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Dissipative Kerr solitons arising from parametric gain in ring microresonators are usually described within a
classical mean-field framework. Here, we develop a quantum-mechanical model of dissipative Kerr solitons in
terms of the Lindblad master equation and study the model via the truncated Wigner method, which accounts
for quantum effects to leading order. We show that, within this open quantum system framework, the soliton
experiences a finite coherence time due to quantum fluctuations originating from losses. Reading the results
in terms of the theory of open quantum systems allows us to estimate the Liouvillian spectrum of the system.
It is characterized by a set of eigenvalues with a finite imaginary part and a vanishing real part in the limit of
vanishing quantum fluctuations. This feature shows that dissipative Kerr solitons are a specific class of dissipative
time crystals.
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I. INTRODUCTION

Kerr frequency combs (KFCs) [1–6] are optical frequency
combs generated by driving high-Q Kerr nonlinear opti-
cal microresonators with a single-frequency continuous-wave
laser [7,8]. By driving sufficiently above a power threshold
determined by the Kerr nonlinearity and under appropriate
conditions for the dispersion of the microresonator optical
modes, the parametric process generates a comb of evenly
spaced peaks in the frequency spectrum [9,10]. Since the
first demonstration of KFCs [7], they have been observed
countless times in a variety of platforms, materials, and spec-
tral ranges, including silica microtoroid resonators [11,12],
crystalline microresonators [13], silicon nitride waveguide
resonators [14–18], diamond [19], aluminum nitride [20,21],
lithium niobate [22,23], and silicon [24].

KFCs emerge from multiple parametric resonant four-wave
mixing processes. On the one hand, they result from a double-
balance process, in which the nonlinear frequency shifts are
balanced by the mode-frequency dispersion in the microres-
onator. On the other hand, the cavity losses are balanced by
the gain induced by the continuous-wave driving field.

For sufficiently strong drive, the frequency spacing in the
comb can be as small as the free spectral range of the mi-
croresonator. In this case, a bright pulse circulating within
the resonator, called the dissipative Kerr soliton (DKS), is
formed [1,10,25–29]. DKSs are time-periodic solutions of an
otherwise time-independent open quantum system dynamics
[6,30,31]. A notable feature of DKSs is that they are dy-
namically stable within a classical-field approach: their wave
form retains its shape indefinitely, making DKSs a promis-
ing resource for precision measurements [6,8], time keeping
[32,33], frequency metrology [34–37], pulse shaping [15],
communication engineering [38–40], high-resolution spec-
troscopy [41–48], and quantum information processing [49].
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The rapid development of miniaturized integrated systems
for KFCs and DKSs, operating at low power where quantum
effects are expected to be relevant, calls for a detailed study of
the influence of quantum fluctuations on the spectral and dy-
namical properties of DKSs in the low-power regime. While
the quantum properties of KFCs have been extensively inves-
tigated [2,49–55], only recently have the quantum-mechanical
properties of the DKS regime been experimentally addressed
[56]. In addition, both in the case of KFCs operated below
the parametric oscillation threshold and for DKSs, quantum
effects have been modeled under the assumption of linearized
quantum fluctuations, resulting in Gaussian quantum fields
[2,49–57].

Here, we describe the quantum dynamics of DKSs using
a Lindblad master equation and investigate their properties
via the truncated Wigner approximation [58–63]—an approx-
imation to model driven-dissipative quantum systems in terms
of stochastic Langevin trajectories sampled from the Wigner
quasiprobability distribution. The truncated Wigner approxi-
mation reliably describes small quantum fluctuations, which
are due to the presence of nonlinearity and to the influence
of the environment. These quantum fluctuations introduce
mainly spatiotemporal dephasing of the DKS among different
Langevin trajectories, as shown by our numerical simulations.
When we model the density operator of the system, which
describes the system properties averaged over the statistical
ensemble of Langevin trajectories, for any finite value of the
input power, the DKS does not persist indefinitely, but rather
decays over time on average. We call the timescale over which
the soliton decays on average the soliton coherence time.
At times longer than the soliton coherence time, the aver-
age dynamics is described by a nonequilibrium steady state
that restores the time-invariant symmetry of the system. We
demonstrate that the soliton coherence time varies as a power
law of the strength of the nonlinearity, and the semiclassical,
dynamically stable DKS emerges from the average dynamics
in the limit of vanishing nonlinearity and infinite driving-field
amplitude.
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These results allow us to describe the DKS as an open
quantum system. The theory of open quantum systems shows
that, for any finite driving field and nonlinearity, the system
must reach a translationally invariant steady state [64–66].
The decay of the DKS on average is a manifestation of the
approach to this steady state. We demonstrate that the soliton
coherence time corresponds to the so-called Liouvillian gap,
i.e., the slowest timescale in the system.

Following the definition of Ref. [67], we can interpret the
emergence of a DKS as a specific manifestation of a dissi-
pative time crystal (DTC).1 DTCs [67,70–89] are a peculiar
phase of a driven-dissipative quantum system in which the
time-translational symmetry of the equation of motion is bro-
ken and nonstationary long-lived states spontaneously occur
[90]. In recent years, intense research has been devoted to in-
vestigating the conditions under which dissipation can prevent
a quantum many-body system from reaching a stationary state
[84,85,90,91]. This has led to numerous proposals of quantum
systems supporting a DTC phase [67,73,76,84,92–99]. DTCs
admit a natural explanation in terms of the eigenvalues of the
Liouvillian superoperator, which generates the time evolution
of the density matrix of an open quantum system [67,100].
In a DTC, multiple eigenvalues of the Liouvillian exist with
vanishing real and finite imaginary parts [64,101,102], giving
rise to a nonstationary dynamics with diverging relaxation
time towards a steady state. The present result thus establishes
a link between the long-lived DKS and the DTC phenomenon.
More specifically, the Liouvillian is characterized by a set of
eigenvalues whose imaginary parts are integer multiples of
the frequency defining the free spectral range of the microres-
onator and whose real part goes to zero in the thermodynamic
limit of an infinite photon number and vanishing nonlinearity.

This work is organized as follows. In Sec. II, we survey the
theoretical framework used for the quantum analysis of DKSs.
In Sec. III, we discuss the result obtained for the dynamics of
the system: in particular, we compute the Liouvillian gap for
decreasing drive power and depict a schematic representation
of the spectrum of the Liouvillian. The main findings and
conclusions of this work are drawn in Sec. IV.

II. THEORETICAL FRAMEWORK

A. The open quantum system model and Liouvillian gap

We consider a driven high-Q continuous optical ring mi-
croresonator, whose schematic is shown in Fig. 1. The system
Hamiltonian, in a frame rotating at the driving frequency,

1In this work, DTC stands for dissipative time crystal and not for
discrete time crystal [68]. In the context of open quantum systems,
time crystals have been defined in several slightly different ways.
Here, we follow the definition of DTCs given in Ref. [67], where
DTCs are a critical phenomenon, emerging in the thermodynamic
limit, where an otherwise time-translational invariant system devel-
ops everlasting oscillations. In discrete time crystals, on the other
hand, the discrete time-translation symmetry is broken in a period-
ically driven system. A recent experimental demonstration of the
realization of a discrete time crystal in a simple, all-optical setup
constituted one resonator [69].

FIG. 1. Schematic representation of the generation of a Kerr
optical frequency comb using a high-Q Kerr optical ring microres-
onator. A continuous-wave source drives the ring, which induces the
propagation of a soliton (depicted in red) along the ring. The output
signal shows the optical frequency comb. When all the resonator
modes participate in the parametric process, the nonlinear dynamics
give rise to a DKS.

reads (h̄ = 1)

Ĥ =
∑

l

σl â
†
l âl + κ

2
F (â†

0 + â0)

+ g

2

∑
m,n,p,q

δm+p,n+qâ†
nâ†

qâmâp, (1)

where âl (â†
l ) is the annihilation (creation) operator of the lth

angular momentum mode (i.e., the discrete set of whispering
gallery modes), satisfying the commutation relation [â j, â†

k] =
δ jk . Only the lowest-energy mode of the microresonator (l =
0) is driven by an external continuous-wave laser of amplitude
F . The Kerr interaction strength can be obtained from a micro-
scopic model as g = h̄ω2

0cn2/(n2
0AeffL) [57,103,104], where c

is the speed of light in vacuum, n0 is the refractive index of
the medium at the fundamental resonator frequency ω0, n2

is the Kerr parameter, Aeff is the effective mode area, and L
is the resonator length. Note that miniaturizing the resonator
means decreasing the effective mode volume (Veff = AeffL)
and hence increasing the Kerr interaction strength g. We set
σl = σ0 + ω0 − ωl , where σ0 = ωp − ω0 is the detuning be-
tween the driving frequency ωp and the fundamental resonator
frequency ω0 and ωl is the dispersion relation (which in this
work is assumed to be parabolic, ωl ∝ l2; see also Fig. 2).

In order to account for the finite lifetime of the photons in-
side the microresonator, we describe the dynamics of the open
system in terms of its reduced density matrix ρ̂. Assuming a
weakly interacting and memoryless environment (i.e., Born
and Markov approximations), ρ̂ solves the Lindblad quantum
master equation [58,105]:

d ρ̂

dt
= Lρ̂ = −i[Ĥ, ρ̂] + κ

∑
l

D[âl ]ρ̂. (2)

Here, D[âl ]ρ̂ = âl ρ̂â†
l − 1/2(â†

l âl ρ̂ + ρ̂â†
l âl ) is the dissipator

in Lindblad form accounting for the loss of photons from a
mode l into the environment, and κ is the dissipation rate
(which we assume is uniform). L is the Liouvillian superop-
erator, and its spectrum, defined by the equation Lρ̂ j = λ j ρ̂ j ,
encodes the full dynamics of an open quantum system. In most
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FIG. 2. Integrated dispersion relation Dint (l ) versus relative
mode number l . The red markers show the 101 spectral modes that
are considered in the numerical simulations. The parameters are
given in the text and correspond to typical experimental situations
[18].

physically relevant cases, the Liouvillian superoperator L has
a unique zero eigenvalue, which defines the nonequilibrium
steady state d ρ̂ss/dt = 0 [65,66]. All other eigenvalues of the
Liouvillian have a negative real part, determining the irre-
versible dissipative dynamics towards the steady state. The
eigenvalue λ j , whose real part is the smallest nonzero in
modulus, defines the Liouvillian gap �. � corresponds to
the inverse of the longest relaxation timescale of the system.
Critical phenomena, such as dissipative phase transitions and
the emergence of DTCs, are associated with a closure of
the Liouvillian gap, i.e., � → 0. A complete account of the
spectral theory of Liouvillians can be found in, e.g., Ref. [66].

B. Classical-field approach to solitons

To numerically simulate the optical ring microresonator,
we will consider a finite number of modes Nm around the
l = 0 driven mode. Except when otherwise specified, we
will set Nm = 101 (i.e., we consider only the modes l =
[−50,−49, . . . , 50]). We verified that the results shown here-
after are affected in only one part in 105 on the total population
as a result of this truncation in the number of modes. Despite
this simplification, the numerically exact solution of the mas-
ter equation (2), in the regime of large occupation considered
here, would be computationally unfeasible.

DKSs in the weakly nonlinear regime are usually modeled
in terms of the classical Gross-Pitaevskii (GP) equation, in
which the classical-field amplitudes of the resonator modes
αl = 〈âl〉 obey the equation

αl (t + dt ) = αl (t ) + i
{(

σl + i
κ

2

)
αl (t )

+ g
∑
m,n,p

δn+l,m+pαm(t )ᾱn(t )αp(t )−κ

2
Fδl,0

}
dt,

(3)

where ᾱn indicates the complex conjugate of the field αn. The
GP equation leads directly to the Lugiato-Lefever equation
[106,107] describing the real-space dynamics of the soliton.2

Note that Eq. (3) is invariant under the scaling relation

α̃l = αl/
√

Ñ, g̃ = gÑ, F̃ = F/
√

Ñ, (4)

where we introduced the dimensionless scaling parameter Ñ .
The GP solution for the rescaled field α̃l depends on only
the product F̃ 2g̃ = F 2g. In what follows, all results are ob-
tained by setting F̃ 2g̃ = 1, which corresponds to a case well
above the threshold for soliton formation (see discussion in
Sec. III A).

C. The truncated Wigner approximation

Theoretical studies of DKSs beyond the GP approximation
have been mostly carried out by assuming linearized quantum
fluctuations around the GP solution, i.e., Gaussian quantum
fields [2,49–57]. Quantum-mechanical properties of the ring
resonator can be better described with methods based on
quasiprobability distributions [58,59], such as the truncated
Wigner approximation (TWA). Indeed, in cases where the
quantum effects are a small (but non-negligible) correction
to the classical limit of very large photon occupation, these
methods account also for non-Gaussian quantum fluctuations,
which become relevant when increasing g. Below, we recall
the main ideas behind the TWA; for a more detailed deriva-
tion, we refer the interested reader to Refs. [58–63].

For a single mode of the electromagnetic field, the Wigner
quasiprobability distribution function W (α) of a given quan-
tum state expresses the quasiprobability distribution function
in the phase space spanned by Q and P, with α = (Q +
iP)/

√
2. The quantities Q and P are the (real) eigenval-

ues of the electromagnetic field quadratures q̂ and p̂, with
â = (q̂ + i p̂)/

√
2. For Nm modes, the Wigner function W (�α)

is easily generalized in terms of Nm complex fields �α =
{α−Nm/2, . . . , αNm/2}. The density matrix can be expressed in
terms of the Wigner function as [109]

W (�α) =
(

2

π

)Nm

Tr

[
Nm/2∏

l=−Nm/2

D̂(αl )e
iπ â†

l âl D̂(−αl )ρ̂

]
, (5)

where D̂(αl ) = exp(αl â
†
l − α∗

l âl ) is the displacement opera-
tor. W (�α) is a quasiprobability because it is real valued, but
it can take negative values. The Lindblad master equation for
the density matrix of a quantum optical system characterized
by a Kerr nonlinearity maps onto a third-order differential
equation for W (�α) in the variables �α. The exact solution of
this equation is as cumbersome as the solution of the corre-
sponding master equation. However, when in the presence of
a small Kerr nonlinearity g and for sufficiently well-behaved
functions, the third-order terms can be neglected, resulting

2Usually, the GP (Lugiato-Lefever) equations are written as a set of
coupled ordinary differential equations. Here, we represent them as a
set of differential forms in order to be consistent with Eq. (6), which
contains the stochastic term χl,μ(t ). Otherwise, its definition would
require us to introduce stochastic integration. We refer the interested
reader to Ref. [108].
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in the TWA [60,62]. The TWA correctly describes quantum
fluctuations up to the lowest (i.e., second) order in h̄ with
respect to the mean-field equation, holding in the limit of very
large photon occupation [63].

The advantage of the TWA is that it defines a Fokker-
Planck equation for the complex fields �α. By choosing an
appropriate initial distribution, the Fokker-Planck equation for
W (�α) can be cast into a set of Langevin equations for the cor-
responding stochastic processes in the complex fields αl,μ(t ).
Each instance of the stochastic process thus results in a
Langevin trajectory, and the average solutions of the Fokker-
Planck and master equations are obtained from averaging over
the statistical ensemble of possible trajectories. In the case of
the DKS model considered here, the Langevin equations read

αl,μ(t + dt ) = αl,μ(t ) + i
{(

σl + i
κ

2
− g

)
αl,μ(t )

+ g
∑
m,n,p

δn+l,m+pαm,μ(t )ᾱn,μ(t )αp,μ(t )

−κ

2
Fδl,0

}
dt +

√
κdt/2χl,μ(t ). (6)

Here, the index μ runs on distinct Langevin trajectories,
and the term χl,μ(t ) is a complex Gaussian stochastic vari-
able defining each specific trajectory and is characterized
by correlation functions 〈χl (t )χl (t ′)〉 = 0 and 〈χl (t )χ̄l ′ (t ′)〉 =
dt δl,l ′δ(t − t ′). The noise terms χl,μ(t ) therefore account for
the quantum fluctuations induced by photon losses.

Within the TWA, it is possible to obtain the expectation
value of the symmetrized product of operators in terms of an
average over the sampled Langevin trajectories, according to
the formula

Tr[ρ̂(t ){(â†
j )

n, (âk )m}sym] = 〈[ᾱ j (t )]n[αk (t )]m〉stoch, (7)

where we use the notation for the stochastic average
〈α j (t )〉stoch = [

∑Ntraj

μ=1 α j,μ(t )]/Ntraj. In other words, the expec-
tation value of any observable is obtained by sampling a
sufficiently large number Ntraj of Langevin trajectories, thus
recovering the results of the Fokker-Planck equation associ-
ated with the TWA. In the following, the convergence of the
results with respect to the number of considered trajectories
Ntraj used for the averaging is carefully checked.

From the solutions of the Langevin equations, the number
of photons in each mode l of the microresonator is expressed
by

Nl (t ) = 〈|αl (t )|2〉stoch − 1
2 , (8)

and the photon density at position θ is obtained as

Nθ (t ) = 〈|ψμ(θ, t )|2〉stoch − Nm

4π
, (9)

where

ψμ(θ, t ) = 1√
2π

∑
l

eiθ lαl,μ(t ). (10)

Notice that Eqs. (8) and (9) clearly illustrate how quantum
fluctuations are approximately described by the TWA. In par-
ticular, Eq. (8) shows that the classical field modeled by the
Langevin equation contains quantum fluctuations correspond-
ing to half a photon per mode. Similarly, Eq. (9) suggests

that the Langevin field a discrete element of real space �θ ,
defined by the momentum cutoff introduced by truncating
to m modes, contains quantum fluctuations corresponding to
Nm/4π photons.

In contrast to the GP equation, Eq. (6) is not invariant under
the rescaling introduced in Eq. (4). Indeed, applying the same
rescaling to Eq. (6), one obtains

α̃l,μ(t + dt ) = α̃l,μ(t ) + i
{(

σl + i
κ

2
− g̃

Ñ

)
α̃l,μ(t )

+ g̃
∑
m,n,p

δn+l,m+pα̃m,μ(t ) ¯̃αn,μ(t )α̃p,μ(t )

−κ

2
F̃δl,0

}
dt +

√
κ dt/(2Ñ )χl,μ(t ), (11)

which explicitly depends on Ñ .
For coherent states, the scaling parameter Ñ is proportional

to the ratio between the field intensity and the fluctuations
of the field quadratures and therefore can be interpreted as
a measure of the classicality of the optical system. Small
values of Ñ describe a regime with sizable quantum effects,
where quantum fluctuations are of the same order as the field
intensity. As Ñ increases, fluctuations become smaller com-
pared to the field intensity, and quantum effects become less
relevant. This interpretation of the quantity Ñ holds also in the
TWA, which describes quantum states beyond the coherent-
state approximation. Indeed, for large values of Ñ , Eq. (11)
approaches the GP equation (3). Our goal is to investigate how
the quantum effects influence the dynamics of a DKS by com-
paring the solution of Eq. (11) obtained for different values of
Ñ while keeping all the other parameters unchanged. Notice
that, in light of the scaling relations in Eq. (4), this procedure
corresponds to solving the Lindblad master equation (2) for
different values of the nonlinearity g and the pump amplitude
F in such a way that the product F 2g remains constant.

III. RESULTS

A. Regime of parameters

A microring resonator is characterized by its radius R (and
length L = 2πR), cross section Aeff , quality factor Q, reso-
nant central frequency f0 = ω0/2π , refractive index n0, the
Kerr parameter n2, and the group velocity dispersion β2. The
system is driven by a laser with frequency ωp.

From these quantities, the loss rate κ and the nonlinearity
g in the Lindblad master equation (2) can be determined,
respectively, as [57,103,104]

κ = ω0

Q
, (12)

g = h̄ω2
0cn2

n2
0AeffL

, (13)

where c is the speed of light. Close to the driving-
field frequency (i.e., ω0 
 ωp), the mode dispersion of the
microresonator is approximated using a second-order polyno-
mial,

ωl = ω0 + D1l + 1
2 D2l2, (14)

where D1 = c/(n0R) is the mean free spectral range and
D2 = −(c/n0)D2

1β2. A positive value of D2 characterizes the
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FIG. 3. (a) Time evolution of the total number of photons in the
ring for different values of Ñ . (b) Total number of photons in the ring
and intracavity power versus the scaling parameter Ñ . The values
are taken at τ ∗ = 60, where the photon number reached a stationary
distribution.

anomalous dispersion regime, which is needed for the forma-
tion of DKSs [18]. The integrated dispersion relation Dint (l )
relative to the driving mode at l = 0 is defined by (see Fig. 2)

Dint (l ) ≡ ωl − (ω0 + D1l ). (15)

The driving parameter F is related to the power of the external
driving field through the relation Pext = h̄ωpκF 2/(4η), where
η is the coupling efficiency (we assume critical coupling, i.e.,
η = 1/2).

Typical parameters for a silicon nitride (Si3N4) ring res-
onator encapsulated in silica [18,110], with R = 100 μm,
are Aeff = 0.73 × 2.5 × 10−12 m2 [110]; Q = 1.5 × 106 [18];
f0 = ω0/2π = 193.5 THz [111], corresponding to a wave-
length λ = 1.55 μm in the telecom range; n0 = 1.99;
and n2 = 2.4 × 10−19 m2/W [112]. Consequently, follow-
ing Eqs. (12) and (13), κ/2π = 1.3 × 108 Hz, and g/2π =
0.39 Hz = 0.49 × 10−9κ .

Necessary conditions on the driving-field detuning and
intensity must be fulfilled in order to observe a DKS in
the solution of the GP equation. In particular, we set the
driving-field frequency to ωp/2π = 193.47 THz, i.e., a detun-

FIG. 4. Snapshot of the mode occupation at τ ∗ for (a) Ñ = 1,
(b) 10−2, (c) 10−4, (d) 2.5 × 10−5, and (e) 6.3 × 10−6. The red
dashed lines show the GPE prediction for the mode occupation.
Parameter values are σ0 = −1.024κ , D1 = 1.8587 × 103κ , D2 =
2.02 × 10−2κ , g/2π = 0.49 × 10−9κ , and F = 1.8 × 104.

ing σ0/2π = −0.132 GHz [18]. The driving-field amplitude
F must be larger than a minimum threshold value Fthr

[26,57,107]. Expressing the minimum threshold condition
in terms of the parameters of the present model results in
F 2

thrg/κ = F̃ 2
thrg̃/κ = 1/2. Given the values of κ and g in-

troduced above, the minimum threshold is F̃thr = 0.9 × 104.
Here, to ensure the appearance of the DKS within the GP
equation [107], we set in all the analysis that follows F =
1.8 × 104, i.e., twice the minimum threshold, corresponding
to a laser power Pext = 1.7 × 10−2 W (similar to that used in
Ref. [18]). This value and the value chosen for g therefore
correspond to the typical regime of current experiments, like
those in Refs. [18,110], where quantum fluctuations are very
small relative to the classical field. We arbitrarily set Ñ = 1
for this choice of F and g. In what follows, we will study
the results of the TWA for values of Ñ ranging between
Ñ = 6.3 × 10−6 and Ñ = 1. Values of Ñ < 1 describe cases
with larger nonlinearity g̃ and smaller driving-field amplitude
F̃ than the values of F and g quoted above, for which quantum
effects are larger. Finally, we define the dimensionless time
parameter τ = κt/2.

B. Dynamics of the soliton

We study the time evolution of DKSs by numerically solv-
ing Eq. (11) for the rescaled fields α̃l obtained using the TWA
approach. Equation (11) gives rise to a stochastic trajectory
in the space of the fields α̃l , determined by the specific real-
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τ

Ñ

FIG. 5. Snapshot of the field density in real space at (a), (e), (i), and (m) τ = 0.5 × 104κ/2T ≈ 8.5, (b), (f), (j), and (n) τ = 1.5 ×
104κ/2T ≈ 25.4, (c), (g), (k), and (o) τ = 2.5 × 104κ/2T ≈ 42.3, and (d), (h), (l), and (p) τ = 3.5 × 104κ/2T ≈ 59.2, for (a)–(d) Ñ = 10−2,
(e)–(h) 10−4, (i)–(l) 2.5 × 10−5, and (m)–(p) 6.3 × 10−6. The density is plotted as a function of the coordinates x = R cos(θ ) and y = R sin(θ ),
with R being the radius of the ring resonator. The soliton is depicted at a time multiple of T = 2π/D1 ≈ 4.2 × 10−12 s; the rotation period of
the soliton is along the ring. For this choice of time, the peak of the soliton always occupies the same position in the ring, allowing an easier
comparison between the different plots.

ization of the noise term χl,μ(t ). All results in what follows
are obtained by averaging over several trajectories arising
from different realizations of χl,μ(t ). As initial conditions,
we assume each mode is in a coherent state corresponding
to the solution α̃GPE

l of the GP equation, which in turn is
obtained by numerically integrating Eq. (3) at long times.
This choice has the advantage of avoiding the integration of a
possibly long transient before the actual formation of a soliton
within a single trajectory. In the TWA formalism, this choice
of initial condition implies that the initial condition α̃l (t = 0)
in Eq. (11) must be sampled from a Gaussian distribution of
variance 1/(2Ñ ) and average α̃GPE

l .
More precisely, we set

α̃l,μ(t = 0) = α̃GPE
l + 1√

2Ñ
ηl,μ, (16)

where ηl,μ is a complex random variable of zero mean, veri-
fying 〈ηl,μηl,μ′ 〉 = 0 and 〈η̄l,μηl,μ′ 〉 = δμ,μ′ .

Figure 3(a) displays the total number of photons in the ring
Ntot vs time for varying Ñ . The small initial transient is due to
the difference between the solution of the GP equation, which
was used as the initial condition, and the actual TWA solution.
In what follows, in the analysis of the spectral features of the
DKS, data will be taken in the vicinity of τ ∗ = 60, a time
sufficiently long for the rapidly decaying transient effects to
play no role. In Fig. 3(b) the dependence of Ntot (τ ∗) on Ñ is
shown to be linear, Ntot ∼ Ñ . Thus, the intracavity power PI =
h̄ωpD1Ntot/(2π ) (which is proportional to the total number
of photons in the microring) also depends linearly on Ñ . We
conclude that a small photon occupation and low intracavity
power are reached only for small Ñ .

In Fig. 4, the photon number in the lth mode Nl (τ ∗) [see
Eq. (8)] is displayed for different values of Ñ . For the largest
value of Ñ , the output field is in agreement with the predic-

tion of the GP equation, while smaller values of Ñ gradually
display increasing features of quantum fluctuations.

In Fig. 5 the photon density along the ring n(θ, τ ) =
Nθ (τ )/(2π ), with Nθ being the number of photons in position
θ [see Eq. (9)], is displayed at increasing times τ (left to
right) and for increasing Ñ (bottom to top).3 For Ñ = 1 in
Figs. 5(a)–5(d), the soliton displays a constant profile within
the considered time window. However, for smaller Ñ , i.e.,
increasing the relevance of quantum fluctuations, the soliton
profile changes in time, in particular by showing a decreasing
contrast of the intensity profile along the ring. For the smallest
value Ñ = 6.3 × 10−6 [Figs. 5(m)–5(p)], the photon density
quickly approaches a uniform distribution over the ring. We
conclude that the soliton is gradually smeared out over time
by quantum fluctuations, and smaller values of Ñ correspond
to faster disappearance of the soliton.

Single Langevin trajectories, from which TWA results are
drawn, give insight into the process leading to the disappear-
ance of the soliton in Fig. 5 as a result of quantum fluctuations.
A trajectory represents, in the limit of small nonlinearities,
the possible outcome of an experiment with homodyne mea-
surement of the output field [113]. In Fig. 6, we plot three
trajectories at different values of Ñ and at two different times.
For Ñ = 10−2 a sharp soliton peak in the photon density per-
sists at both short and long times. The position and height of
the peak slightly vary with the sampled noise realization, but
this difference is negligible with respect to the GP solution. At
the intermediate value Ñ = 10−4, a similar behavior appears
only at shorter times, while at longer times the trajectories
differ significantly. For the smallest value Ñ = 4.4 × 10−5

3Notice that this definition ensures that Ntot (τ ) = ∑
l Nl (τ ) =∫

dθ n(θ, τ ).
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FIG. 6. Occupation density in real space for (a) and (d) Ñ =
10−2, (b) and (e) 10−4, and (c) and (f) 4.4 × 10−5 at (a)–(c) τ = 6 and
(d)–(f) τ = 15. Solid lines are averages over 104 trajectories, while
three single trajectories are plotted as crosses, stars, and diamonds.

considered, we observe a faster loss of coherence between
different trajectories. Since the effect increases when the non-
linearity is larger, we conclude that fluctuations, which are
responsible for only a small dephasing among different tra-
jectories at short time, accumulate as time passes, leading
to a loss of spatial and temporal coherence, resulting in the
smearing out of the DKS once an average is taken (see Fig. 5).

From the point of view of open quantum systems, the
density matrix ρ̂(t ), evolving under the Lindblad master equa-
tion in Eq. (2), describes the average time evolution of the
microring resonator. Under quite general hypotheses, an open
quantum system admits a unique steady state ρ̂ss, towards
which the system density matrix will converge. In this sense,
a system which at t = 0 displays a soliton will eventually
converge to such a steady state. We can thus interpret the loss
of soliton coherence in Fig. 5 as the decay towards the steady
state and call the timescale on which this process occurs the
soliton coherence time. Thus, to quantify the soliton coherence
time, we compute the Liouvillian gap � (i.e., the slowest
decay rate). Indeed, the DKS is the longest-lived process of
Eq. (2), and thus, � is the inverse of soliton coherence time
(see Sec. II A). To extract �, we consider the time evolution
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FIG. 7. (a) Liouvillian gap � versus Ñ . The error bars of the fit
(in red) show the standard error (the 95% confidence interval) of each
point. The power-law fit of the Liouvillian gap for Ñ � 6.3 × 10−4

is shown by the solid line. The coefficients of the fit are �/κ =
Ña × b, with a = −0.99 ± 0.01 and b = (6.3 ± 0.3) × 10−7. Inset:
the Liouvillian gap versus the total number of photons inside the ring
microresonator at long times (see Fig. 3). The dashed line represents
a power-law fit.

of the contrast of the soliton defined by

C(τ ) = maxθ [n(θ, τ )]∫ 2π

0 n(θ, τ )dθ/2π
. (17)

For a flat intensity profile along the ring, the value of C(τ )
approaches 1. We estimate � by assuming an exponential
behavior vs time, C(τ ) 
 1 + A exp(−�τ ), and fitting the
numerical results.

In Fig. 7, the Liouvillian gap is plotted as a function of Ñ .
For large Ñ the Liouvillian gap follows a power law � ∼ Ña,
with a < 0, indicating that the gap closes in the classical limit
Ñ → ∞. A similar power law emerges in the dependence
of � on Ntot (inset of Fig. Fig. 7). Here, � ∼ Nη

tot, with
η = −0.97 ± 0.01. This analysis indicates the range of values
of the input power for which a finite soliton coherence time
may be observed.

Summing up, the loss of coherence at the single-trajectory
level appears mainly as a change in the soliton position with
respect to the GP solution.4 And since this effect emerges
only in Langevin trajectories (stemming from the TWA) and
not in the GP equation, the loss of coherence is due to
quantum (i.e., beyond semiclassical) fluctuations. Quantum
fluctuations have two contributions: One comes from the non-
commutative nature of the Hamiltonian terms, and the other
comes from the system’s interaction with the environment,
which induces dissipation. The truncated Wigner approxi-
mation takes them both into account (up to order h̄). The
two additional terms accounting for these fluctuations can

4While, at the single-trajectory level, the processes of variation
in amplitude and spatiotemporal position are dominant, for even
smaller Ñ and/or larger times, other phenomena like the appearance
of multiple peaks are observed.
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FIG. 8. Schematic representation of the spectrum of the Liouvil-
lian. The spectrum always has one zero eigenvalue, corresponding to
the steady state (red cross). A set of eigenvalues with a vanishing real
part and equally spaced imaginary parts emerges in the classical limit
of large Ñ (blue circles). The Liouvillian gap is the distance between
the complex eigenvalues with the largest real part and the imaginary
axis.

be obtained by comparing Eq. (6) with Eq. (3): a term pro-
portional to g (producing a deterministic effect with respect
to the GP equation) and the noise term χl,μ (which induces
random changes at a single trajectory and thus mixedness in
the density matrix). It is the combined effects of these two
terms which leads to the soliton finite coherence time.

C. DKS as a dissipative time crystal

The occurrence of a time-crystalline phase in a dissipative
system is signaled by the emergence of several eigenvalues of
the Liouvillian, whose real part tends to zero in the thermody-
namic limit and whose imaginary part is a multiple of a finite
frequency, as schematically shown in Fig. 8.

We extract the imaginary part of the Liouvillian eigenval-
ues with the largest real part by studying the Fourier spectrum
of the KFC,

Sϕ (ω) =
∣∣∣∣
√

2π

NT T

∫ t0+NT T

t0

dteiωtϕ(θ = 0, t ) × Ñ

∣∣∣∣
2

, (18)

where ϕ(θ, t ) = Tr[ρ̂(t ) × 1/
√

2π
∑

l eiθ l âl ] and T =
2π/D1 is the rotation period of the soliton along the ring. The
parameters t0 = 20κ−1 and NT = 2 × 104 are set to ensure
that the dynamics is dominated by the eigenvalues with the
largest real part. Notice that, for these parameters, Sϕ (ω) does
not depend significantly on the position θ at which the field ϕ

is considered.
The computed power spectra are plotted in Fig. 9. From

the spectra, we extract the frequency spacing �soliton = D1 =
1.86 × 103κ , which coincides with the classical prediction,
indicating that quantum fluctuations affect mainly the coher-
ence time of the soliton while having negligible effects on the
period of its motion along the ring. For the smallest value of
Ñ = 6.3 × 10−6, where � 
 3 × 10−2κ , the ratio �/�soliton

is of the order of 10−4. These results indicate that the peculiar
structure of the frequency comb (i.e., the presence of equally
spaced, narrow spectral lines) is preserved even in the regime
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FIG. 9. Fourier spectrum obtained by considering 51 modes for
(a) Ñ = 1, (b) Ñ = 4 × 10−4, (c) Ñ = 10−4, (d) Ñ = 2.5 × 10−5,
and (e) Ñ = 1.1 × 10−5. The gray region shows the 95% standard
deviation. The red dashed lines represent the envelope of the Fourier
spectrum obtained from the GPE.

where quantum effects produce a significant departure from
the predictions of the classical GP equation.

IV. CONCLUSIONS

We have carried out a theoretical study of DKSs in
microring resonators in terms of the truncated Wigner ap-
proximation, which describes quantum fluctuations to leading
order in h̄ and is therefore well suited for the description
of regimes of large photon occupation as in current experi-
ments. We have shown that quantum effects are responsible
for a finite coherence time of the soliton, which in the long-
time limit leaves room for an average solution with the
field uniformly distributed along the ring. The timescale of
the soliton decay towards the steady-state solution depends
on the relative size of quantum fluctuations and decreases
when quantum fluctuations become larger. A scaling anal-
ysis of the TWA equations indicates that a regime with
large quantum effects may be achieved by decreasing the
driving-field intensity while correspondingly increasing the
strength of the Kerr nonlinearity. The analysis provides clear
indications about whether this behavior can be observed in
experiments.

We have additionally shown that the timescale associated
with the soliton disappearance is determined by the inverse
Liouvillian spectral gap. More precisely, by studying the
power spectrum of the DKS, we have inferred the complex
eigenvalues of the Liouvillian superoperator which governs

053530-8



QUANTUM DYNAMICS OF DISSIPATIVE KERR SOLITONS PHYSICAL REVIEW A 105, 053530 (2022)

the dynamics of the DKS as an open quantum system.
We have shown that the eigenvalues with the largest real
part—besides the zero-eigenvalue associated with the spa-
tially uniform steady state—are arranged to have a constant
(negative) real part, defining the Liouvillian gap, and evenly
spaced imaginary parts, corresponding to the Kerr frequency
comb. This arrangement emerges asymptotically in the limit
of large input power, and the Liouvillian gap vanishes as a
power law of the total photon occupation in the microring
modes. We have therefore shown that DKSs are a specific
manifestation of a dissipative time crystal—a general phe-
nomenon which can arise in open quantum systems and has

been extensively studied in recent times. Establishing the link
between DKSs and dissipative time crystals is an important
step in the study and characterization of spontaneous time-
translational symmetry breaking in quantum systems out of
equilibrium.
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