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Nonlinear interference between solitons and nonstationary dispersive
waves in a passively mode-locked fiber laser
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We numerically investigated the interaction of a soliton with nonstationary dispersive waves as well as the
soliton interaction induced by them, in a fiber ring laser mode locked by a nonlinear polarization rotation
technique. In low-loss mode-locked states, a resonant frequency shifting effect and two time-jittering motions
of solitons are found during the interaction. An analysis reveals that an indirect phase-matching interference
between a pulsed dispersive wave and a soliton upon cross-phase modulation breaks the conservation of soliton
momentum, while the subsequent soliton reconstruction leads to a recovery of the conservation. The interference
mechanism, together with the conservation of soliton momentum, accounts for some basic behaviors of soliton
laser dynamics.
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I. INTRODUCTION

The soliton, as a localized field or matter without diffusion,
is a fascinating object or phenomenon in nonlinear science. It
is widely found in many branches of physics: hydrodynamics,
plasma physics, optics, and condensed-matter physics (Bose-
Einstein condensation) [1]. In optics, fiber laser systems offer
a platform to generate a rich source of temporal optical
solitons, generally as pulsed solutions in integrable sys-
tems modeled by the nonlinear Schrödinger equation (NSE),
nonintegrable ones by the complex Ginzburg-Landau equa-
tion (CGLE), and those modeled by mixed equations of
them [2]. Optical solitons were found to broadly exist in
various mode-locked fiber structures from a balance between
nonlinearity and dispersion together with a long-time stability
over lumped gain and loss in silicon based fibers. Organized or
disorganized multipulse forms, such as the soliton molecule,
soliton bunch, soliton gas, liquid, crystal, and even their com-
plexes, triggered by various mode-locking techniques, are
forming a multisoliton family [3–6]. Naturally, the internal
soliton interaction, an indication of the essence of multisoliton
dynamics, has long been studied in experiment and theory
due to its scientific significance and applications in optical
communication. A wealth of pulse dynamical behaviors have
been found in fiber lasers based on phase-sensitive nonlinear-
ity, dissipative nature, and cavity dynamics [2,7–9]. Especially
with the advent of time-resolved spectral technology (the
time-stretched dispersive Fourier-transform method [10,11]),
many dynamical issues associated with soliton structures
have regained attention recently [8,9,12–15]. Thus, an in-
depth understanding of soliton microdynamics is required to
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facilitate sophisticated ultrafast all-optical information pro-
cessing [6,16–18].

So far, the soliton interaction has been known to in-
clude a direct interaction through collision, a short-range
interaction with an exponential decaying strength [2], and a
long-range interaction mediated through a dispersive wave
(DW) [19–21]. The last case was theoretically focused by
analyzing the DW formation and structure under lumped am-
plification [22–28]. Another well-known soliton interaction
is the fiber optoacoustic interaction or the electrostrictional
effect [24,29–32], which exerts weak forces (10−9 order vari-
ation of refractive index) among conventional (Kerr) solitons
caused by localized transverse acoustic pulses and incurs a
soliton bunching when its repetition rate induces acoustic res-
onance [24,30,32]. Recently, it was found that the continuum
noise background modulated by gain depletion induces weak
attractive forces between soliton pairs in a form of Brownian
motion [33,34] and the global noise-mediated interaction was
considered to be complementary to the repulsive force in-
duced by DWs [27,33] to form tight soliton bunches. Among
them, the interaction between a soliton and moving DWs or
continuous wave (CW) components is more fundamental in
terms of its universality in fiber lasers, of concern in this
paper. Sometimes, CWs, DWs, linear waves, and nonsoli-
ton waves are not distinguished in the literature. From now
on, we restrict the term “CW” to an injected one from an
extracavity source or an intracavity background CW; DW
means the resonant nonsoliton component of a solitary wave
which makes up the sidebands, a special CW. As such, the
concept of a soliton in this context will include a copropa-
gating DW that sticks together, the core of which without the
DW will be called an eigensoliton, or simply a conventional
(Kerr) soliton. A soliton can then be said to be stationary or
nonstationary according to its pedestal (or DW) type. Early
investigations showed that a weak CW-soliton interaction
can perturb the soliton in the parameters of position, phase,
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frequency (group velocity), and amplitude [22,35,36] and that
a strong one may obviously advance or delay the soliton by
pulsed CWs [37,38] or periodically compress it by a CW
background [39]. The global intracavity CW-soliton interac-
tion commonly occurs in a low-loss cavity and contributes
to passive harmonic mode locking (HML) or a pulse pattern
formation [9,21,40] by the repulsive effect between solitons
within a small frequency difference [41]. Actually, an inten-
tional injection of an outside coherent source can be used to
control internal soliton trains [42]. Also, in a higher-order
dispersion environment (in photonic crystal fibers) around
a zero dispersion point, the CW mediated interaction may
cause a frequency shifted reflection by cross-phase modula-
tion (XPM) [43,44], Cherenkov or resonant radiation [45,46],
and four-wave mixing (FWM) [47,48], which nevertheless
is weak for low-power ps solitons in standard commercial
fibers. For the same reason of smallness, the Raman-induced
self-frequency shift [2] can be neglected. It has been known
that the generation of DWs is inevitable in a periodic pulse
circulation and that they present as a long standing-wave-like
structure, a series of Gordon-Kelly sidebands [22,49,50] in the
spectral domain. In spite of a limited fluctuation from lumped
gain and loss, the attached DW is in phase with the host and
is periodically steady as a quasistationary DW, which can be
simply called a stationary DW. An analytic stationary DW
model demonstrates an exponentially decaying tail centered at
the soliton with a Lorentzian shape spectrum [27]. In another
case, the nonstationary DW is a free DW or an overloaded
dispersive soliton wing (pedestal, the Gordon-Kelly sidebands
in the spectrum) [28], which oscillates intensely and sheds off
a part of itself under modulation. Thus, a soliton can affect
nearby solitons by overlapping or shedding nonstationary sub-
DWs, as a DW mediated soliton interaction (DWMSI) [21],
similar to the interaction of fermions by intermediate bosons
in the context of particle physics. The DWMSI is vital for
the HML by providing repulsive forces together with the
CW-soliton interaction [21,24,40], and for the soliton bunch-
ing [28,51,52]. In the nonstationary case, an emitted and
isolated DW should be described by the CGLE under gain
and loss modulation (including the saturation mechanism) to
present an exact DW-soliton interaction, which is inacces-
sible by some analytic perturbation methods for stationary
interactions [22–26]. Comparatively, in a transmission system
governed by the NSE, the frequency shift will approach zero
after an interaction predicted by a simple perturbation the-
ory [20,36] and even by an exact model with a superposition
of CW and soliton [37,38]. However, in a dissipative cavity,
the frequency shift is no longer zero due to some instant
nonperiodic behaviors like gain, loss, and polarization. Re-
ferring to some simulations through a lumped cubic CGLE,
the frequency shift induced by an injected CW [53] or by
an intracavity CW [41] was found to exist, which cannot be
predicted by any analytic method. This reminds us to return to
the numerical method to obtain a reliable conclusion.

In application, Komarov and coworkers realized the con-
trol of attraction and repulsion on a conventional four-soliton
bundle by injection of a CW in a numerical experiment.
Though a real experiment is complicated with an induced
parasite CW component [54,55], the DW-soliton interaction
and DWMSI give us a chance to manipulate solitons to form

information bit streams or to program an output power flux.
Impressively, a recent work from He et al. realized a precise
manipulation of soliton supramolecular structures in a tem-
poral optomechanical lattice inside a fiber ring laser [17,18],
where DWs and injected addressing CWs were utilized to
compress or dissociate soliton pairs by unbalancing the at-
traction from an optoacoustic interaction. This provides a
promising platform for optically simulating many-body sys-
tems and shows a foreseeable prospect in optical information
storage and manipulation. A modulation of cavity loss and
an injection of addressing CWs in this scheme will cause
varied DW or CW components. It then draws an attraction to
the nonstationary DWs and the induced DWMSI due to their
role in structure control and stability. In theory, the XPM and
FWM are generally successful in explaining some two-wave
interactions [2] but do not penetrate deep into some soliton
cases. Kuznetsov et al. made use of the “nonlinear interfer-
ence” to roughly describe the perturbation of DWs to a soliton
in the fiber communication case [35]. In fact, the sidebands
can be understood by interference between soliton and DW
with a phase-matching condition [27,50,56]. The interference
concept was also used by others [23,53], which, nevertheless,
was not strictly defined. Komarov et al. found that the reso-
nant interference between an injected CW and soliton wings
accounts for the soliton drifting in the phase-locking case [53].
However, it is different in the DW-soliton case. In short, the
related nonstationary DW-soliton interacting process requires
a full optics interpretation and needs to be elaborated further.

In this paper, we simulate soliton generation in a fiber laser
to investigate the frequency perturbation to polarized solitons
by DWs in detail, based on a passively mode-locked all-
optical fiber ring laser by use of nonlinear polarization rotation
(NPR). The dynamics of nonstationary DW-soliton interaction
and DWMSI are presented. Starting from the CGLEs with
a simplified but real transfer matrix of the NPR, presented
in Sec. II, two hypothetical pulse collisions are simulated
between an incident DW and a single soliton, followed by
a DWMSI of two solitons with self-interaction of solitons,
shown in Sec. III, where the (nonlinear) interference mecha-
nism can explain the breakdown of the conservation of soliton
momentum and then uncover the frequency shifting effect.
The interference is further discussed in Sec. IV and the Ap-
pendices and is found to be due to phase-modulated waves
from XPM and self-phase modulation (SPM) as expected,
which cause perturbations to soliton parameters.

II. NUMERICAL MODEL

The DW-soliton interaction and DWMSI can be simulated
in a gain fiber by the known CGLE [2]:
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where A1,2 indicate the envelopes of the pulse components
along the slow and the fast axis in fiber, the variable τ

represents the relative time, and z denotes the propagating
distance. In Eqs. (1), the parameters α, 2σ , β2, γ , g, and �g

are, respectively, the absorption coefficient of fiber, inverse
group velocity difference between the two polarization modes,
group velocity dispersion, cubic refractive nonlinearity, gain
coefficient, and gain bandwidth. In a standard single-mode
fiber (SMF), Eqs. (1) degenerate into NSEs with g = 0. In
addition, some terms connected with higher-order dispersion
and FWM are neglected owing to little impact.

An NPR device is commonly composed of one
polarization-dependent isolator (PD-ISO) sandwiched by
two polarization controllers (PCs), which is a popular
mode-locking technique harnessing the nonlinear phase
shift [57–59]. Each PC can be simplified as a combination of
λ/4 + λ/2 plates. So, the first PC (PC1) is associated with
two rotating angles φ1, φ2, while the second one (PC2) with
φ3, φ4 and the PD-ISO with φ0, where all angles are taken
with respect to the slow axis of the fiber. According to the
Jones matrix method, the NPR can be expressed as a transfer
matrix that decides on a total transmittance depending on
these angles of PCs. So we have the formulations

P1 = R(φ2)H (π/2)R(−φ2)R(φ1)H (π/4)R(−φ1), (2a)

P2 = R(φ4)H (π/2)R(−φ4)R(φ3)H (π/4)R(−φ3), (2b)

P3 =
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with the definitions
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where P1,2 represent the transfer matrices of PC1 and PC2,
respectively, and P3 is a transfer matrix of the PD-ISO with
the maximum transmittance T0. The transfer matrix is then
J = P1P3P2 containing a phase transmission H (ϕ), where
ϕ = ϕ1 + ϕ2, and ϕ1,2 denote half of the linear phase shift and
the nonlinear one induced by birefringence and nonlinearity,
respectively. A nonzero eigenvector of the total Jones matrix
Jtol = JH (ϕ) indicates a stable polarization state. However, it
generally yields a complicated expression due to a pulse de-
pendence on ϕ2. A further restriction by φ1 = 2φ2, φ3 = π/4
is adopted to optimize the transfer matrix. A squared modular
of the nonzero eigenvalue of the total matrix Jtol gives rise to
a transmittance of the NPR, i.e.,

TN = 1
2 T0{1 − cos(2φ) sin[2(ϕ + θ )]}. (4)

In this way, the transfer matrix reduces to

J = 1

2
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[
e−iθ (ieiφ − e−iφ ) eiθ (ieiφ + e−iφ )
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(5)

where φ = 2φ2 − φ0, θ = 2φ4 − φ0 are two composite angles
standing for the modulation depth and the feedback position
of the NPR or initial phase, respectively. Above formulations
also make the polarization eigenstate dependent only to φ.
Thus, the single parameter θ in simulation can be used to ana-
lyze the mode-locking mechanism without an influence from
the polarization variation. It is enough for this configuration to

FIG. 1. Schematic of an all-fiber ring laser mode locked by the
NPR technique with a TDF (running at 2 μm), pumped by a laser
diode at 793 nm.

perform a simulation suitable for some practical cases. If not,
φ1 and φ3 can be redefined according to a given experimental
condition. In each round trip, the NPR will transform the field
periodically as

A(z = 0) = JA(z = L), (6)

where L is the cavity length and A = (A1, A2)T. The NPR is
set at z = L and the gain begins at z = 0.

A passively mode-locked fiber ring cavity is sketched in
Fig. 1, composed of a Tm-doped fiber (TDF) pumped by a
laser diode through a combiner, a long SMF, an NPR system,
and a 10% output coupler (OC). In the following compu-
tation, the related parameters are set as α = 0.01(dB), g �
g0 = 2.0 m−1, �g = 30 nm, T0 = 0.9 at the center wavelength
(2 μm), β2 = −8.0 × 10−2 ps2 m−1 for both the SMF (100 m)
and the TDF (8 m) with a mutual beat length LB = 10 m, γ =
3.0 × 10−3 (W s)−1 for the SMF, and 4.5 × 10−3 (W s)−1 for
the TDF. Furthermore, the inverse group velocity difference
is neglected to reduce the soliton drifting. We further relax
the gain depletion within the pulse duration and make it an
average value, which precludes the gain-induced group ve-
locity variation. The neglected gain depletion causes a weak
interaction and renders some interesting dynamical processes
but in a longer range (ns level), beyond that of DWMSI [60],
so does not affect the issue that we are concerned with here.
The gain in TDF then is evaluated as

g(z) = g0

[
1 + 1

Esat

∫ ∞

−∞

(|A1|2 + |A2|2
)
dτ ′

]−1

, (7)

where Esat is the saturation energy. For a better illustration,
a small Gaussian pulse is initially set at 250 ps in the time
window to set off a solitary pulse at a given time. Two typical
NPR states upon transmittance are considered here to deliver a
strong mode locking at θ = 0.7π and a weak one at θ = 0.6π ,
respectively. Their transmittance rates versus the nonlinear
phase shift ϕ2 are drawn in Fig. 2(a), where the vertical lines
roughly denote two working points in the reverse saturable ab-
sorption regime at which a soliton can consistently exist. The
generation of a soliton is numerically validated and illustrated
in Fig. 2(b) by a match of its pulse profile with a typical sech2

shape, for θ = 0.7π and Esat = 2.0 pJ, where the stationary
DW is at a lower order of magnitude. In fact, over a cer-
tain pumping threshold, single solitons quickly form in both
the mode-locking states, as presented in Figs. 2(c) and 2(d),
respectively. The demonstrated solitons, just before a pas-
sage over the OC, have a duration of 2.29 ps (�1.76τ0) for
the full width at half maximum (FWHM) and present many
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FIG. 2. (a) Two transmittance rates of NPR at θ = 0.7π and 0.6π for the strong and the weak mode locking, respectively, (b) with a
simulated soliton profile by a fitting of sech2, followed by (c) soliton evolution for the strong mode locking and (d) that for the weak one
switched from the former, where the insets are the corresponding spectra.

characteristic Gordon-Kelly sidebands, which slightly depend
on the angle θ . To display details of the DWs, the intensity
distribution is illustrated at the logarithmic scale, which will
be adopted in the followed figures. Figure 2(c) shows that the
DW lives as two steady wings spread symmetrically around
the soliton, which can be called stationary DWs, but it still
quickly grows inside the TDF and slowly sheds from the
soliton along the SMF, due to the lumped gain and loss. Next,
upon a steady pulse circulating, the angle is tuned to θ = 0.6π

at the 40th round trip to transfer to the weakly mode-locking
state [see Fig. 2(d)]. It is found that the switch to the weakly
mode-locking state can disturb the soliton to emit a pair of
subpulses symmetrically in two directions and to activate a
temporary nonstationary DW. Subsequently, some small DWs
consecutively shed from the soliton as well before a new
stationary DW forms. The enhanced Gordon-Kelly sidebands
in the inset of Fig. 2(d) mean an overloaded pedestal, the
reservoir of free DWs [28]. It should be noted that the emitted
DW components share the same frequencies (mostly) with the
first sidebands, which connect their group velocities by

� = 2πν = −δvg/
(
β2v

2
g

)
, (8)

where δvg is a shift of the group velocity vg, and � with the
frequency ν is the relative circular frequency with respect to

that of the initial soliton. Equation (8) can also be used to
determine the frequency shift of a soliton by calculating δvg.
Other frequency components in DWs involving higher-order
sidebands are too weak, so are not mentioned here. All the
mode-locking states used for the simulations below are be-
tween θ = 0.7π and 0.6π .

III. SIMULATIONS AND RESULTS

A. DW-soliton collision: Frequency shift

Now, it is known to us that a soliton with enough energy
can shed DWs, which encounter and interact with other soli-
tons since they have different velocities, according to Eq. (8).
To thoroughly examine this kind of DW-soliton interaction,
two hypothetical collisions of an incident DW and a soli-
ton are simulated and presented in Fig. 3, where Figs. 3(a)
and 3(b) exhibit the collision processes attached with sampled
spectra in the redshifting and the blueshifting cases, respec-
tively, and the curves in Figs. 3(c) and 3(d) characterize the
frequency shifting effect. The incident DW here, simplified as
a free Gaussian pulse, is 60 ps long with a central wavelength
of ≈2001.82 nm, corresponding to the first red Gordon-Kelly
sideband, and is initially laid 125 ps ahead from the soliton.
The duration of the Gaussian pulse is taken to be similar to
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FIG. 3. DW-soliton interaction processes in (a) a redshifting and (b) a blueshifting case with corresponding spectra at the round trips of 2,
18, and 50, appended by related frequency shifts in (c) collisions [panels (a) and (b)] and in (d) a wavelength and an intensity tuning process
for the redshifting case.

that of the emitted DWs in Fig. 2(d) and its intensity (0.5 W)
is chosen to be much greater than that of the pedestal but
far less than the peak power of the soliton when colliding. It
simulates a strong DW generation from a change of cavity en-
vironment, like an angle switch in NPR. The single soliton has
the same parameters as before and the cavity is injected with
the DW at the time when the soliton is circulating steadily.
Simultaneously, the angle θ is switched to 0.65π from 0.7π

for the soliton to collect energy and develop its wings. As
expected, the phase difference decides on the frequency shift,
so two optimal initial phases −π/3 and π/2 are assigned to
the DWs in Figs. 3(a) and 3(b), respectively, for a maximum
impact on the soliton. It is found that the interaction causes a
larger (ν ≈ −9.4 GHz) redshift and a smaller (ν ≈ 6.5 GHz)
blueshift on the soliton, inferring an attractive interaction and
a repulsive one, respectively. The momentum or the mean
(circular) frequency of a pulse can be estimated by

� = 1

2 iE

∑
k=1,2

∫ ∞

−∞

(
Ak

∂A∗
k

∂τ
− A∗

k

∂Ak

∂τ

)
dτ

=−1

E

∑
k=1,2

∫ ∞

−∞
Im

[
A∗

k

∂Ak

∂τ

]
dτ, (9)

where E is the soliton energy, almost a constant. Evidently,
the momentum of the soliton is conserved before injecting
the DW. The collision dynamics of the interaction can be
decomposed into two scenarios, i.e., an interferencelike pro-
cess between the soliton and the DW, or simply interference
that is used below, and a process of reconstructing itself upon
approximate conservation of momentum. Since the variation
of the soliton is small and the leaving DW is quite weak after
the collision, we can assume an approximate conservation of
soliton momentum after collision. Theoretically, the nonin-
tegrable CGLE does not strictly but approximately obey the
conservation of momentum. The lumped CGLE can be well
replaced by a distributed one in a gain saturation case [61,62].
Then, an initial solitary wave that abides by the distributed
CGLE has asymptotic conservation of momentum in fiber,
analyzed by a method of moments [63]. So, Eq. (9) can be
considered approximately invariant for solitary pulses scaled
by the round trip period, as can be expressed by

∂ �

∂N
� 0 (10)

over the round trip number N at least after a collision. The
frequency shifts in Fig. 3(c) are evaluated from Eq. (9), which
can also be computed by Eq. (8) through the apparent group
velocity changes, extracted from the soliton loci in Figs. 3(a)
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and 3(b). The shadow in Fig. 3(c) denotes the collision region
spanning nearly ten round trips and the curve “drifting DW”
is a noncollisional case obtained by laying the DW behind the
soliton. Owing to an unsaturated loss of NPR, the depletion of
a drifting DW will bring a rapid frequency reduction, which,
as a reference value, is used to subtract the varied frequency
component of the injected DW for the acquisition of the fre-
quency shift of the interacting soliton, as is done in Fig. 3(c).
That is why the two frequency shifts in Fig. 3(c) remain nearly
constant after the collision, where the slight decrease can be
attributed to a subtraction error and the gain dispersion which
will weaken the frequency shifting effect.

Looking back at the figures, it can be found at the height of
the collision (round trip 18) that the long-wavelength side of
the spectrum is enhanced by the constructive interference in
Fig. 3(a) and is depressed by the destructive one in Fig. 3(b),
in the first scenario. Thus, a deformed soliton reshapes itself
to a redshifted (� < 0) or a blueshifted (� > 0) one during
its recovering process due to the conservation of momentum,
as a second scenario. An incident DW with a frequency corre-
sponding to the blue sideband results in similar interference
effects (omitted here). Since the intensity of the stationary
DW is ten times less than that of the incident one, the in-
ternal interference between the two DWs is hardly worthy of
consideration, unlike the interference to the eigensoliton. A
separating method can be utilized to approximately extract
the eigensoliton by a sech2 fitting if it is needed [64]. Fur-
thermore, if an eigensoliton is deformed during an interaction,
the concept of the emergent eigensoliton or emergent soliton
proposed by Gordon can be introduced for qualitative analy-
ses [22]. The eigensoliton will be applied below for further
discussions, even though it is not well defined here.

To further seek out the cavity dependence of frequency
shift, we repeat the DW-soliton collision process in the red-
shifting case at different wavelengths according to Fig. 3(a).
First, the wavelength of the incident DW is sampled from
2001.23 to 2002.63 nm with an interval of 0.1 nm to cover the
first sideband, and then the initial phase difference for each
wavelength is optimized via a series of numerical collision
experiments. The calculated frequency variations are depicted
as squared points in Fig. 3(d). In this wavelength tuning case,
there is a clear dip pointing to the first sideband with a band-
width of 0.4 nm, inferring a strong interference selectivity.
Second, it is found that the frequency shift increases linearly
with the peak intensity of the incident DW below 0.4 W and
saturates above, arriving at a maximum interference, drawn
in Fig. 3(d) as circle points. The blueshifting case possesses
a similar resonant process and a saturation property, but with
comparatively small frequency shifts as that in Fig. 3(c). The
saturation property of a blueshifting case can be understood by
the exhaustion of the soliton spectrum at the first red sideband
due to the destructive interference. However, the saturation of
the redshifting case in Fig. 3(d) becomes complicated since
the soliton, to achieve a certain shift, requires more extended
spectra at other wavelengths, which is possible beyond what
the enhanced sideband and the background in the cavity can
provide in the limited overlapping time. In addition, the same
numerical experiment has been carried out as well in an empty
fiber cavity, into which a soliton and a 125-ps delayed DW
at the red sideband are injected. Without any gain and loss,

there is no resonance as expected, and the maximum (abso-
lute) frequency shift is found not greater than 4 GHz with a
large enough peak intensity (0.5 W) of the injected DW. The
comparison infers a phase-dependent resonant interference
and enhancement at the sidebands, like that in the CW-soliton
case [53]. Soliton reconstruction, in fact, occurs in the whole
course of the interaction within the overlapping time, so is not
an independent scenario.

B. Soliton reconstruction: Momentum conservation

For the second scenario, the process of momentum con-
versation, it is necessary to show that it originates in the
essential property of solitons, not in the DWs. To separate the
second scenario from the first one (interference), it is better
to artificially freeze or delay the recovery processes of the
soliton when an interference goes on, which can be realized
by performing a kind of spectral tailoring to solitons. In this
way, a spectral shaping function TG can be simply chosen by
the following wavelength (λ) dependent transmittance:

TG(λ) = 1 + b exp

[
− (λ − λ0)2

(�λ)2

]
, (11)

where −1 � b < 0 represents a narrowband Gaussian fil-
ter with an FWHM bandwidth of 2

√
ln 2�λ � 1.665�λ;

whereas b > 0 indicates a Gaussian-type amplifier. λ0 is set
as 2001.97 nm, deviated a little from that (≈2001.75 nm) of
the first sideband, which is so arranged to change less the
spectrum of the eigensoliton. For a better illustration, we set
�λ = 0.2 nm, close to the bandwidth of the first sidebands
(≈0.3 nm), and choose b = −1 and 2 to implement a nearly
100% filtering and a triple spectral amplification, respectively.
The filtering and the amplifying are performed behind the
TDF. When a soliton is steadily circulating in the cavity, TG

in the two cases is then applied to the soliton only once at a
fixed round trip. The spectral tailoring, though strong, only
causes a weak disturbance to the soliton because only 3.2
and 6.3% of energy are lost and absorbed in the two cases,
respectively. Application of the filter or the amplifier to the
soliton is equivalent to a kind of transient interference with-
out interaction, which directly leads to a small discontinuous
frequency change.

It should be verified whether these jumped frequencies are
retained in the recovery processes to respect the principle of
momentum conservation. Figure 4(a) shows the narrowband
Gaussian filter and amplifier at the two wavelengths of the
first Gordon-Kelly sidebands, and Fig. 4(b) demonstrates the
results in four spectral tailoring cases. After the spectral
filtering, it can be seen that the frequency shifts due to the
spectral losses mostly remain during two subsequent soliton
recovery processes. However, the jumped frequencies slowly
decline symmetrically for the redshift and the blueshift in
the amplifier cases. This is because the excess amplification
presents redundant DWs. In Fig. 4(b), the frequency shifts
in the amplifier cases denoted by some balls are calculated
via Eq. (8) by locating the peak of the eigensoliton or emer-
gent soliton in each round trip to get δ(1/vg), which just
reflects the frequency shifting effect only for the eigensoli-
ton. This implies the excess frequency jumps are from the
stationary DW (soliton wings). It can be found that the eigen-
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FIG. 4. (a) Transmittances of two Gaussian filters and two ampli-
fiers with the original soliton spectrum and (b) the frequency shifts
in the course of soliton recovery, started at the tenth round trip after
a sudden spectral tailoring, where the scattered points are calculated
by Eq. (8) in the amplifier cases (denoted by ∗).

soliton quickly reconstructs itself within five round trips and
basically keeps its momentum after this “transient interfer-
ence,” whereas the soliton wings slowly transition and adjust
over ten round trips. In the spectrum domain, when the soliton
finishes its reconstruction, its new sideband pairs appear at
new positions, which share the same mean momentum or
frequency as those of the new soliton. In contrast, most parts
of the old sidebands or overloaded DWs, abandoned by the
new soliton, decay away and at the same time lose momentum
apparently.

To see the details, the dynamic processes of the soliton are
shown in Fig. 5. The negative chirp places the red and the
blue sideband at the left and the right wing of the soliton,
respectively, and the spectral tailoring works only on one side
of the soliton pedestal, as seen from the figures. So, in the
amplifier cases in Figs. 5(c) and 5(d), a large part of the
enhanced sidebands is useless for the soliton; nevertheless,
in the filter cases in Figs. 5(a) and 5(b), the residual soliton
wings after cutting are much reduced and lead to a momentum
loss. The above discussion reminds us to treat the eigensoliton
and its accompanying DW separately. In spite of periodical
pulsation, the eigensoliton is approximately nondissipative

and close to the conventional soliton, so is almost conservative
if not disturbed. The DWs as cavity resonant fields can survive
long where the eigensoliton resides, the only place in which
such a low loss can develop. Thus, they are highly dissipa-
tive and importantly nonconservative. As such, an effective
interference that induces the frequency shift actually occurs
between the incident DW and the eigensoliton. It explains the
jump of momenta in Fig. 4(b) and the behaviors of the DWs
in Figs. 5(c) and 5(d) under a sudden spectral tailoring.

Conclusively, a DW-soliton interaction will lead to fre-
quency shifting of the soliton which is dominated by the
interference and is mostly maintained in the soliton due to
a subsequent momentum conservation process. In the time
domain, we can find that the soliton adjusts itself by shedding
an excess part of old DWs and by absorbing new frequencies
from DWs or background like a breath, which is a reflection
of its conservation and stability. Aside from the frequency
shifting effect, the soliton oscillation is not found, but it is
common in the extracavity case from an interference between
the soliton and the DW [26,35]. This is possibly due to the
shortness and dissipation of the incident DW.

C. DWMSI between two solitons

Actually, the DW-soliton interaction exists widely in mul-
tisoliton states, so the DWMSI can take effect for a low-loss
case in which most DWs can survive over a sufficiently long
time until they meet other solitons. To see a detailed non-
stationary DWMSI process between solitons, we examine a
simple case where soliton molecules (a bound soliton pair) are
disturbed by each other to dissociate. A repulsive and an at-
tractive DWMSI are simulated and demonstrated in Figs. 6(a)
and 6(b), respectively. At first, a pair of bound solitons, sepa-
rated by 250 ps, is triggered by two initial spikes and quickly
becomes stable after 50 round trips with Esat = 4.0 pJ and
θ = 0.7π . At the round trip 60 then, θ is tuned to 0.6π to
lower the mode-locking threshold, so as to raise soliton wings.
It gives DWs a longer lifetime to arouse stronger interactions.
For the attractive case in Fig. 6(b), the separation of two
bound solitons is shifted to 251 ps, which reverses the phase
difference between an emitted DW and a head-on soliton com-
pared with that in Fig. 6(a). Obviously, the first pair of DWs
generated by the angle switch plays an important role in the
DW-soliton interaction since they have maximum energy due
to the Q-switching-like effect. When a DW from one soliton
first reaches the other one, a mechanical effect (repulsive or
attractive) is then set off. Following the first pair of DWs,
those subsequent DWs show a relatively weak strength and
only disturb the solitons to fluctuate, which can be captured
at a low-intensity scale. This phenomenon can be seen in
Figs. 6(c) and 6(d), where, for a better view, the details are
zoomed in from the rectangular areas in Figs. 6(a) and 6(b),
respectively. Clearly, a consecutive perturbation by external
DWs makes the two solitons interact indirectly by shedding
DWs alternatively in two directions. So, it drives the solitons
to wriggle [the soliton loci in Figs. 6(c) and 6(d) are marked by
black lines], but does not affect their average motion, forming
a kind of weak time jitter of solitons. During the DWMSI,
the emitted DWs make up a complex nonstationary wave
covering the two solitons. At round trip numbers over ≈240
in Fig. 6(a), it can be seen that the DWMSI ceases to work
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FIG. 5. Evolutions of the soliton in the cavity after filtering (a) the red and (b) the blue sideband, and after triply amplifying (c) the blue
and (d) the red sideband, started at the tenth round trip.

and that the DW-soliton interaction still remains in the way
of emitting overloaded DWs, self-interaction of solitons with
their nonstationary DWs. In this case, the drifting solitons
swing as another kind of time jitter, in a slow and a little
random way due to an asymmetrical DW shedding. Such a
motion can obviously not happen without an initial external
perturbation (emitted DWs from another soliton). This swing-
ing motion is different from those found in fiber lasers before,
e.g., the soliton fluctuation in a fiber ring cavity mode locked
by semiconductor saturable absorber mirror [65].

It is found that the conservation of momentum approxi-
mated by Eq. (10) is still able to explain the time-jittering
motions. In this case, the conservation of momentum can yield
weak spectral recoil when excess DWs shed from a soliton,
i.e., the soliton is forced into a recoil movement once it emits
DWs. A spectral recoil known to us is that a soliton gets a
large group velocity shift by going across a zero dispersion
point [45]. Owing to very small frequency differences of
neighboring sidebands, the soliton here does not obtain an
obvious jump of group velocity like the third-order dispersive
soliton. Thus, the nonstationary DWs since appearing will
constantly force its host, the soliton, to fluctuate, as is the case
in Figs. 6(c) and 6(d). In the DWMSI regime at the round
trips within 60–240 in Fig. 6(a) and 60–500 in Fig. 6(b), the

interference and spectral recoil take effect together, resulting
in a more frequent oscillation. Actually, the spectral recoil
movement is similar to the frequency shifting process for
the filter case in Figs. 5(a) and 5(b), if we take it as a mo-
mentum conserving motion of the emergent soliton after the
sudden spectral tailoring. In such a way, the emergent soliton
constantly relaxes into an eigensoliton by periodically emit-
ting and absorbing DWs when suffering a periodical phase
variation.

The above result indicates that a manipulation over solitons
in a lumped cavity requires a suppression to the lifetime of
DWs or a precise counteraction by an additional interaction, to
artificially pattern multisoliton structures in practice [16,17].

IV. DISCUSSIONS ON INTERFERENCE

From the foregoing numerical results, already it is known
that the interference induces the frequency shifting effect
and explains the DW-soliton interaction and DWMSI as
well. In spite of the nonlinear interaction, the interference
works remarkably well in the mentioned dynamical phenom-
ena. Generally, the interference happens when an interacting
soliton radiates linear wave components, which will finally
overlap with the incident DW. In this case, the DW packet
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FIG. 6. Evolutions of two solitons during two DWMSIs in the cases of (a) a repulsive and (b) an attractive interaction initiated by the first
DWs, with closeups of (c) the blueshifted and (d) the redshifted soliton zoomed in from the rectangle regions in upper subgraphs (a) and (b),
respectively.

drains or releases energy from or to the soliton and turns into a
new DW by interference with these wave components, as was
studied by early researchers [22,23,25]. However, this phe-
nomenon is only a consequence of the DW-soliton interaction,
not a cause. Evidently, nonlinearities like SPM, XPM, and
FWM are more essential in the interaction, even though they
do not always show themselves. The interference mechanism
in the context naturally has its nonlinear physical origin. The
nonlinear effect in the soliton makes itself a dispersion-free
pulse with a constant propagating mode, different from the
frequency-dependent dispersion of a CW [22]. Owing to their
mismatched mode constants over the bandwidth, the super-
imposed spectrum under interference varies periodically with
distance [27], similar to a kind of spatial interference. It infers
that the soliton and the CW are independent of each other ac-
cording to classic (linear) optics, like two waves with different
modes (so with different group velocities) propagating in a
multimode fiber, which means they will completely restore
when separating. In other words, the wave independence does
not produce any interference effect between them finally. So,
the interference primarily exists among the soliton and the
nonlinear wave components induced by the SPM and XPM.
Since the soliton state is the only low-energy eigen-non-linear

wave, these induced nonlinear waves should have the same
dispersion relation if they can survive in the abnormal disper-
sion cavity. Hence, the matching of their propagating mode
constants, i.e., satisfying the phase-matching condition, is a
self-evident premise for the interference between copropa-
gating waves. Naturally during the DW-soliton interaction,
the SPM- and XPM-induced nonlinear waves in the DW
are mostly absorbed by the soliton through interference. In
this case, importantly, the phase carried by the XPM-induced
waves directly decides on the degree of interference (construc-
tion or destruction), then on the frequency shift of the soliton
in the second scenario. According to the term “nonlinear in-
terference” used by Kuznetsov et al. [35], the XPM-induced
nonlinear interference mechanism may be more appropriate
for the DW-soliton interaction in the first scenario, which will
be revisited in the Appendices for more details.

Though the computations in this paper are limited to some
simplifications, which preclude the birefringent dispersion,
gain dynamics, FWM, and higher-order dispersion, to iso-
late the main characteristics of the interaction in an NPR
mode-locked Tm-doped fiber ring laser, the results still have a
meaning in broadly understanding the DW-soliton interaction
and DWMSI.
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V. CONCLUSIONS

In summary, the DW-soliton interaction and DWMSI are
analyzed in detail by a simulation of the soliton generation in
a weakly mode-locked fiber ring laser. It is found that an inci-
dent DW brings a distinct red or blue frequency shifting effect
depending on the resonance at the Gordon-Kelly sidebands.
The soliton without disturbance is observed to abide approxi-
mately by the conservation of momentum, as can be attributed
to its stability. A quick soliton wiggling in DWMSI and a
relatively slower fluctuation in a self-interaction are found at
a low-loss mode-locking state. This kind of motion is caused
by the spectral recoil movement in the background of nonsta-
tionary DWs, a consequence of the momentum conservation
process of solitons. The DW-soliton interaction can be well
explained by the nonlinear interference mechanism inside the
first interacting scenario, which directly leads to a jump of
the soliton momentum, and by the conservation of momentum
in the second scenario of the recovery process. The XPM-
induced nonlinear interference mechanism contributes to the
understanding of soliton dynamics.
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APPENDIX A: NONLINEAR INTERFERENCE

1. Interference mechanism in soliton perturbations

We will show further that a perturbation to single solitons,
like that in the CW-soliton interaction, can be interpreted as
an interference mechanism by a phenomenology method.

Let us consider a normalized scalar NSE for fundamental
solitons [2], i.e.,

i
∂u

∂ξ
+ 1

2

∂2u

∂τ̄ 2
+ |u|2u + f (u) = 0, (A1)

where the amplitude u = A/
√

P0 = u(t ; τ̄ , ξ ) is scaled with
the peak power P0, normalized moving time τ̄ = τ/τ0, posi-
tion ξ = z|β2|/τ 2

0 , and f (u) is a dissipative function related
to a local gain and loss. In a two-wave collision case, we
have u = us + uc, indicating the superposition of a soliton
us and a pulsed CW uc, where the term CW, not DW, is
used for a broader discussion. When their spectra overlap like
that in a DW-soliton interaction, us and uc are unambiguous
and distinguishable only when they separate in the temporal
domain. For a distinguishable two-wave case, we can adopt a
widely used two-wave equation set satisfying

i
∂us

∂ξ
+ 1

2

∂2us

∂τ̄ 2
+ |us|2us + f (us) = −2|uc|2us − u2

cu∗
s ,

(A2a)

i
∂uc

∂ξ
+ 1

2

∂2uc

∂τ̄ 2
+ |uc|2uc + f (uc) = −2|us|2uc − u2

s u∗
c .

(A2b)

On the right-hand side of Eqs. (A2), the first term is from
XPM and the last one is from FWM which generates new
frequencies. The division of the FWM terms between us and
uc cannot be reasonably done in the two-wave case, so they are
arbitrarily placed in the two subequations. Owing to a large
phase mismatch (LB � L), the FWM contributes little to the
interaction. In this case, uc will undertake the main nonlinear
effect at the beginning since |uc| � |us|. Even though the
CW-soliton interaction may be indistinguishable, Eqs. (A2)
are effective as a starting point in a small signal case. In the
quest for concision, we now use the brackets 〈us, uc〉 to denote
their inner product as usual, i.e.,

∫ ∞
−∞ u∗

s ucd τ̄ . Then, the total
energy of the superimposed wave is

E = 〈us, us〉 + 〈uc, uc〉 + 〈us, uc〉 + 〈uc, us〉. (A3)

The last two are interference terms. Thinking of us/〈us, us〉 as
a probability amplitude, we generalize Eq. (A3) to an arbitrary
conservative physical quantity O, with its Hermite operator
representation Ô. Its mean value on the soliton state can be
approximately expressed as

O〈us, us〉 =〈us, Ôus〉 + 〈uc, Ôuc〉 + 〈us, Ôuc〉 + 〈uc, Ôus〉.
(A4)

Accordingly, the breath of the soliton by taking in a part of
the CW and emitting residuals can be attributed to the last
two terms in Eqs. (A3) and (A4), where the coupling matrix
element can be called the generalized interference term, which
is similar to that in quantum theory. In the CW-soliton inter-
action, the wave u can be rewritten as u = uES + u′

c for an
emergent soliton uES and a new CW u′

c with �uc = uc − u′
c.

Now, phenomenologically, we assume that the emergent soli-
ton absorbs �uc in the first scenario, which dominates the
interference terms, so can no longer effectively interfere with
the new CW u′

c, i.e.,

〈uES, Ôu′
c〉 = 0, (A5)

which means their interference intensity 2Re(u∗
ESu′

c) will not
cause any observable effect according to the phenomenologi-
cal assumption. The emergent soliton uES has an implicit form
in Eq. (A5) but is unnecessary to be known in the following
development. Subsequently, in the second scenario, uES will
relax to a stable eigensoliton u′

s possessing new parameters
generated in uES out of subsequent conservations. Hence,
Eq. (A4) can be rewritten as

O〈uES, uES〉 = 〈uES, ÔuES〉 = 〈u, Ôu〉 − 〈u′
c, Ôu′

c〉
= 〈us, Ôus〉 + 2Re[〈us, Ôuc〉]

+ 〈uc, Ôuc〉 − 〈u′
c, Ôu′

c〉, (A6)

where the decoupling condition (A5) and the relation
〈uc, Ôus〉 = 〈us, Ôuc〉∗ are applied. The quantity O in Eq. (A6)
is purposely expanded according to us and uc because they are
obtainable from Eqs. (A2) upon a short-range interaction. In
the conservative scenario, it indicates an asymptotic process

uES
ξ→∞−−−→ u′

s, 〈uES, ÔuES〉 ξ→∞−−−→ 〈u′
s, Ôu′

s〉 (A7)

from Eq. (A6). Then, u′
s will result from O. The main terms

in Eq. (A6) include a basic quantity O0 and the first-order
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variation δO, i.e.,

O0 = 〈us, Ôus〉
〈u′

s, u′
s〉

, δO = 2Re[〈us, Ôuc〉]
〈u′

s, u′
s〉

, (A8)

which, before applying to other physical quantities, should be
first used to estimate the energy E = 〈u′

s, u′
s〉 of the new soli-

ton. The last two terms in Eq. (A6) are commonly neglected to
the first order of the CW. Consequently, δO from uc becomes
the main perturbation, which just is the interference term.
Since an exact uES is hard to find, Eq. (A5) can be substituted
by 〈us, Ôu′

c〉 = 0 to search for an approximate solution to
u′

c. Just with the method developed by Gordon et al, some
approximate solutions can be found in a few perturbation
cases [22,25]. For a given u′

c, a more exact O can be resulted
from Eq. (A6). Equations (A8) can be verified by some known
perturbative results of conventional solitons. The fundamental
soliton solution of Eq. (A1) with f = 0 can be expressed
by [2]

us = ηsech[η(τ̄ − τ̄s − ωξ )] exp[i(φs − ωτ̄ )], (A9)

where η, ω = �τ0, τ̄s, and φs represent the amplitude around
the unit, scaled circular frequency, soliton position, and phase
factor, respectively. The four parameters, mostly used to
characterize a soliton, are conservative without an outside
disturbance. In this case, we have 〈us, us〉 = 2η, thus the per-
turbation in Eq. (A8) turns into

ηδO = Re[〈us, Ôuc〉]. (A10)

By choosing the operators of the amplitude η, frequency
i∂/∂τ̄ , time τ̄ , and chirp iτ̄ ∂/∂τ̄ , we have the following per-
turbations:

δη = Re[〈us, uc〉], (A11a)

ηδω = −Im[〈us, ∂uc/∂τ̄ 〉], (A11b)

ηδτ̄s = Re[〈us, τ̄uc〉], (A11c)

η(δφs + ωδτ̄s ) = −Im[〈us, τ̄ ∂uc/∂τ̄ 〉], (A11d)

expressed as some generalized interference terms. In
Eq. (A11 d), the chirp is an expectation of the product of
instant frequency and time, which not only comes from a
variation of the phase φs along time but also from a shift of the
soliton position τ̄s. Equations (A11) reproduce the standard
results from the perturbation theories [22,66–68]. The deriva-
tion above is a refined version of the work of Gordon and Haus
in Ref. [66], where, equivalently, Eq. (A4) was approximated
by directly removing the second term on the right-hand side.
The perturbation theory has been successfully applied in some
simplified lumped cases [22,26].

From the numerical results in the paper and the pertur-
bation analysis above, the interference mechanism plays an
important role in the DW-soliton interaction. But, it is not yet a
conventional interference because the CW carries a nonlinear
effect, which will be shown next.

2. Nonlinearity in the interference mechanism

How nonlinearity plays a role needs to be known as to how
it gets involved in energy exchange, and furthermore how it
activates the interference.

For simplicity, we consider a distributed model with the
balance of gain and loss upon a steady lasing operation, where
an average of f over the cavity is then zero. In this case, a
growth of uc, neglecting a small SPM term, can be obtained
as �uc + δuc by Eq. (A2 b) along a short distance δξ , where

�uc � i
(
2|us|2uc + u2

s u∗
c

)
δξ, (A12)

and δuc is the component of a pure dispersive variation
in ∂2uc/∂τ̄ 2, but will not cause a nonzero perturbation
according to Gordon’s analysis [22]. It is an initial cross-
phase-modulated wave imposed by the soliton, and also is a
nonlinear wave carrying nearly the same frequency as that of
the incident CW if neglecting the second term in Eq. (A12).
The existence of the interference of this phase-modulated
wave with the soliton becomes a natural conjecture. However,
the abnormal dispersion stretches the initial phase-modulated
wave which counteracts the SPM- and XPM-induced com-
pression, such as that in a soliton. Thus the propagation
property of these phase-modulated waves needs to be un-
covered. Therefore, we simulate a hypothetical DW-soliton
interaction via polarized Eqs. (A2), i.e., Eqs. (B3) (see Ap-
pendix B). This kind of simulation, for a demonstration of the
phase-modulated waves, keeps the nonlinearity but excludes
the interference between the soliton and DW involved. The
initialization is chosen nearly the same as that in Fig. 3(b), but
with a nonoptimal phase difference. The simulation results are
shown in Fig. 7. It is a sure sign that neither us nor uc in Fig. 7
represents a real soliton or DW, and that only their superpo-
sition or interference u = us + uc in Fig. 7(c) is correct. In
such a simulation, the cross-phase-modulated wave induced
by the soliton is automatically separated from that induced by
the DW through Eqs. (A2), so can be numerically diagnosed
during the interaction. The purpose of this separation is to help
us to observe the dispersion and the interference way of the
nonlinear waves.

At the beginning, the CW in the overlapping region be-
comes a phase-modulated wave as Eq. (A12). But with the
growth of uc, its impacts of XPM on the soliton and SPM on
itself are strong enough to change the soliton. It is found in
Figs. 7(a) and 7(b) that us and uc each develop into a pair
of solitary pulses with nearly the same amplitude, denoted
by “1” for the redshifting subpulse and “2” for the blue one.
This bifurcation is common in our simulation since uc always
grows into a solitary wave even when the intensity of the inci-
dent DW is ten times lower, no matter what value their phase
difference takes. The interaction process completes in a period
of ten round trips, which is demonstrated in Fig. 7(d), where,
we can see the quickly accumulated phase-modulated waves
(SPM+XPM) from both the initial soliton and the DW within
the round trips from 12 to 20. The total field u in Fig. 7(c),
however, is a blueshifting soliton as before, which means the
parts of “1” in Figs. 7(a) and 7(b) cancel each other, never-
theless, the subpulses of “2” are superimposed to become a
real soliton. This means that the phase-modulated waves and
the soliton can be effectively interfered with since they have
the same soliton dispersion relation (mode constant). It is a
phase-matching condition, requiring two propagating mode
constants to be equal to each other, which can be verified by
the dispersion-free property in Fig. 7. Thus, different from an
ordinary two-wave interaction, all the phase-modulated waves
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FIG. 7. Noninterference evolutions of (a) an initial soliton, (b) an incident DW, (c) real soliton evolution from their superposition, and
(d) sampled interaction details, respectively, in a simulated DW-soliton interaction within 60 round trips by Eqs. (B3), where the related pulse
intensities are indicated by I , Is, and Ic with the notations “s” for soliton and “c” for CW and DW followed by round trip numbers.

couple back into the soliton step by step, which gives rise to an
unbalanced XPM with phase-dependent momentum transfer.
During this DW-soliton interaction in the first scenario, the
interference of the soliton with the XPM-induced (by soliton)
nonlinear wave plays a primary role since it carries the phase
difference of the soliton and DW that determines a subsequent
frequency shifting effect.

The result supports the aforementioned phenomenologi-
cal assumption as well. Since Eqs. (A2) are unable to fully
describe the CW and the soliton (output of unreal CW and
soliton), it will be more meaningful for us to regard the total
wave u phenomenologically as uES + u′

c. For the strong non-
linear effect, Eqs. (A11) are generally invalid, but still hold
for such a case in which each interaction step over a small
δξ can be decomposed into two scenarios as before. As such,
the phase-modulated wave �uc merges from uc into uES in
the first scenario by interference while the SPM in uES takes
over the next, where the two processes actually take place
simultaneously in practice. uc then becomes u′

c to go into the
next step as a new incident DW, which will make Eqs. (A11)
applicable in practice in spite of unavoidable complexity. It
is then confirmed that the interference here can be taken
as an XPM-induced nonlinear interference according to the
discussions.

APPENDIX B: TWO-WAVE CGLEs

In terms of Eqs. (1), Eqs. (A2) can be forged into a vec-
tor version of CGLE in consideration of polarization states.
This can be done through the substitutions u

√
P0 → A1,2,

us
√

P0 → As1,2, and uc
√

P0 → Ac1,2. Since the amplitudes
As1/2 will couple with Ac1,2, the pairs (As1,2, Ac1,2) can be
used in the new polarized two-wave equations. In addition, a
further transformation of amplitudes should be used to make
the traditional split-step method effective, i.e.,

U+1,2 = (As1,2 + Ac1,2)/
√

2, (B1a)

U−1,2 = (As1,2 − Ac1,2)/
√

2, (B1b)

where the real amplitudes As and Ac can be easily resolved
through a matrix inversion on Eqs. (B1), and have the same
expressions as above:

As1,2 = (U+1,2 + U−1,2)/
√

2, (B2a)

Ac1,2 = (U+1,2 − U−1,2)/
√

2. (B2b)
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In this case, U+ and U− decouple in the nonlinear terms of a
new CGLE, which can be derived from Eqs. (1) as

∂U±1

∂z
= g − α

2
U±1 + 2iγ

(|U±1|2 + 2
3 |U±2|2

)
U±1

+
(

g

2�2
g

− i
β2

2

)
∂2U±1

∂τ 2
− σ

∂U±1

∂τ
, (B3a)

∂U±2

∂z
= g − α

2
U±2 + 2iγ

(|U±2|2 + 2
3 |U±1|2

)
U±2

+
(

g

2�2
g

− i
β2

2

)
∂2U±2

∂τ 2
+ σ

∂U±2

∂τ
. (B3b)

It should be noted that the nonlinear coefficient in Eqs. (B3)
is doubled as 2iγ .
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