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Duality, decay rates, and local-field models in macroscopic QED
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Any treatment of magnetic interactions between atoms, molecules, and optical media must start at the form
of the interaction energy. This forms the base on which predictions about any number of magnetic atom-light
properties stands, spontaneous decay rates and forces included. As is well known, the Heaviside-Larmor duality
symmetry of Maxwell’s equations, where electric and magnetic quantities are exchanged, is broken by the usual
form of the magnetic interaction energy. We argue that this symmetry can be restored by including general
local-field effects and that local fields should be treated as a necessity for correctly translating between the
microscopic world of the dipole and the macroscopic world of the measured fields. This may additionally aid
in resolving a long-standing debate over the form of the force on a dipole in a medium. Finally, we compute
the magnetic dipole decay rate in a magnetodielectric with local-field effects taken into account and show that
macroscopic quantum electrodynamics can be made to be dual symmetric at an operator level, instead of only
for expectation values.
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I. INTRODUCTION

At the heart of both classical [1,2] and quantum electrody-
namics [3,4] lies the coupling between light and matter, and
all our predictions for emission rates, atomic scattering, and
forces [5], to name a few, depend crucially on this. Indeed,
along with the advance of quantum technology, we rely on
ever more precise predictions of the interaction between light
and both atoms and artificial qubits [6–8]. In a wide variety
of optical media, theory and experiments are in excellent
agreement [9,10]. The issue lies with emitters embedded in
magnetic media, such as magnetodielectric or magnetoelectric
media, where the magnetic response plays an important role.
As is well known [1,2], naturally occurring optical media with
a significant magnetic response are very rare. However, with
the advent of metamaterials where a magnetic response can
be engineered [11,12], this is becoming increasingly impor-
tant, often arising in conjunction with anisotropic dielectric
responses [13,14].

The form of the magnetic light-matter interaction energy
is closely related to the force on a dipole inside a medium,
the exact form of which has been under much scrutiny and
debate [15–20]. In this work, we consider an atom or emitter
with a paramagnetic linear magnetic dipole moment.1 The
question can then, in essence, be summarized by whether the
interaction energy of a magnetic dipole m̂ scales with the
magnetic field Ĥ or the magnetic induction B̂ = μĤ. Such
a magnetic dipole can either be the exact point dipole of

*These authors contributed equally to this work.
†niclas.westerberg@glasgow.ac.uk
1The total magnetic response, paramagnetic and diamagnetic, is

required to ensure gauge invariance. This does not impact the linear
response which we discuss here however.

a spin or relate to the angular momentum properties of an
electric dipole. The question is then, how does a magnetic
dipole couple to the electromagnetic field? In vacuum and
(most) natural media, it is clear that this is a nonissue, since
μ = μ0 in such cases. We note that there is an interesting
discrepancy between the literature of macroscopic quantum
electrodynamics (and microscopic quantum electrodynamics
with multiple magnetic emitters) and that which treats dia-,
para-, and ferromagnetism. In the former, we find an inter-
action energy of the form Hint = −m̂ · B̂ [5,21], whereas in
the latter the form Hint = −μ0m̂ · Ĥ is favored [22], which
notably is in agreement also with Ref. [23]. In the magnetic
literature, the importance of the local field is also stressed. We
will return to this point, and also note that due to the quantum
mechanical nature of magnetism (i.e., spin), it can be expected
that a derivation through a classical (pointlike) Lagrangian
may not be appropriate. Nonetheless, the discussion here is
not about which field is more fundamental; it is simply about
how to correctly link the world of microscopic fields to those
of the macroscopic world.

This paper is organized as follows. In Sec. II we present
arguments for why a dual-symmetric coupling is desirable,
which is followed by a discussion of the mathematical frame-
work in Sec. III. We then present some results in Secs. IV
and V, where we compute the spontaneous decay rate of a
dipole in magnetic media: first in the absence of local-field
corrections, which include a correction for absorbing media
as compared to the standard result, and then followed by a
dual-symmetric result. We finish the paper with concluding
remarks in Sec. VI.

II. ARGUMENT FOR DUAL-SYMMETRIC COUPLING

Let us start this discussion by appealing to a physical situ-
ation: Suppose we embed a magnetic dipole inside a magnetic
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FIG. 1. (a) The magnetic induction B̂ from a solenoid is un-
changed by the presence of a paramagnetic medium. (b) The
corresponding magnetic field Ĥ, which is screened by the param-
agnetic medium, is represented by a thinner line.

medium, which sits inside a solenoid such that a constant field
is applied. A sketch of this can be seen in Fig. 1. By applying
the boundary condition across the medium surface [1,2], we
find that the magnetic induction is continuous and thus an
interaction energy of the form Hint = −m̂ · B̂ is unchanged
by the presence of the medium. We find this rather surprising.
Indeed, we would expect the interaction energy to change,
similarly to the electric case. This indicates that something
more is play and lies at the heart of the argument which we
appeal to here.

To put it in context, let us consider an electric dipole.
Typically, the electric dipole d̂ is a useful construction when
the wavelength of light λ is much larger than the typical length
scale of the electronic motion. This is the case both classically
[2] and at a quantum level [3], and depending on the context,
the interaction energy is written in the form Hint = −d̂ · Ê
or Hint = −ε−1

0 d̂ · D̂, where Ê and D̂ are the electric and
displacement field operators, respectively. The former form
is usually favored semiclassically as well as in the context of
macroscopic QED [5,24], whereas the latter is more common
in cavity and molecular QED [21]. This has naturally caused
some confusion over which field to use, resolved by Ackerhalt
and Milonni [25], although it has once more come to the
forefront of research as this choice (commonly controlled by a
gauge choice [3] but not necessarily [26]) redistributes the en-
ergy between matter and field components, something that can
lead to gauge ambiguous predictions if energy-dependent ap-
proximations are made further along the calculation [27–31].
Regardless, in the context of macroscopic QED, we would like
to note that the “electric” field usually [5] referred to when
writing Hint = −d̂ · Ê is in fact a type of displacement field.
It is not the full displacement field accounting for all bound
charges (which would include the dielectric medium), but a
more careful consideration [32] shows that the Ê operator
contains the polarization induced by the dipole, similarly to
cavity QED. This is important for conceptual reasons here, as
we want to stress that there is some sense of choice present
here. In calculations however, this displacement field Ê be-
haves as the classical electric field without the presence of the

electric dipole. As can be seen, the form of the coupling is not
as clear-cut as one would first believe.

Formally, the discussion around Fig. 1 revolves around the
Heaviside-Larmor symmetry of Maxwell’s equations. This is
a type of duality symmetry of Maxwell’s equations where
electric and magnetic quantities can be exchanged without
altering the dynamics, as was first discussed by Heaviside
[33] and Larmor [34].2 For later reference, we will use
the terminology “duality symmetry” interchangeably with
“Heaviside-Larmor symmetry” due to the ubiquity of both
terminologies. Of import here is that Heaviside-Larmor sym-
metry holds true for both the field energy density Hfield = [D̂ ·
Ê + B̂ · Ĥ]/2 and Poynting vector Ŝ = Ê × Ĥ. In general,
symmetry is a well known and powerful guiding mechanism
in theoretical physics, and an important point is that for a sym-
metry (of well-established equations) not to hold, there has to
be some physical mechanism behind it. Here we find no such
mechanism. We would like to stress that, akin to any other
symmetry such as Lorentz symmetry, a duality transform does
not alter the physics, only our description of it. Before we con-
tinue we must quickly introduce Maxwell’s equations and the
setting before we return to the Heaviside-Larmor symmetry.

III. MAXWELL’S EQUATIONS, EQUIVALENT
FORMULATIONS, AND HEAVISIDE-LARMOR

SYMMETRY

We should first note that the points that we are about to
make do not rely on a particular formulation of macroscopic
QED, although we will specify an example later. For nota-
tional simplicity, we will from now on work in units such that
c = 1 = ε0 = h̄. We will here consider a homogeneous mag-
netodielectric (with permittivity ε and permeability μ) with
an embedded quantum emitter of magnetic dipole moment
operator m̂ and no free currents. Such a medium can also be
described by the refractive index n(ω) = √

ε(ω)μ(ω). Let us
simply start at Maxwell’s equations as usually written when
discussing macroscopic QED,

∇ · D̂ = 0, (1)

∇ · B̂ = 0, (2)

∇ × Ê = −∂t B̂, (3)

∇ × Ĥ = ∂t D̂, (4)

where Ê is the electric field operator, Ĥ is the magnetic field
operator, and we define the displacement field D̂ = Ê + P̂tot

and the magnetic induction B̂ = Ĥ + M̂tot, with P̂tot and M̂tot

the total polarization and magnetization field operators, re-
spectively. Here we write the total polarization P̂tot as the sum
of the induced polarization P̂(Ê) = (ε − 1)Ê and the asso-
ciated noise polarization P̂N required for absorption [24,35]:
P̂tot = P̂(Ê) + P̂N .

Similarly, this holds true also for the magnetization, al-
though here convention is not as clear and we can make the

2We should note that this is difficult to find in their writing.
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choice of writing M̂(Ĥ) = (μ − 1)Ĥ or M̂(B̂) = (1 − μ−1)B̂.
This is of course related to our issue at hand. When we
make this choice, convention dictates that we write the noise
magnetization M̂N in two separate ways: (i) M̂tot = M̂(Ĥ) +
M̂N + m̂ and (ii) M̂tot = M̂(B̂) + μM̂N + m̂. This is only a
convention that follows from whether we naturally associate
the absorption, and therefore the noise, with μ or κ = 1/μ.
Although we have to note that we are free to also swap the
convention, as it is purely a definition, we will for notational
clarity label the different definitions for noise magnetizations
M̂N,H and M̂N,B, respectively. We will here simply demand
that these two formulations are equivalent, and yield the same
physical predictions, as is the case in the classical formula-
tion. Option (ii) is considered in Ref. [36]; we will therefore
focus on option (i) and we show in Appendix A 1 that our
formulation here is indeed equivalent.

The quantization can be done in an entirely analogues
manner to, for instance, Ref. [37] by introducing the polariton
operators f̂λ where the subscript λ = {e, m} denotes electric
and magnetic quantities, respectively, and where they obey the
commutation relation

[f̂λ,i(r, ω), f̂†
λ′, j (r

′, ω′)] = δi jδλλ′δ(r − r′)δ(ω − ω′). (5)

It can further be shown that the field Hamiltonian
is simply Hfield = ∑

λ=e,m

∫
d3r

∫ ∞
0 dω ω f̂†

λ (r, ω) · f̂λ(r, ω),
whether this is approached using Fano diagonalization
[35,38–40] or Langevin noise [36,41–43]. We refer to the
previously mentioned references for a detailed discussion. In
order to evaluate these expectation values, we will need to use
the noise operators associated with the medium absorption.
The fluctuation-dissipation theorem [5,35,37,44] demands
that

〈0|P̂N,i(r, ω)P̂†
N, j (r

′, ω′)|0〉

=
(

Im[ε]

π

)
δi jδ(r − r′)δ(ω − ω′), (6)

〈0|M̂N,H,i(r, ω)M̂†
N,H, j (r

′, ω′)|0〉

=
(

Im[μ]

π

)
δi jδ(r − r′)δ(ω − ω′). (7)

We can further relate the noise polarization and magnetization
to the polaritons of the medium through(

P̂N

M̂N,H

)
= 1√

π

(
i
√

Imε 0
0 i

√
Imμ

)(
f̂e

f̂m

)
. (8)

Importantly, from Maxwell’s equations (1)–(4) we find that
the macroscopic magnetic field can be written as

Ĥ(r, ω) =
∫

d3r′GH (r, r′, ω)

·[ω2M̂N,H (r′, ω) − iωε−1∇r′ × P̂N (r′, ω)], (9)

with the Green’s function for Ĥ satisfying

ε−1∇ × [∇ × GH ] − ω2μGH = Iδ(r − r′). (10)

In other words, the magnetic Green’s function GH and the
electric Green’s function GE reported in Ref. [37] (among
others) is dual symmetric.

As is well known, Maxwell’s equations (1)–(4) possess
Heaviside-Larmor symmetry, meaning that the duality trans-
formation(

Ê
Ĥ

)
→

(
cos θ sin θ

− sin θ cos θ

)(
Ê
Ĥ

)
=

(
Ê


Ĥ


)
, (11)

along with the same rotation for (D̂, B̂)T , leaves Maxwell’s
equations unchanged, for any value of θ . This implicitly leads
to a similar transformation for the polarization and magneti-
zation fields. We will here follow the notation of Ref. [36]
and refer to the rotation matrix in Eq. (11) as D(θ ). As is
done in Ref. [36], we can use these constituent equations to
relate the dual permittivities. We will here focus on a dual
transformation with θ = π/2 where ε
 = μ and μ
 = ε, as
it is sufficient to illustrate our point. Additionally, we should
here note that the constituent equations for D̂ and B̂ also
imply duality transformations for the noise polarization or
magnetization. The exact transformation depends on whether
we consider option (i) or (ii) as mentioned above. In particular,
we find simply that(

P̂

N

M̂

N,H

)
=

(
cos θ sin θ

− sin θ cos θ

)(
P̂N

M̂N,H

)
θ→π/2=

(
M̂N,H

−P̂N

)
,

(12)

whereas the equivalent for option (ii) can be seen in Eq. (8) of
Ref. [36]. Exactly the same relations hold for the polariton op-
erators in this formulation. Nonetheless, we want to stress that
there is no physical reason for the medium under considera-
tion to break this Heaviside-Larmor symmetry. For a general
θ , we would naturally have to introduce a magnetoelectric
response where P̂(Ê, Ĥ) and M̂(Ĥ, Ê), since a duality trans-
formation mixes electric and magnetic quantities, and it is not
possible to pack this into a combination of ε
 and μ
 only. A
similar point is made in Ref. [45], although the interpretation
differ. Regardless, we stress that these transformations only
affect our description of the physics, and physical predictions
must remain the same: It reflects that relative permittivities
and permeabilities are not unique quantities. For illustrative
purposes, we will consider an example medium with

ε(ω) = 1 − ω2
Le

ω2 − ω2
Te + 2iγeω

, (13)

μ(ω) = 1 − ω2
Lm

ω2 − ω2
Tm + 2iγmω

. (14)

An example of such a medium can be seen in Fig. 2, where
we consider ωLe = ωTe/2, ωLe = ωTe/2, γe = ωTe/10, ωLm =
ωTe/8, and ωTm = ωTe/2. Note, however, that the considera-
tions here are not limited to a medium of this form.

Let us return to the form of the interaction energy again
and start with the form most commonly found in the liter-
ature treating atoms embedded in some macroscopic media
[5]: Hint = −m̂ · B̂. If we apply a π/2-duality transform in
Eq. (11) (along with corresponding transforms for B̂ and μ),
we find that the interaction energy in the dual representation
is

Hint = −m̂
 · B̂
 = −d̂ · D̂ �= −d̂ · Ê. (15)

This light-matter interaction is at odds with Heaviside-Larmor
symmetry and therefore at odds with expectation. There is
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FIG. 2. (a) Relative permittivity and permeability described by Eqs. (13) and (14). (b) Corresponding complex index of refraction n(ω) =√
ε(ω)μ(ω) = η(ω) + iκ (ω).

thus an issue: An interaction energy of the form −m̂ · Ĥ is
dual symmetric, but in the atomic Hamiltonian we commonly
find −m̂ · B̂, whose introduction of an extra μ destroys the
Heaviside-Larmor symmetry in the predictions. As we will
see in Sec. IV, this substantially changes the predictions.

We should here return to Refs. [36,45], as we are not the
first to discuss Heaviside-Larmor symmetry in the context
of macroscopic quantum electrodynamics and its importance
for decay rates and forces. Indeed, in Refs. [36,45] the au-
thors showed that atom-light coupling appears to break the
Heaviside-Larmor symmetry of Maxwell’s equations, which
is predicated on the form of the coupling. The symmetry can
be restored by embedding the dipole in a vacuum cavity inside
the medium, thus avoiding any interaction with the noise
polarizations and magnetizations. This is a type of local-field
correction; a way of connecting the microscopic fields that
interact with the atoms and emitters to the macroscopic fields
that are ultimately measured. We find that the vacuum-cavity
model is not the whole story.

Based partly on the arguments mentioned above, we wish
to here resolve the issue by elevating the use of local fields
from a “correction” to a “necessity”: Heaviside-Larmor sym-
metry is otherwise broken. This resolves the form of the
interaction energy, given that we are not interested in the
internal dynamics of the magnetic dipole (as is commonly
assumed also for electric dipoles), and might give insight
into the force. There are, however, many local-field models.
Indeed, in Ref. [36] it was argued that it is the presence of
the noise polarization P̂N and magnetization M̂N that breaks
Heaviside-Larmor symmetry. We will here show that this is
not the case by considering another commonly used local-
field model in which the dipole is allowed to interact with
the noise fields. Indeed, we show that such a model still
restores Heaviside-Larmor symmetry and in the process we
will consider a dual-symmetric formulation of macroscopic
QED that yields the same predictions but which may simplify
calculations. Before this, however, in the next section we
demonstrate with an example that the form of the coupling
yields qualitatively different results in magnetic media.

IV. DECAY RATES IN ABSORBING MEDIA

Let us study the spontaneous decay rate of the magnetic
dipole m̂ embedded in the magnetodielectric medium at posi-

tion rA. For simplicity, we will consider a two-level emitter
with transition frequency ωA coupling to the field through
either HB

int = −m̂ · B̂ or HH
int = −m̂ · Ĥ. Recall that HH

int =
−m̂ · Ĥ and HH

int = −μ0m̂ · Ĥ are equivalent, since we work
in units such that μ0 = 1. We will here assume that any
self-interaction term proportional to m̂2 is already taken into
account in the internal dynamics.3 The decay rate is thus given
by

γB = 2π

∫ ∞

0
dω mi〈0|B̂i(r, ω)B̂†

j (rA, ωA)|0〉mj, (16)

or alternatively

γH = 2π

∫ ∞

0
dω mi〈0|Ĥi(r, ω)Ĥ†

j (rA, ωA)|0〉mj, (17)

where in both cases the limit r → rA has to be taken with
some care in absorbing media and m is the magnetic transi-
tion dipole moment. Here Einstein summation convention is
implied. We should note that, in principle and similarly to an
electric dipole coupling to the electric field [46], we would
have both a transverse and a longitudinal contribution to the
decay rate. This is the magnetic analog of the Joule heating via
longitudinal coupling of the atom to the dielectric discussed
in Ref. [46]. Such a contribution is absent when considering
HB

int = −m̂ · B̂, as the magnetic induction must be purely
transverse. However, we will focus on the radiative decay here
and thus only consider the transverse part, as the longitudinal
decay is a pure heating process which is consequently difficult
to measure. Nonetheless, we note that the derivation for the
longitudinal decay follows similarly to what is presented here.

A. Ĥ-like coupling

Let us start this by evaluating γH in Eq. (17), as this takes
the simplest form in our chosen formulation. For this we need

3This is identical to the common practice for an embedded electric
dipole. Indeed, we noted earlier that the commonly used electric field
operator Ê represents the displacement field Ê + d̂, with the cavity
QED-style self-interaction accounted for in the internal dynamics.
In this way, we will denote by Ĥ the magnetic induction Ĥ + m̂,
equivalent to Ê above. While we recognize that this notation is a
little confusing, it is nonetheless commonly adopted.
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FIG. 3. (a) Purcell factor γH/γ0 as a function of dipole resonance ωA in the example medium seen in Fig. 2. (b) Purcell factor γB/γ0 as
a function of dipole resonance ωA in the example medium seen in Fig. 2. In both cases, we have chosen the spherical radius Rsphere such that
R3

sphere = 3R3/4π . With reference to an electric resonance at ωTe = 2πc/100 nm, Rsphere 	 {1.27, 3.82, 12.7} Å, respectively.

to evaluate

〈0|Ĥi(r, ω)Ĥ†
j (rA, ωA)|0〉

= π−1ω2δ(ω − ωA)Im
[
GH

i j (r, rA, ω)
]
, (18)

where we have left the details to Appendix A 2 for brevity.
Furthermore, when taking the limit of r → rA, we will need to
introduce a spatial average 〈〈· · · 〉〉 that is required to regularize
the expression, since we allow for absorption by the medium.
This is simply a reflection of the macroscopic approach only
being valid above the scale of the atomic separation in the
medium. The spatial average is performed over a Gaussian
sphere of radius R [46] such that |nωR| 
 1. Thus we have

γH = 2ω2
Am2Im

[〈〈
GH

i j (0, ω)
〉〉]

. (19)

Prior to spatial averaging, the transverse Green’s function is
given most readily [46] as

GH
i j (r, r′, ω)

= ε(ω)
∫

d3k

(2π )3
eik·(r−r′ ) δi j − kik j

k2

k2 − ω2ε(ω)μ(ω)
(20)

= ε(ω)

4π

[
ρiρ j

2ρ3
+ δi j

2ρ
+ 2i

3
ωn(ω) + O(ρ)

]
(21)

where we have defined ρ = r − r′. We now perform the spa-
tial average over a small Gaussian sphere of radius R such that
|nωR| 
 1, as in

〈〈
GH

i j (0, ω)
〉〉 ≡

∫
d3r

∫
d3r′

(
2

R2

)3

e−2π (r2+r′2 )/R2
GH

i j (r, r′, ω) (22)

= ε(ω)
∫

d3r
∫

d3r′
∫

d3k

(2π )3
eik·(r−r′ )

[(
2

R2

)3

e−2π (r2+r′2 )/R2

]
δi j − kik j

k2

k2 − ω2με

	 ε(ω)δi j

6π

[
2

R
+ i n(ω)ω + O(R)

]
, (23)

where we in the second step used the Fourier representation
of GH and expanded for |nωR| 
 1 in the final step. We thus
arrive at

γH = γ0

[
Re[nε] + 2 Im[ε]

ωAR

]
, (24)

where γ0 = m2ω3
A/3π is the free-space decay rate. The last

term represents a heating process, where a virtual photon is
emitted and immediately absorbed by the medium. Note that
Eq. (24) is dual symmetric under the transform considered
here. Also, as is noted in Ref. [37], we want R to be greater
than the average medium separation but smaller than the
wavelength.

The Purcell factor γH/γ0 for the decay rate (24) can be
found in Fig. 3(a) for an emitter at frequency ωA embedded
in our example medium [with ε and μ as given in Eqs. (13)

and (14), respectively], for R3 = 4πR3
sphere/3 chosen such

that |n(ωTe)ωTeRsphere| = {0.01, 0.03, 0.1}. If we set ωTe =
2πc/100 nm as an example, this corresponds to Rsphere 	
{1.27, 3.82, 12.7} Å, respectively. Interestingly, we see that
the Purcell factor is dominated by the near-field emission and
absorption process that is proportional to Im[ε]/(ωAR), espe-
cially when the emitter frequency ωA is close to the electric
resonance ωTe. This could be expected from the induced mag-
netic field Ĥ being directly proportional to the permittivity ε.

B. B̂-like coupling

The decay rate for a magnetic induction–like coupling in
Eq. (16) follows from this result, given that we recall that in
this formulation we have

B̂ = μĤ + M̂N,H . (25)
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We thus need to evaluate the correlator

〈0|B̂i(r, ω)B̂†
j (r

′, ω′)|0〉
= |μ|2〈0|Ĥi(r, ω)Ĥ†

j (r
′, ω′)|0〉

+ 〈0|M̂N,H,i(r, ω)M̂†
N,H, j (r

′, ω′)|0〉
+ μ〈0|Ĥi(r, ω)M̂†

N,H, j (r
′, ω′)|0〉

+ μ∗〈0|M̂N,H, j (r, ω)Ĥ†
j (r

′, ω′)|0〉 (26)

and follows the same route as Ref. [37] with the additional
complication of both ε and μ being complex quantities and
some differing coefficients. We find that

γB = |μ|2γH + 2mimjIm[μ]〈〈δ⊥i j (0)〉〉
+ 4mimjIm[μ]ω2

ARe
[
μ

〈〈
GH

i j (0, ωA)
〉〉]

, (27)

where we have kept only the transverse parts as previously
discussed. For this we also require the spatial average

〈〈δi jδ(0)〉〉 = 〈〈δ⊥i j (0)〉〉 + 〈〈δ||i j (0)〉〉

= 2δi j

3R3
+ δi j

3R3
= δi j

R3
, (28)

which is performed similarly to Eq. (22). Finally, we find the
decay rate

γB = γ0

[
|μ|2

(
Re[nε] + 2 Im[ε]

ωAR

)

+ Im[μ]

(
4π

(ωAR)3
+ 4 Re[n2]

ωAR
− 4 Im[n3]

)]
.

(29)

This is quite clearly not dual symmetric. As can be
seen in Fig. 3(b), the Purcell factor γB/γ0 is qualita-
tively different from γH/γ0 under the same conditions.
Indeed, the Purcell factor γB/γ0 is peaked at the mag-
netic resonance ωTm = ωTe/2. We note that the dominating
term proportional to Im[μ]/(ωAR)3 originates from the
〈0|M̂N,H,i(r, ω)M̂†

N,H, j (r
′, ω′)|0〉 correlator: This is the near-

field dipole-dipole energy transfer from the magnetic emitter
to the medium.

V. LOCAL-FIELD MODELS AND DUAL-SYMMETRIC
FORMULATIONS

Let us now take local-field corrections into account. The
decay rate is now given by

γ = 2π

∫ ∞

0
dω mi〈0|B̂loc,i(r, ω)B̂†

loc, j (rA, ωA)|0〉mj . (30)

This is the magnetic analog of Ref. [37], and we can use
much of the same procedure. First, the local field used in
Refs. [36,45] is commonly referred to as the Onsager lo-
cal field, and assume that the emitter is embedded in a
vacuum cavity inside the medium. As mentioned, this local-
field model is not unique, and we would point the reader to
Ref. [47] for a summary. We will here focus on the Clausius-
Mossotti local field [48,49] instead, which is just as commonly
employed, especially in the magnetic media literature [22].

This local field can be derived in two ways (either by av-
eraging the dipole response surrounding the emitter or by
assuming a static magnetization in a section around the emitter
[50]) based on a virtual cavity. The virtual cavity size does
not impact the result, though it relies on being larger than the
typical medium constituent separation, and both derivations
yield

B̂loc = 2Ĥ
3

+ B̂
3

= Ĥloc. (31)

Note that B̂loc = Ĥloc is important for restoring Heaviside-
Larmor symmetry to the system. This follows from the
local-field models by construction, as the center of the sphere
used in their derivation is taken to be a vacuum. Furthermore,
it should also be noted that the magnetic field Ĥ plays a much
larger role than B̂. We briefly return to whether the magneti-
zation is a function of the magnetic field Ĥ or the magnetic
induction B̂: M̂(Ĥ) or M̂(B̂). We find that there are two op-
tions, (i) and (ii), as to how to include the noise magnetization,
yielding the local fields, (i) Ĥloc = (μ + 2)Ĥ/3 + M̂N,H/3
and (ii) Ĥloc = (μ + 2)Ĥ/3 + μM̂N,B/3, respectively. Let us
first consider the route of (i). This is indeed completely dual to
the electric field Êloc as considered by Scheel et al. [37]. The
remainder of the calculation involves evaluating correlators of
the form

〈0|Ĥloc,i(r, ω)Ĥ†
loc, j (r

′, ω′)|0〉 (32)

=
∣∣∣∣μ + 2

3

∣∣∣∣
2

〈0|Ĥi(r, ω)Ĥ†
j (r

′, ω′)|0〉

+1

9
〈0|M̂N,H,i(r, ω)M̂†

N,H, j (r
′, ω′)|0〉

+
(

μ + 2

9

)
〈0|Ĥi(r, ω)M̂†

N,H, j (r
′, ω′)|0〉

+
(

μ∗ + 2

9

)
〈0|M̂N,H, j (r, ω)Ĥ†

j (r
′, ω′)|0〉

= 〈0|B̂loc,i(r, ω)B̂†
loc, j (r

′, ω′)|0〉 (33)

and follows the same route as Sec. IV (see Appendix A 2 for
details). We find that

γ =
∣∣∣∣μ + 2

3

∣∣∣∣
2

γH + 2mimj

9
Im[μ]〈〈δ⊥i j (0)〉〉

+ 4mimj

3
Im[μ]ω2

ARe

[(
μ + 2

3

)〈〈
GH

i j (0, ωA)
〉〉]

, (34)

where once again 〈〈· · · 〉〉 denotes a spatial average that is re-
quired to regularize the expression and keeping the transverse
part only. Also, here we denote the decay rate before local
fields are taken into account by γH from Eq. (24). Finally, this
yields the spontaneous decay rate given by γ with

γ = γ0

{∣∣∣∣μ + 2

3

∣∣∣∣
2(

Re[nε] + 2 Im[ε]

ωAR

)
+ 4π Im[μ]

9(ωAR)3

+ 4 Im[μ]

9

(
Re[n2 + 2ε]

ωAR
− Im

[
n3

2
+ nε

])}
, (35)

where γ0 = m2ω3
A/3π is the free-space decay rate.
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FIG. 4. (a) Purcell factor γ /γ0 as a function of dipole resonance ωA in the example medium seen in Fig. 2. As with Fig. 3, we have
chosen the spherical radius Rsphere such that R3

sphere = 3R3/4π and chosen Rsphere 	 {1.27, 3.82, 12.7} Å, respectively, with reference to an
electric resonance at ωTe = 2πc/100 nm. (b) Comparison of Purcell factors γH/γ0, γB/γ0, and γ /γ0 as a function of dipole resonance ωA in
the example medium seen in Fig. 2.

We can find the associated Purcell factor γ /γ0 in Fig. 4(a)
for the same conditions as those considered in Sec. IV. Note
that it has a similar qualitative structure to γB/γ0, although the
peak magnitude is about an order of magnitude different. This
is particularly clear in Fig. 4(b), where a comparison between
the different decay rates discussed in the paper can be found.
Indeed, the strong increase at the magnetic resonance ωTm =
ωTe/2 has the same origin as for γB, i.e., from the resonant
dipole-dipole energy transfer. Importantly however, this decay
rate is dual symmetric and μ ↔ ε yields the electric dipole
decay rate in the same medium.

Comparison with option (ii)

If we move onto option (ii), i.e., a formulation where M̂(B̂)
using M̂N,B, we can now arrive at the decomposition

(
P̂N

M̂N,B

)
= 1√

π

(
i
√

Im ε 0

0
√

Im μ

|μ|

)(
f̂e

f̂m

)
, (36)

as can be found in, for instance, [36,41–43], among others.
The appearance of |μ| comes as a consequence of using κ =
1/μ in the formulation instead of μ. Indeed, we usually find
the fluctuation-dissipation theorem written in the form

〈0|M̂N,B,i(r, ω)M̂†
N,B, j (r

′, ω′)|0〉

=
(−Im[κ]

π

)
δi jδ(r − r′)δ(ω − ω′), (37)

as −Im[κ] = −Im[1/μ] is the dissipative part of B̂/μ. We
would however note that −Im[κ] = Im[μ]/|μ|2.

As is pointed out in Ref. [36], this does not seem dual
symmetric, and in particular the relation between the polariton
operators (f̂e, f̂m) and (P̂N , M̂N,B) yields an apparent dual-
asymmetric relation f̂


e = −i(μ/|μ|)f̂m and f̂

m = −i(|ε|/ε)f̂e.

Indeed, neither Ĥ(r, ω) (Ĥ transforms correctly here, but care
is advised if expressed in terms of a Green’s function as such
a formulation is not dual symmetric) nor M̂†

N,B, j (r
′, ω′) is

individually dual symmetric in this formulation, following the
rules outlined in Table I of Ref. [36]. Regardless of the above
considerations however, it can be shown that we arrive at the
same decay rate γ . This is because, despite the operators being

dual asymmetric, expectation values of the form

μ∗〈0|Ĥi(r, ω)M̂†
N,B, j (r

′, ω′)|0〉 (38)

are nonetheless dual symmetric.
The resolution of this apparent contradiction lies with the

choice of phase when relating the noise operators to the po-
lariton operators in Eq. (36). In fact, the connections between
noise operators and polariton operators are only defined up to
any phase. This indifference to trivial phases has been noted
as early as Ref. [51], but also Ref. [41]. Indeed, it is easy to
see that the addition of any phase will not change Eqs. (6)
and (7). This means that we are left with an undetermined
phase in Eq. (36) [as well as Eq. (8)], as this is not uniquely
determined by the fluctuation-dissipation theorem. We can
however use Heaviside-Larmor symmetry to fix this phase. A
minor modification to Eq. (36), such that it reads

(
P̂N

M̂N,B

)
= 1√

π

(
i
√

Im ε 0

0 i
√

Im μ

μ

)(
f̂e

f̂m

)
, (39)

both resolves this issue and provides a nearly structurally
dual-symmetric formulation of macroscopic QED. In this
way, the formulation of macroscopic QED is dual symmetric
already at an operator level, rather than at the level of the
expectation values. The inclusion of μ in the definition of
M̂N,B, as we do in option (i), would make the formulation fully
dual symmetric. We would note that this is still consistent with
Ref. [41].

VI. CONCLUDING REMARKS

We find that the local field must be included in treatments
of emitters embedded in macroscopic media. Any other option
would break Heaviside-Larmor symmetry, which is expected
to hold at these scales. Furthermore, we find that a minor
modification to the magnetic section of the usual formulation
of macroscopic QED makes the formulation dual symmetric
already at an operator level. The impact of this is not restricted
to the case we consider here and certainly simplifies calcula-
tions. Indeed, while we in this work consider only the linear
magnetic response of the emitter and associated spontaneous
decay rate, we would note that the formalism developed and

053704-7



WESTERBERG, MESSINGER, AND BARNETT PHYSICAL REVIEW A 105, 053704 (2022)

the local-field corrections are applicable also to the full mag-
netic response of an emitter, paramagnetic and diamagnetic.
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APPENDIX A: LOCAL-FIELD CORRECTED
DECAY RATES

Let us start by ensuring that the quantization used is indeed
consistent with previous work, after which we will present
some further details on the decay rate calculation. In the for-
mer, we will be following Ref. [5] and in the latter Ref. [37].

1. Consistency of the quantization

Starting with the quantization, the simplest way this can
be done is by directly connecting the formulation to that in
Refs. [5,41]. The calculations can naturally be done indepen-
dently, but with little gain. Our starting point is Maxwell’s
equation in frequency space,

∇ · D̂(r, ω) = 0, (A1)

∇ · B̂(r, ω) = 0, (A2)

∇ × Ê(r, ω) = iωB̂(r, ω), (A3)

∇ × Ĥ(r, ω) = −iωD̂(r, ω), (A4)

along with the constitutive equations

D̂(r, ω) = εÊ(r, ω) + P̂N (r, ω), (A5)

B̂(r, ω) = μĤ(r, ω) + M̂N,H (r, ω). (A6)

It follows that the fields satisfy

∇ × [∇ × Ê] − ω2εμÊ = ω2μP̂N + iω∇ × M̂N,H , (A7)

∇ × [∇ × Ĥ] − ω2εμĤ = ω2εM̂N,H − iω∇ × P̂N . (A8)

As is noted in the main text, we can then relate the noise po-
larization and magnetization to the system polaritons through

P̂N = i
√

Im[ε]/π f̂e, (A9)

M̂N,H = i
√

Im[μ]/π f̂m, (A10)

where

[f̂λ,i(r, ω), f̂†
λ′, j (r

′, ω′)] = δi jδλλ′δ(r − r′)δ(ω − ω′). (A11)

Also, the time evolution is generated through the Hamiltonian

Hfield =
∑

λ=e,m

∫
d3r

∫ ∞

0
dω ω f̂†

λ (r, ω) · f̂λ(r, ω) (A12)

as i˙̂fλ = [f̂λ, Hfield] = ωf̂λ. When ensuring the correctness of
the quantization procedure, we will focus on Eq. (A7), which

can be rewritten as

μ−1∇ × [∇ × Ê] − ω2εÊ = iωĵN , (A13)

with

ĵN = −iωP̂N + μ−1∇ × M̂N,H , (A14)

from which we also find ρ̂N = −∇ · P̂N This allows us to
write

Ê(r, ω) = iω
∫

d3r′GE (r, r′, ω) · ĵN (r′, ω), (A15)

where G satisfies

μ−1∇ × [∇ × GE ] − ω2εGE = Iδ(r − r′). (A16)

It is also convenient to use

B̂ = P 1

iω
[∇ × Ê], (A17)

D̂ = −P 1

iω
[∇ × Ĥ], (A18)

where P stands for the principal value part of 1/ω. Let us
now formally identify μ−1M̂N,H = M̂N,B and rewrite the noise
current as

ĵN = −iωP̂N + ∇ × M̂N,B. (A19)

Substituting this into Eq. (A10) yields

μM̂N,B = i
√

Im[μ]/π f̂m. (A20)

We now note that this is invariant under the choice of phase
[36], and any choice of the form

M̂N,B = ieiφ

μ

√
Im[μ]

π
f̂m. (A21)

is equally correct. Here φ is any phase. If we now specify φ

such that

exp[iφ] = −iμ/|μ|, (A22)

we find that M̂N,B =
√

Im[μ]/π |μ|2 f̂m. This formally shows
that this formulation is equivalent to the one found in Ref. [5],
among others. It follows that

[Êi(r), B̂l (r′)] = iεi jk∂ j[δklδ(r − r′)], (A23)

as is required by the quantization procedure. Here εi jk is the
Levi-Cività symbol and ∂ j denotes the derivative with respect
to the jth component of r. Also, here we define Ê(r) =∫ ∞

0 dω[Ê(r, ω) + Ê†(r, ω)] and likewise for the magnetic in-
duction B̂(r).

2. Details of the decay rate calculation

Let us consider the equation for GH , given by Eq. (10) in
the main text:

ε−1∇r × [∇r × GH (r, r′, ω)] − ω2μGH (r, r′, ω)

= Iδ(r − r′); (A24)

we should note that

ε−1∇r′ × [∇r′ × GH (r, r′, ω)] − ω2μGH (r, r′, ω)

= Iδ(r − r′) (A25)
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is equally true. By taking the conjugate (denoted by GH∗) of
Eq. (A24) and renaming some variables, we find that

(ε∗)−1∇r′ × [∇r′ × GH∗(r′, s, ω)] − ω2μ∗GH∗(r′, s, ω)

= Iδ(r′ − s), (A26)

where ∇r′× denotes the curl with respect to coordinate r′.
If we multiply Eq. (A25) by GH∗(r′, s) from the right and
Eq. (A26) by GH (r′, s) from the left, subtract the latter from
the former, and integrate over r′, we find that∫

d3r′
(

GH (r, r′, ω) · [ω2Im μ(ω)]GH∗(r′, s, ω)

+ GH (r, r′, ω) · Im ε(ω)

|ε(ω)|2 ∇r′ × [∇r′ × GH∗(r′, s, ω)]

)

= GH (r, s, ω) − GH∗(r, s, ω) ≡ Im[GH (r, s, ω)],
(A27)

where we have integrated by parts twice in the second term
involving the curl. This derivation follows from the properties
of the Green’s functions [45].

We now have all the tools to evaluate the correlator

〈0|Ĥloc,i(r, ω)Ĥ†
loc, j (r

′, ω′)|0〉

=
∣∣∣∣μ + 2

3

∣∣∣∣
2

〈0|Ĥi(r, ω)Ĥ†
j (r

′, ω′)|0〉

+ 1

9
〈0|M̂N,H,i(r, ω)M̂†

N,H, j (r
′, ω′)|0〉

+
(

μ + 2

9

)
〈0|Ĥi(r, ω)M̂†

N,H, j (r
′, ω′)|0〉

+
(

μ∗ + 2

9

)
〈0|M̂N,H, j (r, ω)Ĥ†

j (r
′, ω′)|0〉. (A28)

We will do this term by term:

〈0|Ĥi(r, ω)Ĥ†
j (r

′, ω′)|0〉 =
∫ ∞

−∞
ds

∫ ∞

−∞
ds′GH

ik (r, s, ω)GH†
j p (r′, s′, ω′)〈0|{ω2M̂N,H,k (s, ω) − iωε−1[∇s × P̂N (s, ω)]k}

× {ω′2M̂†
N,H,p(s′, ω′) + iω′(ε∗)−1[∇s′ × P̂†

N (s′, ω′)]p}|0〉

= π−1ω2δ(ω − ω′)
∫ ∞

−∞
ds

∫ ∞

−∞
ds′GH

ik (r, s, ω)GH†
j p (r′, s′, ω)

×
(

[ω2Imμ(ω)δkpδ(s − s′)] + Imε(ω)

|ε(ω)|2
[
εkqr∂

s
qεrl p∂

s
l δ(s − s′)

])

= π−1ω2δ(ω − ω′)
∫ ∞

−∞
ds GH

ik (r, s, ω)[ω2Imμ(ω)δkp]GH∗
p j (s, r′, ω)

+ GH
ik (r, s, ω)

(
Imε(ω)

|ε(ω)|2
[
εkqr∂

s
qεrl p∂

s
l GH∗

p j (s, r′, ω)
])

= π−1ω2δ(ω − ω′)
∫ ∞

−∞
ds

[
GH (r, s, ω) · [ω2Im μ(ω)]GH∗(s, r′, ω)

+ GH (r, s, ω) ·
(

Im ε(ω)

|ε(ω)|2 ∇s × [∇s × GH∗(s, r′, ω)]

)]
i j

= π−1ω2δ(ω − ω′)Im
[
GH

i j (r, r′, ω)
]
, (A29)

where ∂s
i denotes the partial derivative with respect to the ith

compoment of s and εi jk is the Levi-Cività symbol. We have
here used the relation in Eq. (A27) in the final step and by GH†

we mean the conjugate transpose. Finally, in the penultimate
step, we used that GH†(r′, s, ω) = GH∗(s, r′, ω). From this,
we find the expected result

∣∣∣∣μ + 2

3

∣∣∣∣
2

〈0|Ĥi(r, ω)Ĥ†
j (r

′, ω′)|0〉

=
∣∣∣∣μ + 2

3

∣∣∣∣
2
ω2

π
Im

[
GH

i j (r, r′, ω)
]
δ(ω − ω′). (A30)

Moving to the second term, this follows directly from the
fluctuation-dissipation theorem and we find

1

9
〈0|M̂N,H,i(r, ω)M̂†

N,H, j (r
′, ω′)|0〉

=
(

Im[μ]

9π

)
δi jδ(r − r′)δ(ω − ω′). (A31)

Finally, the last two terms in Eq. (A28) form a complex
conjugate pair and so it suffices to evaluate the first one.
From Eq. (9) and using the fluctuation-dissipation theorem in
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Eq. (7), it is straightforward to show that

〈0|Ĥi(r, ω)M̂†
N,H, j (r

′, ω′)|0〉

=
(

ω2

π

)
Im[μ(ω)]δ(ω − ω′)GH

i j (r, r′, ω), (A32)

from which we find(
μ + 2

9

)
〈0|Ĥi(r, ω)M̂†

N,H, j (r
′, ω′)|0〉

+
(

μ∗ + 2

9

)
〈0|M̂N,H, j (r, ω)Ĥ†

j (r
′, ω′)|0〉

= 2ω2

3π
Im[μ(ω)]Re

[(
μ(ω) + 2

3

)
GH

i j (r, r′, ω)

]
δ(ω − ω′).

Substituting this into Eq. (30) now yields Eq. (34), given
that we further note the need to take a spatial average for
regularization purposes, as is also done for Eqs. (17) and (16).
Substituting this along with the results in Eqs. (22) and (28)
into Eq. (34) yields the decay rate found in Eq. (35).

APPENDIX B: DUAL-ASYMMETRIC OPERATORS
AND DUAL-SYMMETRIC DECAY RATES

We will here show that the decay rate calculated using
the conventions referred to as option (ii) in the main text are
still dual symmetric, even if the operators involved lack this
symmetry. The simplest approach to this starts at Maxwell’s
equations (1)– (4) and the duality transform table found in
Ref. [36]. For clarity, after a π/2 transform within this for-
malism, we find that

Ê
 = Ĥ, (B1)

Ĥ
 = −Ê, (B2)

d̂
 = m̂, (B3)

m̂
 = −d̂, (B4)

ε
 = μ, (B5)

μ
 = ε, (B6)

which transform according to Heaviside-Larmor symmetry, as
well as

P̂

N = μM̂N,B, (B7)

M̂

N,B = −P̂N/ε, (B8)

f̂

e = −i(μ/|μ|)f̂m, (B9)

f̂

m = −i(|ε|/ε)f̂e, (B10)

whose transformation is dual asymmetric. The magnetic local
field in this formulation is given by

B̂loc = (μ + 2)Ĥ/3 + μM̂N,B/3, (B11)

as noted in the main text. For the decay rate in
Eq. (30) we must now calculate the local-field correlator

〈0|B̂loc,i(r, ω)B̂†
loc, j (r

′, ω′)|0〉, which is slightly different from
Eq. (32):

〈0|B̂loc,i(r, ω)B̂†
loc, j (r

′, ω′)|0〉

=
∣∣∣∣μ + 2

3

∣∣∣∣
2

〈0|Ĥi(r, ω)Ĥ†
j (r

′, ω′)|0〉

+ |μ|2
9

〈0|M̂N,B,i(r, ω)M̂†
N,B, j (r

′, ω′)|0〉

+
(

μ + 2

9

)
μ∗〈0|Ĥi(r, ω)M̂†

N,B, j (r
′, ω′)|0〉

+
(

μ∗ + 2

9

)
μ〈0|M̂N,B, j (r, ω)Ĥ†

j (r
′, ω′)|0〉. (B12)

For clarity, we will treat this term by term. While the first term
in Eq. (B12) appears identical to the corresponding term in
Eq. (32) it is not, because the Ĥ field has a different equa-
tion of motion within this formalism. Indeed, we can evaluate
this using the expression for Ĥ and the corresponding Green’s
function from Ref. [36], where

Ĥ(r, ω) = −
∫

d3r′{[Gmm(r, r′, ω)/μ + Iδ(r − r′)]

· M̂N,B(r′, ω) + Gme(r, r′, ω) · P̂N (r′, ω)/μ},
(B13)

Here

Gmm(r, r′, ω) = ∇ × G(r, r′, ω) ×
←
∇′, (B14)

Gme(r, r′, ω) = ∇ × G(r, r′, ω) iω, (B15)

where ×
←
∇′ denote the curl from the right with respect to the

primed coordinates. Finally, G(r, r′, ω) is the solution to

∇ ×
(

1

μ
∇ × [−ω2εG(r, r′, ω)]

)
= Iδ(r − r′). (B16)

However, this calculation is much simplified using Maxwell’s
equation (1)–(4) and the constituent relation B̂ = μĤ +
μM̂N,B. We find that

Ĥ(r, ω) =
∫

d3r′GH (r, r′, ω)

· [μω2M̂N,B(r′, ω) − iωε−1∇r′ × P̂N (r′, ω)].
(B17)

Clearly, the only difference is the addition of an extra factor
of μ for each Ĥ. However, the extra |μ|2 that appears in the
correlator is canceled by the corresponding 1/|μ|2 in the noise
magnetization correlator of Eq. (37) and we arrive at the same
final result as in the main text. Also, it is easy to confirm that it
is dual symmetric according to the transformation rules above.
Indeed,

[∣∣∣∣μ + 2

3

∣∣∣∣
2

〈0|Ĥi(r, ω)Ĥ†
j (r

′, ω′)|0〉
]


=
∣∣∣∣ε + 2

3

∣∣∣∣
2

〈0|Êi(r, ω)Ê†
j (r

′, ω′)|0〉. (B18)
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For the second term, it is easy to see that it will yield the
same expectation value as the corresponding term in Eq. (32),
as

|μ|2
9

〈0|M̂N,B,i(r, ω)M̂†
N,B, j (r

′, ω′)|0〉

= 1

9
〈0|M̂N,H,i(r, ω)M̂†

N,H, j (r
′, ω′)|0〉, (B19)

where we used Eq. (37) and that −Im[κ] = Im[μ]/|μ|2. No-
tably, this term does not at first glance look dual symmetric,
but once we take into account the dual-asymmetric relation
M̂


N,B = −P̂N/ε we find

[ |μ|2
9

〈0|M̂N,B,i(r, ω)M̂†
N,B, j (r

′, ω′)|0〉
]


= 1

9
〈0|P̂N,i(r, ω)P̂†

N, j (r
′, ω′)|0〉. (B20)

The final two terms are complex conjugates, so it suffices to
discuss(

μ + 2

9

)
μ∗〈0|Ĥi(r, ω)M̂†

N,B, j (r
′, ω′)|0〉. (B21)

Here we must be careful, as this takes a distinctly different
from as compared to the electric calculation seen in Ref. [37].
Nonetheless, if we substitute Ĥ from Eq. (B17) and use
Eq. (37), we arrive at the same result as in the main text. In
fact, a duality transform of Eqs. (B1)–(B6) along with the im-
plied dual-asymmetric transforms in Eqs. (B7)–(B10) shows
that the total expectation value is indeed still dual symmetric:[(

μ + 2

9

)
μ∗〈0|Ĥi(r, ω)M̂†

N,B, j (r
′, ω′)|0〉

]


=
(

ε + 2

9

)
〈0|Êi(r, ω)P̂†

N, j (r
′, ω′)|0〉. (B22)

This is because the dual symmetry is restored by the dual-
asymmetric relation in Eq. (B8).
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