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Characteristics of superradiant optical phases occurring in the system of nondegenerate � atoms
and radiation that are interacting inside a nonlinear quantum cavity
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In the present article, we investigate the behavior of a large collection of three-level � atoms interacting with
two quantized electromagnetic fields inside a second-order nonlinear quantum cavity. The nonlinearity of the
cavity is supposed to be activated by the application of two classical pump fields. The total Hamiltonian of
the combination, with due attention to the nonlinearity effects, is diagonalized. The corresponding ground-state
energy then follows from minimizing the total Hamiltonian. The structure of the ground state indicates that four
distinct optical phases can occur in such a system. These possible phases turn out to be trivial, dark, left-arm
and right-arm superradiant ones. Conditions under which any of the four optical phases can actually occur
are also analyzed and discussed. The analysis of the conditions, accompanied by several figures, then reveals
that with a suitable choice of the pump field amplitudes and/or geometrical phases, one can intensify the two
superradiant phases drastically. Moreover, we demonstrate that the dark optical phase cannot occur at all, while
the trivial and superradiant ones can, in fact, coexist. Our calculations also show that transition from the trivial
phase to left-arm (right-arm) superradiant one is continuous (discrete) and second (first) order in nature. Another
important result of our investigation is that by adjusting the pump field strength, one can switch from the left-arm
superradiant phase to the right-arm one and vice versa. This point, in turn, provides an alternative mechanism
for the development of quantum optical switching devices.
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I. INTRODUCTION

The occurrence of superradiation in the system of interact-
ing atoms and quantum electromagnetic fields has been well
established by now, both theoretically [1–7] and experimen-
tally [8–11]. In a simple way, such optical phases may be
defined as trivial (normal) and superradiant ones that may
exist in a system of a large number of atoms (Dicke states)
and quantized electromagnetic fields (photons). Specifically,
in the superradiant phase the atoms rise to exited states, and
the quantized fields are excited to some combination of non-
vanishing occupational states [12–14]. On the other hand,
the trivial phase is the case in which all atoms occupy the
ground state, while the fields are in the vacuum state [3,14–
17]. Physically, the occurrence of nontrivial phases is due
to coherent spontaneous atomic radiation [18–20]. In this
regard, the question of how such optical phases may be
controlled and intensified is still the subject of intensive re-
search projects [21–26]. The control, as well as intensification,
of optical phases has been suggested for the development
of, among others [27–32], ultrashort coherent light pulse
sources [33–36], optical switching devices [37–39], and very
low temperature measuring gauges [40,41]. In what follows,
we introduce a mechanism to effectively enhance and control
the achievable radiant phases. In the proposed mechanism,
the atoms are taken as three-level nondegenerate � atoms
which interact with two quantized fields inside a second-order
nonlinear cavity. The nonlinearity of the medium filling the

*golshan@susc.ac.ir

quantum cavity is induced by externally applying two clas-
sical pump fields. As will be demonstrated, the phases and
amplitudes of these classical fields provide an efficient mech-
anism to control the behavior of the atom-field combination.

The notion of controlling the behavior of optical phases
in atom-field systems by the application of an externally
adjustable agent was discussed in Refs. [25,26]. The most
important point in these references is the fact that the external
agent stimulates the nonlinearity of the medium which fills
the quantum cavity. Moreover, it is by all means possible to
control the optical phases intrinsically [42,43]. This, however,
can be done only by changing the particular atoms inside the
cavity and/or size of the quantum resonator [22,44–46]. In
practice, such intrinsic alteration of the system would be of
little use. In addition, intrinsic alterations face the more con-
ceptual challenge surrounding the no-go theorem [47]. In the
case of either the extrinsic or intrinsic controlling procedure,
an attempt is made to break the Z2 symmetry by adjusting the
system’s parameters. The latter assessment comes about from
the fact that in most systems the total Hamiltonian condition-
ally commutes with the generator of the symmetry (U1 and/or
Z2) [7,48–50]. It is then obvious that by adjusting the system’s
parameters, one can actually destroy the corresponding sym-
metry. A survey of the literature reveals that when the atomic
system parameters, particularly atomic dipole moments, are
specified, the breakage of the symmetry becomes impossible
unless a different kind of atom, with some other dipole mo-
ments, is used [13,51]. As a result, a transition between optical
phases within a specified system of atoms and fields is out of
the question. In a practical setup, atoms and fields couple in a
fixed manner, so that one can make an optical transition only
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by changing the atom or cavity parameters. As will be seen,
our model overcomes this practical shortcoming.

Even though the study of the system of two- or three-level
atoms (� and V ) and radiation fields has filled a textbook [52],
the models have been extensively suggested for practical pur-
poses [53–57]. In most treatments, however, atoms and fields
interact in an otherwise empty cavity or, at best, one filled with
a linear medium. To this end, investigation of the model inter-
acting inside a quantum cavity filled by nonlinear media has
provided practical methods to manipulate the possible optical
phases [25]. Since such a medium may be polarized (which
induces polariton waves [26]) by the application of external
field pump(s), controlling agents are then at our disposal. It
was, moreover, shown that some orders of nonlinearity retain
Z2 symmetry, while other orders lead to its breakage [26]. The
more advantageous of these nonlinearity orders (nonlinear
susceptibility) is the second-order one. The main aim of the
present work is to identify and characterize the optical phases
that may turn up in the system of three level �-type atoms
interacting with two quantum fields inside a second-order
nonlinear resonator. The two quantum modes, coupled to the
left or right arm of the (�) atoms, then constitute two distinct
branches of Z2 symmetry, which can be broken independently.
As demonstrated here, this can happen by adjusting the am-
plitudes and/or the geometrical phases of the pump fields.
To this end, we use the variational principle to determine the
system’s ground- state energy, per atom, in the thermody-
namic limit. As a result, we identify four well-defined optical
phases, namely, trivial, dark, “left-arm” (high-frequency) and
“right-arm” (low-frequency) superradiant phases. The more
important result of the present work is that we explicitly
demonstrate the conditions, adjustable by the pump fields,
under which the system embraces these phases. Last but not
least, the nature of optical phase transitions is also addressed.
In fact, it will be shown that a transition between trivial and
left-arm superradiant phases is continuous, while that for the
right-arm one is discontinuous. The transition from left-arm
to right-arm superradiant phases also turns out to be discon-
tinuous.

The organization of this article is as follows. In the next
section the model is introduced, and the total Hamiltonian is
presented. In Sec. III, we begin by calculating the ground-state
energy per atom, in detail. Then two subsections are devoted
to the characteristics of left- and right-arm superradiant phases
in that order. Following the calculation of the ground-state
energies, the conditions for which a possible solution is sta-
ble form the subject of Sec. IV. This section also includes
figures that adequately describe the behavior and nature of
the corresponding optical phases. This article is concluded by
highlighting the more important results in Sec. V.

II. DESCRIPTION OF THE MODEL

The present section is devoted to the description of the
model and the corresponding Hamiltonian. The system con-
sidered here is formed by a collection of identical �-type
three-level atoms, interacting with a two-mode radiation field.
In addition, it is supposed that the interaction occurs in a
quantum cavity filled with nonlinear materials. In order to
excite the second-order nonlinearity of the medium in the

FIG. 1. The nonlinear cavity QED filled by a second-order non-
linear medium.

cavity, two external classical pumps with short duration, with
frequency ωpi (i = 1, 2), are also assumed to be present.
These classical fields are responsible for the creation of two
quantum fields, characterized by frequencies ω1 and ω2. These
two fields, in turn, interact with the two arms of the �-type
atoms. Other characteristics of the system are schematically
presented in Fig. 1, which also serves to identify the notations
we employ herein. Although Fig. 1 roughly (in the sense that
necessary optical elements are omitted; details can be found in
Refs. [8,9], for instance) sketches the experimental realization
of the system, in the following we present a brief account of
the manner with which a second-order nonlinear cavity with
embedded �-type atoms can be achieved.

In this regard, one may use crystals, in particular, potas-
sium titanyl phosphate (KTP), which exhibit second-order
nonlinearity [58–60]. The crystal is then doped with elements
belonging to the first column of the periodic table whose
ground states are, in fact, degenerate. To this end, the ru-
bidium isotope 87Rb has been most commonly used, giving
the well-known RKTP crystals [61–63]. In order to aggregate
the Rb atoms in a very tiny region so that the electric dipole
approximation becomes appropriate to employ, one starts the
process of doping with a very small (in size) RKTP crystal
and a few Rb atoms. The resulting product can then be used
as a seed to grow RKTP to a desirable size, in the present
case the size of the cavity. As is well known, moreover, Rb
atoms (as well as the rest of the group) behave as two levels
under ordinary conditions. To remove the degeneracy of the
ground state of 87Rb atoms so that they turn into three-level
atoms, the whole (doped) crystal is externally put under the
influence of a uniform and static magnetic field. Because of
the nonmagnetic properties of the crystal, such a field would
solely influence the 87Rb atoms, giving rise to the separation
of the |5 2S1/2, F = 1 or 2〉 (using spectroscopic notation and
the values for 87Rb total angular momentum, including the nu-
cleus) states that describe the corresponding ground state [64].
Since the amount of energy splitting of the ground-state en-
ergy strongly depends upon the magnitude of the external
magnetic field, Rb atoms can be realized as � atoms with a
proper choice of such an external agent.

In accordance with what has been described, the system
under consideration is governed by the Hamiltonian

H = Hf + Ha + Haf + Hff . (1)

In Eq. (1), the free-field Hamiltonian reads (h̄ = 1 and
standard notations) H f = ∑2

s=1 ωsa†
s as, and the free atomic
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Hamiltonian for a collection of N identical � atoms is

Ha =
3∑

k=1

�kSkk, Skk′ =
N∑

j=1

|k〉 j j〈k′|. (2)

The kets in Eq. (2) describe single atomic states. For future
use, we record the following commutation relation for the
atomic operators:

[Skl , Sk′l ′ ] = δk′l Skl ′ − δkl ′Sk′l . (3)

Moreover, in the electric dipole and rotating-wave approxima-
tions the atom-field interaction Haf becomes

Haf = λ13√
N

(a†
1S13 + a1S31) + λ23√

N
(a†

2S23 + a2S32), (4)

where λ13 (λ23) denotes the coupling strength of the left
(right) arm of the atom-field interaction. The appearance of√

N in Eq. (4) is due to the fact that the following calcula-
tions are carried out in the thermodynamic limit [5,65,66].
It is emphasized that the pump field is way off reso-
nance with atomic states, so it does not participate in
the atom-field interaction. As for the field-field interac-
tion, arising from second-order nonlinearity of the cavity,
one has [26] Hff ∼ ∫

[
∑

α Eα (z, kα )]3dv, with the assump-
tion of isotropy and homogeneity of the nonlinear medium
filling the cavity. For the case in hand, α runs over the
two quantum-mechanical and two classical fields. For the
former ones, E1,2 ∼ [a1,2 exp(ik1,2z) + H.c.], while for the
latter ones (classical fields), Ep1,p2 ∼ [Cp1,p2 exp(ikp1,p2 z +
φp1,p2 ) + c.c.], with C being C numbers. When expressions
for the fields are substituted in Hff and integration over the
volume of the cavity is performed, the results involve cross
multiples of field operators and classical C numbers, each
accompanied by δ functions. Needless to say, the δ functions,
whose arguments involve linear combinations of the corre-
sponding wave numbers, arise from the plane-wave nature
of the fields. It is then feasible to control the form of Hff

by properly adjusting the wave numbers of the participating
fields. Since a cavity of length L can support modes of wave
numbers ki = qi(π/L), i = 1, 2, p1, p2, where qi are integers,
we choose the pump fields in such a way that kp1 = (qp1/q1)k1

and kp2 = (qp2/q2)k2. In this manner, the cavity simultane-
ously supports all of the fields involved. With this choice
of wave numbers, all the terms in Hff vanish except those
composed of a†2

i and a2
i , i = 1, 2. Under these conditions, the

field-field interaction then reads [26]

Hff = g1(Ep1)
(
a2

1ei(ωp1 t+φp1 ) + a†2
1 e−i(ωp1t+φp1 )

)
+ g2(Ep2)

(
a2

2ei(ωp2t+φp2 ) + a†2
2 e−i(ωp2 t+φp2 )

)
, (5)

where Epi and φpi (i = 1, 2) denote, respectively, the pump
amplitude and its initial geometrical phase. As we shall see in
Sec. III, right after Eq. (14), the pump phases play a crucial
role in determining the nature of superradiant optical phases:
solely electric, solely magnetic, and a mixture of the two.
Moreover, we define the field-field coupling explicitly as gi =
ωiχ

(2)Epi , where χ (2) denotes the second-order susceptibility
of the filling material. The Hilbert space of the system is
spanned by the eigenstates of Hf + Ha, which is the tensor
product of the two fields states, | f1〉 and | f2〉 (which will

be specified later), and atomic Dicke states, |D( j1, j2, j3; N )〉
(indicating that out of N atoms the ji ones are in the ith state).
Following this description of the model, the ground-state en-
ergy of the system is determined in the next section.

III. GROUND-STATE ENERGY OF THE SYSTEM

In order to determine the ground-state energy of the sys-
tem, we find it more convenient to cast Eq. (1), with due
attention to the participating terms, in the Holstein-Primakoff
representation [67]. This is done by introducing new atomic
(bosonic) operators b2(3) as

Si j = b†
i b j i, j �= 1, (6)

S1i = S1/2
11 bi, Si1 = b†

i S1/2
11 , (7)

and

S11 = N − b†
2b2 − b†

3b3. (8)

In this equivalent representation, bi (b†
i ) annihilates (creates)

an atom in the ith state while creating (annihilating) an atom
in the atomic ground state. From the commutation relation in
Eq. (3), one arrives at [b†

i , bi] = δi j and [bi, b j] = [b†
i , b†

j] =
0. In the Holstein-Primakoff representation, therefore, the free
atomic Hamiltonian becomes

Ha = N�1 + �12b†
2b2 + �13b†

3b3, (9)

where �1 j = � j − �1 ( j = 2, 3). Meanwhile, the atom-field
interaction reads

Haf = λ13√
N

(
S1/2

11 a†
1b3 + a1b†

3S1/2
11

) + λ23√
N

(a†
2b†

2b3 + a2b2b†
3).

(10)
Needless to say, the free-field Hamiltonian and field-field
Hamiltonian [Eq. (5)] remain unchanged in this representa-
tion. Accordingly, the total Hamiltonian becomes

H = ω1a†
1a1 + ω2a†

2a2 + N�1 + �12b†
2b2 + �13b†

3b3

+ λ13√
N

(
S1/2

11 a†
1b3 + a1b†

3S1/2
11

) + λ23√
N

(a†
2b†

2b3 + a2b2b†
3)

+ g1
(
Ep1

)(
a2

1ei(ωp1 t+φp1 ) + a†2
1 e−i(ωp1 t+φp1 )

)
+ g2

(
Ep2

)(
a2

2ei(ωp2 t+φp2 ) + a†2
2 e−i(ωp2 t+φp2 )

)
(11)

in the Holstein-Primakoff representation. In the next stage, we
remove the time dependence of the total Hamiltonian by going
to a rotating frame described by the unitary transformation

U (t ) = exp[i(ω̃1a†
1a1 + ω̃2a†

2a2 + �̃2b†
2b2 + �̃3b†

3b3)t].

(12)

In this representation, the total Hamiltonian is obtained from
H̃ = UHU † − iU ∂U †

∂t , whose result involves time-dependent
exponentials. To get rid of the time dependence, one sets the
exponents equal to zero, which provides a set of equations for
ω̃ and �̃ in terms of ωp. As the solutions to the set of such
equations, it is found that ω̃i = ωpi/2, �̃2 = (ωp1 − ωp2 )/2,
and �̃3 = ωp1/2, which indeed do the job. Adopting these
expressions for the frequencies, the total Hamiltonian turns
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out to be

H̃ = δ1a†
1a1 + δ2a†

2a2 + N�1 + �2b†
2b2 + �3b†

3b3

+ λ13√
N

(
S1/2

11 a†
1b3 + a1b†

3S1/2
11

) + λ23√
N

(a†
2b†

2b3 + a2b2b†
3)

+ g1
(
a2

1eiφp1 + a†2
1 e−iφp1

) + g2
(
a2

2eiφp2 + a†2
2 e−iφp2

)
(13)

in the rotating frame. The new field and atomic frequen-
cies are now defined as δs = ωs − ω̃s (s = 1, 2) and �i =
�1i − �̃i (i = 2, 3), respectively. We are now in a position
to calculate the system’s ground-state energy in the limit of
a large atomic number. It is well known [68,69] that in this
limit the field ground state |G〉 approaches a coherent state,
| fi〉 → |√Nαi〉, while the atoms also fall into a coherent state,
|D( j1, j2, j3; N )〉 → |√Nβ2,3〉. The ground state then reads
|√Nα1〉 ⊗ |√Nα2〉 ⊗ |√Nβ2〉 ⊗ |√Nβ3〉 in this limit. Here
|√Nαi〉 (|√Nβi〉) denotes the photonic (atomic) coherent
states. The inclusion of

√
N guarantees that the ground-state

energy per atom, hG = 〈G|H̃ |G〉/N , remains constant in the
thermodynamic limit. To find the ground-state energy per
atom, we take α and β as variational parameters and minimize
hG. To this end, we find

hG = �1 + δ1α
2
1 + δ2α

2
2 + �2β

2
2 + �3β

2
3 − 2g1α

2
1 − 2g2α

2
2

+ 2λ13

√
1 − β2

2 − β2
3α1β3 + 2λ23α2β2β3, (14)

where we have taken pump-field initial phases as π and, at
the same time, the variational parameters to be real. From the
definition αi ± α∗

i for the photonic quadrature, the associated
magnetic field is absent following these choices. Although the
following calculation may be readily extended to the case of
a solely magnetic phase (taking the initial geometric phase as
π/2) or a mixture of electric and magnetic phases (taking any
value for the geometrical phase other than 0, π or π/2), the
conclusions we shall draw apply. It is noted that hG, being the
expectation value of a Hermitian operator, must be real valued.
This fact implies that β2

2 + β2
3 � 1, meaning that physically,

the population of states |2〉 and |3〉 cannot exceed the total
number of atoms. The equality sign indicates the border of
regions in which differentiation with respect to β2 and β3

is not defined. Equating differentials of hG with respect to
α1 and α2 separately to zero and solving the resulting two
equations gives

α1 =
β3λ13

√
1 − β2

2 − β2
3

2g1 − δ1
(15)

and

α2 = λ23β2β3

2g2 − δ2
. (16)

The following sections are devoted to an investigation of the
conditions under which left-arm and right-arm superradiation
modes appear.

A. Left-arm superradiance phase

When Eqs. (15) and (16) are substituted into hG and
the result of differentiation (it is implicitly assumed that

β2
2 + β2

3 < 1) with respect to β2 is set to zero, one finds(
g1λ

2
23 − g2λ

2
13 − δ1λ

2
23

2
+ δ2λ

2
13

2

)
β2

3β2

− (2g1 − δ1)(2g2 − δ2)�2β2 = 0. (17)

The solution to Eq. (17) is, evidently, either β2 = 0 when β3

is undetermined (which will be found momentarily) or β2 �= 0

and β3 = ±√
�2( λ2

13
2g1−δ1

− λ2
23

2g2−δ2
)−

1
2 for points inside the cir-

cle β2
2 + β2

3 = 1. Moreover, plugging β2 = 0 into Eq. (16)
gives α2 = 0, indicating that the right-arm radiation is in the
trivial phase, while the behavior of the left-arm radiation is
yet undetermined. However, for the latter set of solutions,
one can straightforwardly calculate the Hessian matrix and
conclude that for these solutions the behavior of the system is
not stable. Disregarding these solutions, we substitute β2 = 0
into Eq. (15) and plug the result, along with the fact that
α2 = 0, into Eq. (14), giving

hL
G = − λ2

13

2g1 − δ1
β4

3 +
(

�3 + λ2
13

2g1 − δ1

)
β2

3 + �1, (18)

which upon minimization leads to the equation

dhL
G

dβ3
= − 4λ2

13

2g1 − δ1
β3

3 + 2

(
�3 + λ2

13

2g1 − δ1

)
β3 = 0 (19)

for the determination of β3. The solution to Eq. (19) is

β3 = 0 or β3 = ±
( x − xc

1 − 2xc

) 1
2

, (20)

where x = g1/δ1 and xc = 1/2[1 − λ2
13/(�3δ1)] � 1/2. The

system’s trivial optical phase corresponds to β3 = 0, for
which α1 = α2 = β2 = 0 [see Eqs. (15) and (16)]. The trivial
optical phase, as seen from Eq. (18), has an energy of �1,
a physically reasonable result. On the other hand, β3 �= 0
conditionally gives rise to the left-arm superradiant optical
phase. It is worth noting that the nontrivial solution for β3

never diverges because λ13 cannot vanish for the system un-
der consideration. Moreover, the assumption that β3 is a real
number restricts the values of x(= g1/δ1) to the inequality
xc � x < 1/2. From the second derivative of Eq. (18), it is
readily concluded that if the aforementioned inequality is not
satisfied, the trivial solution is stable, while the superradiant
one becomes unstable and vice versa. Using the nontrivial
solution for the left-arm superradiant phase, i.e., α2 = β2 = 0
and β3 as in Eq. (20), in Eq. (16), one finds

α1 = ∓
√

�3/δ1

1 − 2x

[
(1 − 2x) + (x − xc)

1 − 2xc
(x − xc)

] 1
2

, (21)

which is also real since the condition xc � x < 1/2 has been
assumed to hold. For completeness and use in the next sec-
tion the nontrivial solution for β3 [see Eq. (20)] is substituted
into Eq. (18) to obtain the left-arm superradiant total energy
per atom as

(
hL

G

)
S
= �1 − �3

(1 − 2xc)(1 − 2x)
(x − xc)2. (22)

It is also worth noting that if �3 (= �13 − �p1/2) = 0, one
has α1 = α2 = β2 = 0, while β3 �= 0 [see Eq. (20)], which
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corresponds to the left-arm dark state, also with an energy
�1. Note that the condition �3 = 0 can be achieved through
the adjustment of the first pump-field frequency. From the
definition of xc [see the text after Eq. (20)], we conclude that it
approaches −∞ when �3 = 0, for which the condition x > xc

always holds. In this limit, (βL
3 )D → ±1/

√
2, meaning that in

the left-arm dark state the population is half in level |1〉 and
half in level |3〉. As a final point, we state that the dark phase
is not stable unless �3 vanishes. In the latter case the trivial
and dark phases become degenerate.

B. Right-arm superradiance phase

Since a transition of the type |1〉 � |2〉 is forbidden in the
model under consideration, it is expected that the right-arm
superradiant phase is possible only when β2

2 + β2
3 = 1, indi-

cating that all atoms are distributed among states |2〉 and |3〉.
Using the constraint β2

2 + β2
3 = 1 in Eq. (15) gives α1 = 0.

Then from Eq. (14), along with Eq. (16), the right-arm energy
per atom is

hR
G = −λ2

23

2g2 − δ2
β4

3 +
(

�3 − �2 + λ2
23

2g2 − δ2

)
β2

3 + �2 + �1.

(23)

Again, we differentiate Eq. (23) with respect to β3 and equate
the result to zero, giving either β3 = 0 or

(
βR

3

)
S
= ±

[
(1 − y − yc)

√
�2 + (y − yc)

√
�3(√

�2 + √
�3

)
(1 − 2yc)

] 1
2

, (24)

where y = g2/δ2 and yc is defined as

yc = 1

2

[
1 − λ2

23

δ2(
√

�2 + √
�3)2

]
. (25)

Here again, (βR
3 )s is a finite parameter since yc < 1/2 unless

λ23 = 0, which is impossible. As in the case of left-arm super-
radiance, the positiveness of the second derivative of Eq. (23)
is guaranteed if and only if yc < y < 1/2 is satisfied. Needless
to say, the latter condition also guarantees the reality of (βR

3 )s.
To further specify the characteristics of the right-arm super-
radiant phase, (βR

3 )s in Eq. (24), along with the constraint, is
used in Eq. (16), leading to

(
αR

2

)
S
= ∓ [(1 − y − yc)

√
�3 + (y − yc)

√
�2]1/2

(1 − 2y)[(1 − 2y)δ2]1/2

× [(1 − y − yc)
√

�2 + (y − yc)
√

�3]1/2, (26)

which, in turn, gives the number of photons in the second
radiation mode. The right-arm superradiant phase drastically
differs from the left-arm superradiant phase since some of
the atoms still occupy the middle level. In fact, when the
expression for (βR

3 )s is used in the constraint β2
2 + β2

3 = 1,
the result is

(
βR

2

)
S
= ±

[
(1 − y − yc)

√
�3 + (y − yc)

√
�2

(
√

�3 + √
�2)(1 − 2yc)

]1/2

. (27)

If Eq. (24) is substituted into Eq. (23), one obtains

(
hR

G

)
S
= �1 + �2 − [(1 − y − yc)

√
�2 + (y − yc)

√
�3]2

(1 − 2y)(1 − 2yc)
(28)

for the ground-state energy per atom of the right-arm su-
perradiant phase. Moreover, when β3 = 0 is plugged into
β2

2 + β2
3 = 1, one finds β2 = ±1, which indicates that all

atoms occupy the middle level. Plugging the value for β3 in
Eqs. (15) and (16), α1 = 0 and α2 = 0 result. These four val-
ues correspond to the so-called dark state of the system. In the
right-arm dark state, the total energy per atom is readily seen
from Eq. (23) to be (hR

G)D = �1 + �2. Having described the
four possible optical phases that may occur in the system of �

atoms interacting with two photonic modes, two fundamental
questions still remain. First, one has to determine which one
of the four phases possesses the least energy since the system
falls in the corresponding phase when equilibrium is achieved.
Second, the nature of such a phase transition also needs to be
specified. The next section is thus devoted to a discussion of
these two points.

IV. OPTICAL PHASES: STABILITY AND NATURE
OF TRANSITIONS

So far, the conditions under which the second derivative
of the energy per atom for both the left-arm and right-arm
cases [Eqs. (18) and (23), respectively] is positive have been
demonstrated. Now we have to determine which of the four
ground-state energies per atom, corresponding to the possible
optical phases, forms the absolute minimum. Since the en-
ergies of trivial and dark-state phases are constant, in what
follows, our attention is focused on examining the two su-
perradiant phases. To this end, we equate the corresponding
ground-state energies of the two modes, Eqs. (22) and (28),
and solve for y in terms of x, y = y(x). Recalling the discus-
sion presented in the previous section, the graph y = y(x),
along with x = xc and yc = y(xc), specifies the borders of
the regions inside which different phases occur. Although the
expression for y = y(x) is readily available, it is so involved
that we cannot present its form here. Putting all these together,
one can generate the phase diagram in Fig. 2, where the
regions corresponding to the left-arm [blue (dark gray) area]
and right-arm [red (light gray) area] superradiant phases and
the trivial phase (white area) are vividly specified. It should be
pointed out that each region in Fig. 2 specifies the conditions
for which the corresponding energy forms an absolute min-
imum. We remind ourselves of the important point that the
blue (dark gray) region as well as the white one can happen
only for points inside the bordering circle, β2

2 + β2
3 = 1. For

points on the border line only the red (light gray) region
appears. Moreover, it is noted that in Fig. 2, no region for
the dark states appears. This point comes about from the fact
that dark-state energies (hL(R)

G )D are larger than that of the
trivial-phase energy, unless the detunings vanish. In that case
the dark states become degenerate with the trivial phase and
fall into the white area. For conciseness, we just state from
Fig. 2 that with an appropriate choices of x = g1(Ep1)/δ1 and
y = g2(Ep2)/δ2, through the amplitude of the pump fields, one
can force the system to fall into any of the optical phases.

Another interesting point drawn from Fig. 2 is the fact
that in the present system a so-called triple (tricritical) point
does exist. This corresponds to the intersection of xc, yc,
and y(x), indicating that all the optical phases coexist at this
point. For completeness, in Fig. 2 we use the solid curve and
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FIG. 2. The system’s phase diagram for parameters �2
�3

= 0.5,
δ1
�3

= 0.25, δ2
�3

= 0.5, yc = 0.125, and xc = 0.25. Here, the solid
curve shows a first-order phase transition, while the dot-dashed line
indicates a second-order phase transition.

dashed-dotted line for first-order (discrete) and second-order
(continuous) phase transitions, respectively. A full discussion
of the nature of such transitions follows momentarily.

The first clue about the nature of optical phase transitions
comes from a glance at Fig. 3, where β2

3 versus x and y
[extracted from Eqs. (20) and (24)] is depicted. Again, Fig. 3
is generated for points inside or on the border of the circle. The
main reason for choosing β2

3 , which measures the population

FIG. 3. Population of the atomic |3〉 state (∼β2
3 ) versus x =

g1/δ1 and y = g2/δ2. The system parameters used here are the same
as those in Fig. 2.

of state |3〉, is the fact that left-arm (or right-arm) radiation in
our system mostly depends upon this population. Observation
of the color spectrum (especially the color bar) clearly reveals
that the transition from the left-arm superradiant phase (or
the trivial one) to right-arm superradiation is discontinuous
and of first order. On the other hand, the transition from the
trivial phase to the left-arm superradiant one is continuous
and of second order. The consistency of Figs. 2 and 3 must
be emphasized. From the meaning of β2

3 and the observation
of Fig. 3, it is also concluded that for x ≈ 0.5 and any y, β2

3
is very large, indicating that the left-arm radiation intensity is
also very large. The right-arm superradiance is most intense
for y near 0.5 regardless of x.

To extract more information about the characteristics of the
system’s superradiant phases, left-arm and right-arm photon
numbers, proportional to (α1)2 and (α2)2, respectively, are
illustrated in Figs. 4(a) and 4(b). The independent variables
in these two parts are g1[= g1(Ep1)] and g2[= g2(Ep2)], re-
spectively. As the insets indicate, the curves are generated
for values of the other pump field under or above the cor-
responding critical points. For comparison, in both parts the
counterpart photon number is also depicted by red solid lines
for g2 = 0.15δ2 in Fig. 4(a) and g1 = 0.35δ1 in Fig. 4(b).
Figure 4(a) clearly exhibits a phase transition from the trivial
phase to left-arm superradiant one continuously, in complete
agreement with our earlier conclusion on the subject. More-
over, as the first pump strength passes the corresponding
critical points, (α1)2 drastically increases. Since such values
of g1 simultaneously throw most atoms in the |3〉 state (see
Fig. 4), one can achieve an extraordinary superradiant phase.
Conclusions of this sort can also be drawn from Fig. 4(b)
to generate the right-arm characteristics, again showing the
possibility of achieving an extraordinary superradiant phase.
The only difference is the nature of the phase transition in this
case is discontinuous. Moreover, a comparison of the behavior
of (α2)2 (red solid curve) with that of (α1)2 in Fig. 4(a)
reveals an important result: By controlling the pump fields,
one can switch from the right-arm superradiant phase to the
left-arm superradiant phase and vice versa. As a concrete
example, Fig. 4(a) shows that for g1 less than ≈0.34δ1 only
the right-arm superradiant phase occurs, while when g1 passes
this value, solely the left-arm field becomes activated.

V. CONCLUSION

The present work concerns a detailed examination of the
optical phases that occur in a large collection of three-level
nondegenerate �-type atoms, interacting with two quantized
fields, inside a perfect cavity. The quantum cavity is filled
with a second-order optically nonlinear medium, which is
activated by two classical pump fields. It was, moreover, as-
sumed that each quantum field interacts with either the left
arm or right arm of the �-type atoms. To proceed, we calcu-
lated the system’s ground-state energy, thereby showing that
the Z2 symmetry inherited by the system only conditionally
holds. We further determined the critical values, controllable
by the pump fields, for which the Z2 symmetry ceases to
hold. An examination of these values then revealed that four
distinct optical phases can exist in such a system. These four
possible optical phases are trivial, dark, left-arm, and right-
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FIG. 4. Behavior of (a) the left-arm and (b) right-arm photonic number versus g1(Ep1) and g2(Ep2), respectively. The system parameters
are the same as those used in the previous figures.

arm superradiant phases. Along these lines, moreover, the
characteristics of each optical phase were also deduced and
discussed. Moreover, a full discussion of the stability of the
four optical phases when the conditions for their occurrence
are satisfied was presented. To this end, we demonstrated that
when they occur, the dark phase is not stable, while the trivial
one indeed is [see also the discussion following Eqs. (22)
and (28) and Fig. 2]. On the other hand, when the pump fields
are set in such a way that either the left-arm or right-arm
superradiant mode is triggered, the resulting phase becomes
stable (see the discussion surrounding Fig. 3). Another point
of interest that we demonstrated in the present work is the
manner by which one can cause the transition between the
left-arm and right-arm superradiant modes at will simply by
adjusting the amplitudes of the pumping agents. Last but not
least, an important result of our investigation is the specifica-
tion of the nature of the transition between the aforementioned
optical phases. As we have fully discussed, the transition from

the trivial phase to the left-arm superradiant phase is contin-
uous and of second order. On the other hand, the transition
from the left-arm superradiant phase (or trivial phase) to the
right-arm one is discrete and first order in nature (see Figs. 3
and 4).

In view of the above points, the material presented in this
article sheds light on the nature and characteristics of optical
phases occurring in the system of three-level � atoms and two
quantized fields. The finer points of the present article may
indeed pave the way to the development of means to effec-
tively control the optical phases and thus a novel switching
mechanism.
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