100|2)dτ.

We substitute Eqs. (A10) and (A11) into the second and
third terms in the integrand and substitute the expression
|C001|2 which follows from Eqs. (A2) into the first term in the
integrand. Neglecting the small terms ∝ γ110−γ001

�̃R
and γαni

�̃R
the

integration results in

|C000|2 = γ (γ − μ� − μω )

γ 2 − (μ� − μω )2

(
1 − e− μ�+μω+γ

2 t
)

−
(

μ�

1 − e−μωt

μω − μ� − γ
+ μω

1 − e−μ�t

μ� − μω − γ

)
.

(A12)

APPENDIX B: CALCULATION OF EMISSION SPECTRA
BASED ON THE STOCHASTIC SCHRÖDINGER

EQUATION

Note the following steps. (a) Use the expressions (A1)–
(A3) to find the vector |
(t )〉. (b) Determine vectors |
Ĉ (t )〉
and |
Ĉ (t + τ )〉, resulting in

|
Ĉ (t )〉 = ĉ|
(t )〉 = C110(t )|1〉|0〉|0〉 + C010(t )|0〉|0〉|0〉,
(B1)

|
Ĉ (t + τ )〉 = ĉ|
(t + τ )〉 = C110(t + τ )|1〉|0〉|0〉
+ C010(t + τ )|0〉|0〉|0〉. (B2)

(c) To determine the vector |�(t, τ )〉 we will use the solution
of Eqs. (42) and (43) at the time interval [t, t + τ ] where the
initial condition |
Ĉ (t )〉 is given by Eq. (B1). In our case,
Eq. (B1) determines the initial value of the state vector; its
subsequent evolution is determined by a simple Eq. (42) for
the amplitudes of states |1〉|0〉|0〉 and |0〉|0〉|0〉. As a result,
vector |�(t, τ )〉 is given by

|�(t, τ )〉 = C(�)
100 (t, τ )|1〉|0〉|0〉 + C(�)

000 (t, τ )|0〉|0〉|0〉

=
(

e−iωτ−γ100τC110(t ) − i

h̄

∫ t+τ

t
R

(�)
100 (t, t ′)e−iω(τ+t−t ′ )−γ100(τ+t−t ′ )dt ′

)
|1〉|0〉|0〉

+
(

C010(t ) − i

h̄

∫ t+τ

t
R

(�)
000 (t, t ′)dt ′

)
|0〉|0〉|0〉, (B3)

where functions C110(t ) and C010(t ) are determined by Eqs. (A1) and (A2).
The superscript (�) in the terms Rαni in Eq. (B3) means that the correlators of these noise terms correspond to the state vector

|�〉. The dependence on the initial time moment t of the evolution in R
(�)
αni (t, t ′) takes into account that the correlators of these

random functions may depend on the value of t as a parameter because complex amplitudes C(�)
αni (t, τ ) ≡ C(�)

αni (t, t ′ − t ) depend
on this parameter.

Next, we substitute the expressions for C110(t ), C010(t ), C110(t + τ ) determined by Eqs. (A1) and (A2), into Eqs. (B2) and
(B3); after that we substitute Eqs. (B2) and (B3) into Eq. (62). In the resulting expression we average over the noise statistics,
taking into account that the noise sources are delta correlated. Omitting the terms that become zero after averaging, we obtain

K (t, τ ) = e−iωτ−(γ100+ γ110+γ001
2 )τ−(γ110+γ001 )t sin (�̃Rt ) sin[�̃R(t + τ )] + e−iωτ−γ010τ−2γ010t

∫ t

0
D010,010(t ′)e2γ010t ′

dt ′

+e−iω(t+τ )−γ010(t+τ )−2γ010t
∫ t+τ

t
D̃000,010(t, t ′)e(iω+γ010 )t ′

dt ′. (B4)

Here the quantity D010,010 is determined by Eqs. (45):

D010,010 = 2γ010|C110(t ′)|2 = μ�|C110(t ′)|2. (B5)
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The function D̃000,010(t, t ′) corresponds to the following cor-
relator:

R
(�)∗
000 (t, t ′)R010(t ′′) = h̄2D̃000,010(t, t ′)δ(t ′ − t ′′). (B6)

To calculate the value of D̃000,010(t, t ′) it is not enough to
have expressions Eq. (45) and (46) because it is determined
by correlations between the noise terms for different state
vectors |�〉 and |
〉, which correspond to the solutions of the

equation for the state vector with different initial conditions.
We need to use the expression for the noise source obtained in
Sec. IV D. From Eqs. (47), (49), and (50) we obtain

D̃000,010(t, t ′) = μ�C(�)∗
100 (t, t ′ − t )C110(t ′). (B7)

Substituting here the appropriate term from Eq. (B3) gives

D̃000,010(t, t ′) = eiω(t ′−t )−γ100(t ′−t )−2γ010tC∗
110(t )C110(t ′). (B8)

Substituting Eqs. (B5) and (B8) into Eq. (B4), we arrive at

K (t, τ ) = e−iωτ−(γ100+ �
2 )τ−�t sin (�̃Rt ) sin[�̃R(t + τ )]

+e−iωτ−γ010τμ�

[
2�̃2

R

γn
(
4�̃2

R + γ 2
n

)e−2γ010t − 1

2γn
e−�t − 1

4(2i�̃R − γn)
e2i�̃Rt−�t + 1

4(2i�̃R + γn)
e−2i�̃Rt−�t

]

+e−iωτ−γ010τ−�t μ�

4

[
e(−γd +i�̃R )τ − 1

−γd + i�̃R
(1 − e2i�̃Rt ) + c.c.

]
, (B9)

where we denoted � = γ110 + γ001, γn = � − 2γ010, γd =
γ100 + �

2 − γ010. Now we have everything to determine the
emission spectra given by Eq. (55). Using the values of γ100 =
μ�

2 , γ010 = μω

2 , and γ001 = γ

2 , we arrive at Eq. (63).
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