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Bound states of optical solitons represent ideal candidates to investigate fundamental nonlinear wave inter-
action principles and have been shown to exhibit intriguing analogies to phenomena in quantum mechanics.
Usually, such soliton molecules are created by a suitable balance of phase-related attraction and repulsion
between two copropagating solitons with overlapping tails. However, there exists also another type of compound
state, where strong binding forces result directly from the Kerr nonlinearity between solitons at different center
frequencies. The physical mechanisms as well as the properties of these objects are quite different from those
of usual soliton molecules, but are hardly known. Here we characterize and investigate these compound states
in greater detail. We demonstrate unique propagation dynamics by investigating the robustness of the compound
states under perturbations, such as third-order dispersion and the Raman effect. The constituents are individually
affected by the perturbations, but the impact on the compound state is not a mere superimposition. One observes
complex dynamics resulting from a strong entanglement between the subpulses. For example, in the case of
the Raman effect both subpulses are subject to a cancellation of the self-frequency shift, although only one
subpulse is approaching a zero-dispersion frequency. We extend the concept of the molecule states to three and
more constituents by adopting appropriate propagation constants. These multicolor soliton molecules open up
further perspectives for exploring the complex physics of photonic molecules, but also show great potential for
application resulting from their robustness and the possibility to control their properties.
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I. INTRODUCTION

Solitons are localized wave solutions of the nonlinear
Schrödinger equation (NLSE) enabled by the interplay of non-
linear and dispersive effects [1,2]. Their stable propagation
without changing their shape makes them ubiquitous objects
in different areas of science [3,4], especially in nonlinear
optics [5–7]. Optical solitons are often associated with a
particlelike behavior that manifests itself via complex soliton-
soliton interactions like collisions [8] or trapping [9]. Bound
states of two or more solitons can also be understood as
an extension of the concept of quantum-mechanical particles
to a compound of particles. These soliton molecules appear
throughout different physical systems, e.g., in dispersion-
managed fibers where they are defined by a characteristic
double-hump structure in the time domain [10,11]. Such tem-
poral pulse compounds appear in nonlinear optical fibers
governed by the generalized NLSE [12], the dissipatively per-
turbed NLSE [13], coupled NLSEs describing twin-core fibers
[14], or the complex Ginzburg-Landau equation [15,16].
Soliton molecules also exist in microresonators that support
dissipative Kerr solitons [17]. Similar pulse compounds also
appear in other contexts [18–28]. The common feature of
these soliton molecules is that their constituent subpulses are

stable units themselves. Therefore, the subpulses can propa-
gate stably also when they are separated from their binding
partner. The binding mechanism of these molecules is based
on the phase relation between the bound subpulses.

Recently, a fundamentally different kind of soliton
molecule was demonstrated [29], here referred to as a
two-frequency soliton molecule or two-frequency pulse com-
pound. Such molecule states have also been investigated as
a part of a larger class of generalized dispersion Kerr soli-
tons in [30]. Therein, they are described for a nonlinear
Schrödinger equation with positive quadratic and negative
quartic dispersion. For these dispersion conditions, molecule
states were recently observed experimentally in a mode-
locked laser cavity for the first time [31], where an enhanced
effective nonlinear parameter for the compound state was
discussed. Two-color soliton microcomb states with a similar
pulse structure were also observed in microresonators mod-
eled by the Lugiato-Lefever equation [32,33]. In contrast to
usual soliton molecules, which exhibit a double-hump struc-
ture in the time domain, these molecules are characterized
by a double-hump structure in the frequency domain where
the two subpulses are located at vastly separated frequencies
at which dispersion is anomalous. In the time domain the
molecule state consists of a single localized state. The two
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constituent subpulses have energies below that of fundamen-
tal solitons and deviate also from hyperbolic secant shapes.
Stable propagation of the separated subpulses is not possi-
ble and a stable molecule exists only as an inseparable unit.
The subpulses have different pulse durations, intensities, and
frequencies. Since the constituents are therefore unequal, the
resulting molecule can be considered to be heteronuclear [17].
To engage in a strong mutual interaction, both subpulses need
similar group velocities. This requires a propagation constant
that exhibits at least two domains of anomalous dispersion,
enabling group-velocity-matched copropagation among the
molecules subpulses. Suitable waveguides that fulfill these
criteria exist, e.g., in microstructured fibers [34], silicon slot
waveguides [35,36], or dispersion-manageable mode-locked
laser cavities [31]. Group-velocity-matched interaction be-
tween a soliton and a dispersive wave, interacting across a
single zero-dispersion point, was shown to give rise to a strong
repulsion between both pulses [37–39]. In optics, the underly-
ing mechanism is referred to as the optical push broom effect
[40], optical event horizon [41,42], or temporal reflection [43],
facilitating strong and efficient all-optical control of light by
light [37,44,45].

For the case of two pulses in separated anomalous dis-
persion regimes such a cross-phase modulation (XPM)–based
interaction is attractive and provides the binding mechanism
for the soliton molecules [29]. In Ref. [46] we showed the
robustness of the pulse compounds by investigating the in-
fluence of group-velocity mismatches of the initial solitons.
This revealed a crossover behavior from the formation of
two-frequency soliton molecules to escaping solitons. We
also recently demonstrated that the resulting molecule states
are independent of any phase relation [47]. Furthermore,
the introduction of a simplified model for a special class
of solutions allowed us to obtain analytic solutions for the
molecule states, explaining the special energy relation within
the molecule states mentioned above. However, this descrip-
tion holds only for solutions where the constituents are well
separated and exclusively located in the anomalous dispersion
regime. The general class of solutions exhibits much more
complex characteristics with energy content ranging also over
the normal dispersion regime. The characteristics of these
states as well as their behavior under perturbation are yet
unknown.

We study here heteronuclear two-color soliton molecules
in further detail. We more closely look at the substructure
of different molecule states and consider different means of
molecule generation, discussing their influence on the result-
ing two-frequency pulse compounds. Going beyond previous
works, we investigate how these molecules are affected by
different types of perturbation, such as higher-order disper-
sion and the Raman effect. An important feature is that a
perturbation of one individual subpulse influences also the
second subpulse, due to their strong interconnection. Our sys-
tem provides unique conditions concerning perturbations. The
impact of third-order dispersion is guided by different signs
for the subpulses and for the Raman effect one subpulse is
subject to the spectral recoil [48] while the other is unaffected
from a zero-dispersion point. The aim is to understand the
impact these perturbations have on the propagation of the
pulse compounds. Furthermore, we consider waveguides with

three separate domains of anomalous dispersion. Within the
presented framework, this allows us to extend the concept of
moleculelike bound states of two pulses to mutually bound
pulse triplets.

The remainder of the article is organized as follows. In
Sec. II we detail the considered propagation model. We then
discuss the characteristics and generation of two-frequency
molecules in Sec. III A and Sec. III B and investigate
their propagation dynamics under various perturbations in
Sec. III C. In Sec. III D we extend the concept to support
bound states of three pulses. We conclude with a summary
in Sec. IV.

II. THEORETICAL MODEL

A common way to describe pulse propagation in waveg-
uides is using the so-called generalized nonlinear Schrödinger
equation (GNLSE) [49,50]. For our investigation, we use a
first-order nonlinear propagation equation

i∂zEω +
(
β(ω) − ω

v0
+ iα(ω)

)
Eω

+ 3ω2χ

8c2β(ω)
((1 − fR)|E |2E + fRIRE )ω>0 = 0 (1)

for the analytic signal E (z, t ) = 2
∑

ω>0 Eω(z)e−iωt [51,52],
which inherently includes the GNLSE [53]. The real-valued
field reads E (z, t ) = ∑

ω Eω(z)e−iωt . Indices specify the do-
main and simplify the notation, e.g., Eω = E (z, ω) and
E = E (z, t ). The χ refers to the third-order nonlinear suscep-
tibility and c to the speed of light. The propagation constant
is defined as β(ω) = ω Re[n(ω)]/c [53,54], with n(ω) the
frequency-dependent refractive index. To directly obtain the
dynamics in a reference frame moving with velocity v0,
the propagation constant is modified to β(ω) − ω/v0. Lin-
ear loss is modeled by the root-power attenuation α(ω) =
ω Im[n(ω)]/c. We find that for realistic values of α(ω) it can
be neglected for the propagation distances considered here.
Further, the delayed Raman response is included as

IR =
∑

ω

ν2
1 + ν2

2

ν2
1 − (ω + iν2)2

(|E |2)ωe−iωt , (2)

with the parameters ν1 = 0.082 pHz and ν2 = 0.031 pHz, i.e.,
material-specific values for fused silica, and the fractional
Raman contribution fR = 0.18. As we will show below in
Sec. III C, the Raman effect reveals new features regarding
the propagation dynamics of molecule states. A suitable initial
condition for Eq. (1), supporting the formation of a molecule
state upon propagation, is the real-valued electric field

√
χE (0, t ) = Re

[
N1a1e−iω1t

cosh(t/t1)
+ N2ae−iω2t

cosh[(t − δ)/t2]

]
(3)

with pulse durations t1,2, center frequencies ω1,2, and soli-
ton orders N1,2. The electric field E (z = 0, t ) = ∑

ω Eω(z =
0)e−iωt is given in terms of a complex-valued analytic signal
E (z = 0, t ) = 2

∫
ω>0 dω Eω(z = 0)e−iωt . Amplitudes of fun-

damental solitons read a1/2 =
√

|β2(ω1,2)|/t2
1,2γ (ω1,2), with

γ (ω1,2) = 3ω1,2/8n(ω1,2)c the frequency-dependent nonlin-
ear coefficient. Equation (3) describes a superposition of two
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solitons, where a direct initial overlap is realized for the pulse
delay δ = 0 fs.

Equation (1) is a nonlinear partial differential equa-
tion combining different higher-order linear terms and non-
linear terms [55,56]. The numerical investigation presented in
this work is performed by a pseudospectral split-step routine,
where the nonlinear part is solved by a Runge-Kutta scheme
of fourth order [57]. It is convenient to use the Hamiltonian
framework detailed in Ref. [53]. To this end, Eq. (1) is ex-
pressed in terms of the canonical variable by introducing

Aω =
√

|β(ω)|/2μ0ω2Eω, (4)

with μ0 the permeability of free space. The Hamiltonian is
given as

H =
∑
ω>0

β(ω)|Aω|2 + 3
8

∑
12̄34̄|

T (3)
1234Aω1A∗

ω2
Aω3A∗

ω4
, (5)

where

T (3)
1234 = μ0χ |ω1ω2ω3ω4|

c2
√|β(ω1)β(ω2)β(ω3)β(ω4)|

and the sum index 12̄34̄| stands for the condition ω1 − ω2 +
ω3 − ω4 = 0. The second term of Eq. (5) denotes the nonlin-
ear interaction term Hint[A]. Following the ansatz discussed
in [29], we can define the mutual interaction

H (12)
int = Hint[A] − (Hint[A1] + Hint[A2]) (6)

for the self-interaction contributions Hint[A1] and Hint[A2]
for the individual subpulses A1(t ) = ∑

ω<ωF
Aωe−iωt and

A2(t ) = ∑
ω>ωF

Aωe−iωt . The ωF defines a suitable choice
of a frequency separating the two subpulses in the frequency
domain. Here we choose ωF = 2 rad/fs.

For the first investigation of the basic characteristics of the
soliton molecule state without perturbation, we deliberately
choose to neglect the Raman contribution. For Eq. (1) we can
derive the conserved time-averaged energy flux [53]

E =
∑
ω>0

ω|Aω|2. (7)

To describe two-frequency pulse compounds so that both
time-domain and frequency-domain information is available
simultaneously, we use the spectrogram

PS (z, τ, ω) = 1

2π

∣∣∣∣
∫

E (z, t )h(t − τ )e−iωt dt

∣∣∣∣
2

(8)

of the analytic signal E (z, t ), using a hyperbolic secant
h(x) = sech(x/σ ) with width σ to localize the field in time
[58].

In Fig. 1 dispersion characteristics are presented that ful-
fill the prerequisites of two-frequency molecule formation as
mentioned before: a group-velocity-matched copropagation of
the subpulses in separated regions of anomalous dispersion.
The group-velocity vg = β−1

1 and group-velocity dispersion
β2 profiles are shown in Figs. 1(a) and 1(b), respectively.
The group-velocity dispersion β2 is shown for two of the
three zero-dispersion frequencies (ZDFs) (ωZ1, ωZ2, ωZ3) =
(1.511, 2.511, 5.461) rad/fs that divide the angular frequency
domain into two regions of anomalous dispersion (AD1 and
AD2), separated by a normal dispersion region ND [gray

FIG. 1. Characteristics of the propagation constant. (a) Group-
velocity (vg) profile. Shaded areas indicate regions of possible
group-velocity matching between anomalously dispersive pulses.
Pairs of red and blue circles denote representative group-velocity-
matched pairs of frequencies. For the pair labeled S1 and S2, the
interjacent group-velocity-matched frequency at normal dispersion
is marked by a square. (b) Group-velocity dispersion (β2) profile.
The shaded area indicates the region of normal dispersion (labeled
ND). Black dotted lines indicate β2 values for points S1 and S2.

shaded region in Fig. 1(b)]. The group-velocity-matched co-
propagation of light pulses in separate regions of anomalous
dispersion can be realized within the shaded frequency ranges,
highlighted in Fig. 1(a). Therein, two representative pairs of
group-velocity-matched frequencies (ω1, ω2) are indicated. In
either case, at both these frequencies, dispersion is anomalous
[see Fig. 1(b)]. For the example of the pair labeled S1 and
S2, the group-velocity-matched frequency in the interjacent
region of normal dispersion is indicated by a square. Due
to asymmetry of the propagation constant, group-velocity-
matched pulses [vg(ω1) = vg(ω2)] exhibit β2(ω1) �= β2(ω2).
Also, as evident from Fig. 1(b), the slopes of β2 at ω1 and ω2

are of different sign.
For the following investigation we consider asymptotic

molecule states which do not change anymore with further
propagation. A molecule state separates after a certain prop-
agation distance from radiation initially generated in the time
domain. This radiation ejected during the transient creation
process has a velocity different from that of the localized
molecule state such that it can be separated distinctly into
an asymptotic molecule and accompanying radiation [29]. We
refer to this process as temporal filtering.

III. RESULTS

A. Characteristics of the soliton molecule

The important characteristic of the presented soliton
molecules is the double-hump structure in the frequency do-
main. In Fig. 2 we demonstrate the influence of the initial
conditions, such as pulse duration, on this fundamental prop-
erty. We compare three different asymptotic molecule states,
generated by a superposition of two group-velocity-matched
solitons: the first one with an initial soliton pulse duration
of t1,2 = 100 fs [light green line in Figs. 2(b) and 2(c)], the
second with t1,2 = 20 fs [green line in Figs. 2(d) and 2(e)],
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FIG. 2. Pulse characteristics of three different soliton molecules.
(a) Spectra, (b) temporal profile, and (c) spectrogram with σ = tM

of the molecule state generated by the superposition of two funda-
mental solitons with initial center frequencies ω1 = 1.2 rad/fs and
ω2 = 2.939 rad/fs and pulse durations t1,2 = 100 fs. Subpulses in
AD1 and AD2 are denoted by red and blue lines, respectively. The
red dashed curve denotes a sech-shaped fit to the envelope. Panels
(d) and (e) and panels (f) and (g) are the same as (b) and (c) but
for molecules generated with (d) and (e) t1,2 = 20 fs and (f) and (g)
t1,2 = 15 fs. The white and black dotted lines mark the position of
the two ZDFs.

and the third with t1,2 = 15 fs [dark green line in Figs. 2(f)
and 2(g)]. Their respective temporal profiles are shown in
Figs. 2(b), 2(d), and 2(f), where the envelopes are fitted at
best with a hyperbolic secant shape (red dashed line) with
the pulse duration tM of the respective asymptotic molecule
state. The red and blue lines denote the temporal profiles
of the subpulse in AD1 and AD2, respectively. Figure 2(a)
compares the spectra of the molecule states. The two peaks
of the first molecule state are well distinguishable. Also, the
spectrogram in Fig. 2(c) shows no spectral energy in the
region of normal dispersion ND. Instead, the second molecule
ranges over the full spectrum shown [Fig. 2(a)] and the spec-
trogram [Fig. 2(e)] reveals an overlap of the constituents in
the region of normal dispersion. This property becomes even
more obvious for the third example in Figs. 2(f) and 2(g),
where the contribution in the region of normal dispersion is
not negligible. The fitting to a sech shape is very accurate in
the region around the peak where the intensity is high, but

FIG. 3. Characterization of the molecule state. Evolution is
shown in (a) the time and (b) and (c) the spectral domain. Circles
mark positions where maxima appear with a periodicity of 2z.
Solid lines denote the position of the maximum in the spectral do-
main and dashed lines the positions of the frequency centroids ω1−C

and ω2−C .

deviates for the pulse tails [see Figs. 2(b), 2(d), and 2(f)]. This
results from the different values for, e.g., β2 in the regions
where the linear term dominates the nonlinear contribution
such that the exponential tails deviate. The example demon-
strated in Figs. 2(d) and 2(e) serves as an initial condition for
most of the following investigation of this work. The molecule
state has a contribution in the region ND, but yet two clearly
distinguishable subpulses in the spectrum.

Figure 3 presents the evolution of the asymptotic two-
frequency molecule state of Figs. 2(d) and 2(e). The z
propagation of the intensity |E |2 in the time domain is shown
in Fig. 3(a). The evolution of the subpulses in AD1 and AD2

is presented in Figs. 3(b) and 3(c), respectively. The evolution
of the molecule state in the time domain is accompanied by
interference fringes with the period z ≈ 0.098 cm. To high-
light the periodic pattern, circles have been added separated
by a distance 2z to Fig. 3(a). Here each circle lies on an
alternative maximum of the interference pattern. Furthermore,
the evolution of the subpulses in the spectral domain reveals
also a periodicity. The tracing of the maxima (solid line)
highlights this behavior. Since an asymptotic molecule state
is chosen, the amplitude of the oscillation of the subpulses
maxima stays unchanged with ongoing propagation [29]. To
demonstrate this, we show also the evolution of the frequency
centroids (dashed line) that barely oscillate. The respective
frequency centroids can be found by

ω1−C =
∫
ω<ωF

ωIωdω∫
ω<ωF

Iωdω
, ω2−C =

∫
ω>ωF

ωIωdω∫
ω>ωF

Iωdω
, (9)

where ωF = 2 rad/fs.

B. Generation mechanism

Molecule states can be generated in different ways. Two
possibilities are presented here. The most obvious one is
the creation via direct superposition (δ = 0), as mentioned
before. This generation process is presented in Fig. 4 and
has been detailed in [29] for two initial fundamental solitons
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FIG. 4. Generation via direct superposition. Evolution is shown
in (a) the time domain and (b) the frequency domain of two ini-
tial solitons with ω1 = 1.2 rad/fs, ω2 = 2.939 rad/fs, t1,2 = 20 fs,
N1,2 = 0.7, and δ = 0 fs. Dotted lines denote the location of the two
ZDFs. (c) Energy Erad of the emitted radiation during the formation
process of the scenario in (a) and (b) (solid line) and of the scenario
where N1,2 = 1 (dashed line).

(see Fig. 2 therein). Figures 4(a) and 4(b) show the evolu-
tion in the time and frequency domains, respectively, of two
initially superimposed group-velocity-matched solitons of
nonfundamental order (N1,2 = 0.7). The evolution of the en-
ergy of the emitted radiation during formation [Fig. 4(c)]
is not significant compared with the situation where funda-
mental solitons (N1,2 = 1.0, dashed line) initiate the molecule
formation. This observation underlines that for the generation
of molecule states no fundamental solitons are necessary and
that for this case less radiation is released.

Another possibility for the generation of two-frequency
molecule states is the controlled collision process of
two fundamental solitons. The evolution in the time do-
main of three different collision processes is presented in
Fig. 5 with the initial parameters t1/2 = 13.88/15 fs and
ω1,2 = 1.2/2.939 rad/fs [Figs. 5(a) and 5(b)], t1/2 = 15/15 fs
and ω1,2 = 1.2/2.939 rad/fs [Figs. 5(c) and 5(d)], and
t1/2 = 25/15 fs and ω1,2 = 1.2/2.97 rad/fs [Figs. 5(e) and
5(f)]. For all cases shown the initial delay is δ = 400 fs.
Different parameters are intentionally chosen to demonstrate
the generation of different molecule states. For example, ad-
justing the initial pulse duration of one of the soliton creates
two molecule states in Fig. 5(d) compared to one in Fig. 5(b).
Furthermore, an increase of the pulse duration of one of the
initial solitons and an increased group-velocity mismatch can
lead to the buildup of three molecule states. This underlines
that the initial set of parameters has a strong influence on the
final outcome.

On closer examination of the scenarios in Figs. 5(d) and
5(f), it can be seen that the generated molecules follow a
specific order. The shortest and most intense states (dashed
line) have the lowest group velocity, while states with higher
pulse durations propagate faster. This order of ejection of the
different molecule states is similar to the order of ejection of
solitons in the soliton fission process [59,60]. The molecule
creation process in Fig. 5(b) shows the collision of two soli-
tons that interact over a non-negligible propagation distance

FIG. 5. Different soliton collision scenarios for the generation of
soliton molecules: creation of (a) and (b) a single and (c)–(f) more
molecule states. (a), (c), and (e) Temporal profiles are at z = 30 cm.
The red, blue, and black lines denote the spectral parts in the dis-
persion regions AD1, AD2, and ND, respectively. The respective
evolutions in the time domain are shown in (b), (d), and (f). A
dashed line highlights the temporal trajectory of the most intense and
shortest resulting molecule state. The black square in (b) highlights
the transient compound nucleus.

(black square) before the actual molecule state emerges. In
this transfer region, an intermediate state exists which is nei-
ther a soliton combination nor the final molecule state. This
transient feature appears also in other fields such as nuclear
physics where an intermediate state can form, namely, the
compound nucleus [61]. In this analogy to a nuclear reaction
involving, e.g., two nuclei, a large portion of their energy,
mass, and angular momentum can be transferred between the
interacting components, resulting in the transient formation of
a compound nucleus.

A more detailed representation of the spectral energy dis-
tribution during the generation mechanism is presented in
Table I. The energy E contributions of the initial solitons
S1 and S2 and one of the resulting molecules (indicated by
the dashed line) is calculated for each collision scenario.
The respective total energy is defined by the sum of the
input solitons. The energy content for the molecule state in
ND decreases for the scenarios in Figs. 5(a)–5(c), which is
also evident from the black line. The initial energy content
in AD1 decreases and increases in AD2 from the exam-
ple in Figs. 5(a)–5(c). Counterintuitively, the energy in the

TABLE I. Energy content (%) of different objects O, given by
the initial solitons S1, S2, and the molecule M highlighted in Fig. 5.
The energy distribution is given for the different regions of dispersion
AD1, AD2, and ND.

Fig. 5(a) Fig. 5(b) Fig. 5(c)

O AD1 AD2 ND AD1 AD2 ND AD1 AD2 ND

S1 73.75 0 0 71.06 0 0 58.71 0 0
S2 0 26.25 0 0 28.94 0 0 41.29 0
M 57.82 15.02 0.08 59.14 14.18 0.03 34.04 22.26 0
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final molecule states exhibits the opposite behavior, indicating
that more complex energy rearrangements do occur during
generation. Table I shows a reduction in total energy owing
to the formation of the molecule state, which is consistent
with the well-known analogy of ordinary molecules, whose
total energy is always less than the sum of the energy of the
initial constituents. Moreover, the ratio of energy between the
regions AD1 and AD2 before and after the collision process
changes remarkably. This indicates that a large amount of
energy is exchanged between the subpulses in AD1 and AD2,
respectively. The various choices of initial solitons allow for
control of the generation process to obtain a variety of dif-
ferent spectra, temporal properties, and number of generated
states, while the resulting molecule states propagate in a stable
manner.

C. Propagation dynamics under perturbation

The molecule states discussed above are asymptotically
stable, allowing them to propagate unchanged over large
distances. In this section we will introduce additional per-
turbations to investigate their impact on the propagation
dynamics as well as to challenge the stability of these states.
In particular, we will assess the effects of third-order disper-
sion and the Raman effect. Understanding the implications of
such perturbations is crucial and is furthermore necessary for
describing realistic systems and for practical applications.

1. Role of third-order dispersion

To better assess the impact of higher orders of dispersion
on the dynamical evolution of two-frequency pulse com-
pounds, we consider a simplified modeling approach that
allows us to easily alter the dispersion characteristics of the in-
dividual subpulses. Therefore, we describe the propagation of
a compound of two subpulses, represented by complex-valued
slowly varying amplitudes u ≡ u(z, τ ) and v ≡ v(z, τ ), by
coupled nonlinear Schrödinger equations [62] of the form

i∂zu − β ′
2

2
∂2
τ u + γ ′(|u|2 + 2|v|2)u = i

β ′
3

6
∂3
τ u, (10a)

i∂zv − β2

2
∂2
τ v + γ (|v|2 + 2|u|2)v = i

β3

6
∂3
τ v (10b)

for propagation distance z and retarded time τ . The param-
eters are set to β ′

2 = −0.222 fs2/μm, γ ′ = 0.450 W−1/μm,
β2 = −0.176 fs2/μm, and γ = 0.986 W−1/μm, resembling
the conditions under which the pulse compounds in Fig. 2
were generated. In Eqs. (10), β ′

3 and β3 serve as tunable
perturbation strengths. In addition to the nonlinear self-
interaction of the individual pulses, Eqs. (10) include the
mutual interaction of both subpulses through cross-phase
modulation. Similar equations have been used as a basis
to study two-soliton interactions in terms of a variational
perturbation approach [63], superimposed solitons in birefrin-
gent fibers [64,65], coupled bright and dark pulses stabilized
through cross-phase modulation [66,67], and soliton-radiation
trapping in gas-filled hollow-core fibers [68].

The propagation equation (1) for the analytic signal can
be reduced to the system of (10a) and (10b) under several
simplifying assumptions and provided that both subpulses are
separated by a vast frequency gap [46]. Above, the governing

equation of either subpulse is perturbed by third-order dis-
persion. A nonzero value of β ′

3 introduces a zero-dispersion
point at �′

Z = −β ′
2/β

′
3 in Eq. (10a); so does β3 for Eq. (10b).

Considering a single nonlinear Schrödinger equation, such a
perturbation enables the emission of resonant radiation by a
soliton and affects its propagation dynamics through spectral
recoil [48]. Here it allows us also to study how a perturbation
of, say, subpulse v affects the entire pulse compound.

A clean moleculelike pulse compound for our subsequent
numerical experiments is obtained by first considering two
directly superimposed fundamental nonlinear Schrödinger
solitons with duration t0 = 30 fs, propagating under Eqs. (10)
with β ′

3 = β3 = 0. This initial condition separates into a
moleculelike pulse compound and radiation. We then use the
moleculelike pulse compound, free of additional radiation, as
the starting point for a sequence of simulations with nonzero
β ′

3 and β3.
When modeling the interaction of vector solitons in bire-

fringent fibers [69,70], third-order dispersion experienced by
both subpulses is of the same sign. This is markedly dif-
ferent from the setting considered, wherein two pulses are
coupled across a domain of normal dispersion, causing β ′

3 and
β3 to have different sign. Both situations are demonstrated
in Fig. 6. As evident from Figs. 6(a) and 6(b), under the
condition β ′

3 = β3 = 0.8 fs3/μm, the zero-dispersion points
will both be located at positive-frequency detunings, causing
both pulses to experience a spectral recoil towards negative
detunings. This results in positive leading-order corrections
to their inverse group velocity. As a consequence, the pulses
move towards positive times [Fig. 6(a)] and resonant radi-
ation is generated at �′

R ≈ 0.8 rad/fs and �R ≈ 0.7 rad/fs
[Fig. 6(b)]. In contrast to this, as shown in Figs. 6(c) and
6(d), under the condition β ′

3 = −β3 = 0.8 fs3/μm, the zero-
dispersion points will be on opposite sides of the spectrum.
As a result, the leading-order corrections to the inverse group
velocities of the free subpulses would naturally be of different
sign. The mutual binding between the pulses counteracts this
free behavior, resulting in a partly canceled group-velocity
shift of the entire compound. This becomes apparent when
comparing Figs. 6(a) and 6(c). In this case, resonant radiation
is generated at �′

R ≈ 0.8 rad/fs and �R ≈ −0.7 rad/fs.
To get a better understanding of the impact of nonequal

third-order dispersion on the dynamics of a pulse com-
pound, we next perform a sequence of simulations for
β ′

3 = 0 and nonzero β3, i.e., we deliberately perturb only
Eq. (10b) by third-order dispersion. In Fig. 7(a) we show
the dynamical evolution of the subpulse intensities |u|2 and
|v|2 for one such simulation run using β3 = −0.8 fs3/μm.
We also show the corresponding centroid trajectories
t1 = ∫

τ |u|2dτ/
∫ |u|dτ and t2 = ∫

τ |v|2dτ/
∫ |v|dτ for dif-

ferent perturbation strengths. As evident from these trajecto-
ries, nonzero β3 results in increased (decreased) velocity of
the entire pulse compound when β3 < 0 (β3 > 0). This clearly
highlights the cross-phase-modulation-induced binding be-
tween both pulses already recognized in Fig. 6(c): Subpulse u,
which is not directly affected by the perturbation, is dragged
along with v. In Fig. 7(b) we show the variation of the sub-
pulse separation ξ = t1 − t2 upon propagation, indicating the
internal dynamics of the pulse compounds for nonzero β3. The
internal dynamics for similar pulse compounds, reminiscent
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FIG. 6. Impact of third-order dispersion on the propagation
dynamics of pulse compounds, modeled via coupled nonlinear
Schrödinger equations. (a) Dynamics of both subpulses subject to
the same value of third-order dispersion β ′

3 = β3 = 0.8 fs3/μm.
(b) Subpulse spectra at propagation distance z = 0.1 m. Dashed
lines indicate zero-dispersion points at �′

Z ≈ 0.277 rad/fs and
�Z ≈ 0.220 rad/fs. (c) and (d) Same as (a) and (b) but for β ′

3 =
−β3 = 0.8 fs3/μm. Dashed lines indicate zero-dispersion points at
�′

Z ≈ 0.277 rad/fs and �Z ≈ −0.220 rad/fs.

of molecular vibrations, were reported previously [29,46].
For a given value of β3, ξ exhibits a damped oscillatory
motion decaying proportionally to exp(−z/z0). For example,
in the case of β3 = ±0.8 fs3/μm we find z0 ≈ 0.0042 m.
We further determined the integrated energy flux of the
dispersive waves radiated off by the pulse component v ac-

FIG. 7. Impact of third-order dispersion acting on a single sub-
pulse. (a) Dynamical evolution of subpulse intensities |u|2 (left) and
|v|2 (right) for β3 = −0.8 fs3/μm. Lines indicate centroid trajecto-
ries t1 (for u) and t2 (for v) for different values of β3. Third-order
dispersion is included in the governing equation for v only (see the
text). (b) Variation of subpulse separation ξ = t1 − t2 upon propa-
gation for different values of β3. (c) Integrated energy flux [Qrad]t+

t− ,
with t± = t2 ± 100 fs, leaving pulse component v upon propagation
for different perturbation strengths. The inset shows intensities of
localized pulses and generated radiation for β3 = −0.6 fs3/μm at
z = 0.02 m.

cording to [48]

[Qrad]t+
t− = −∂z

∫ t+

t−
|v|2dτ (11)

for t± = t2 ± 100 fs, which is shown in Fig. 7(c) for dif-
ferent perturbation strengths. We find that the majority of
energy, which is converted to dispersive waves, leaves the
soliton over a propagation length that agrees well with the
decay length z0 of the damped oscillatory motion of ξ .
Hence, a possible explanation for the dampening mechanism
is provided by the emission of dispersive waves by both
subpulses [see the inset in Fig. 7(c)], especially during the ini-
tial propagation stage, consistent with previous observations
[29,46].
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FIG. 8. Impact of the Raman effect on compound with stronger constituent in AD2. White solid and dashed lines indicate trajectories
of associated solitons S − AD1 and S − AD2 with fitted parameters t1 = 18 fs at ω1 = 1.31 rad/fs and t2 = 19 fs at ω1 = 3.06 rad/fs,
respectively. (a) Dynamical evolution in the time domain. The reference frame moves with velocity vref = vg(ω0 = 2.55 rad/fs). (b) and
(c) Evolution in the frequency domain. In (b) the black dashed line (labeled ω1−C) indicates the frequency centroid of the subpulse. The pink
dashed line S − AD1,z shows the trajectory of a further associated soliton at z ≈ 0.3 m. In (c) the black solid line (labeled ωGV ) indicates the
frequency group-velocity matched to ω1−C . The vertical dotted line indicates zero-dispersion frequency ωZ2. The horizontal gray dashed line
marks the distance at which energy transfer to the region of normal dispersion sets in.

Our investigation shows the impact that β3 has on the
individual subpulses as well as the complete compound
when its sign or value differs. We demonstrate that dif-
ferent β3 values impose a different group velocity on the
subpulses, but a stable propagation of the molecule state is
ensured as a result of the strong mutual binding between the
constituents.

2. Raman effect

Depending on the system where the bound states are cre-
ated, the effect of Raman scattering resulting from inelastic
scattering of a photon at atoms and molecules has to be taken
into account. For example, in the propagation dynamics for a
soliton in nonlinear fibers this leads to a self-frequency shift
(SFS) [71]. Here we show that the Raman effect counteracts
the inherent binding mechanism and offers the possibility for
a better understanding of the mutual interaction between the
two constituents. The impact of Raman scattering on nonlin-
early coupled solitons has been investigated for vector solitons
inside birefringent optical fibers for a dispersion profile with
a ZDF on the shorter-wavelength [69,70] as well as on the
longer-wavelength side [72] of the vector solitons. For the
case where the ZDF is located on the longer-wavelength side,
no remarkable effect of the Raman effect is observed as the
frequencies of both solitons are shifted away from the ZDF.
For the opposite case, both pulses are subject to the recoil
effect [48].

Here the slopes of the group-velocity dispersion at the
frequencies associated with both constituents of a compound
state have a different sign [see Fig. 1(b)]. Due to this opposite
sign of the β3 coefficients for the two constituents, peculiar
conditions for the compound state are given in our system.
Since for pulses in AD1 the ZDFs lie at higher frequencies,

a fundamental soliton in this region would propagate under
a continuous SFS [71]. In contrast, a fundamental soliton in
AD2 is subject to the recoil effect [73] when approaching a
ZDF, as usually seen for fiber profiles with one region of
anomalous dispersion [74]. Consequently, we have a strong
counteracting mechanism on the constituents of the molecule
state in our system.

Figure 8 shows the propagation of a molecule under the
impact of the Raman effect for the case where the subpulse lo-
cated in AD1 is weaker than the one in AD2. The propagation
dynamics can be divided into two stages I and II. The initial
molecule state is different from the example used for previous
investigations. Here it is important that both subpulses are
clearly distinguishable to allow for an approximation with
fundamental solitons at best. For this reason, broader initial
pulse durations are advisable. In stage I a continuous decel-
eration due to the SFS occurs up to a point where there is an
abrupt cancellation of the SFS (stage II) and a recoil effect sets
in, accompanied by the generation of radiation. The evolution
in the time domain [Figs. 8(a)] is shown in the reference frame
with the velocity vref = vg(ω0 = 2.55 rad/fs). By choosing
this velocity the resulting pulse in stage II appears stationary.
The first important observation is that the molecule does not
dissolve into its constituents, although the strength of the Ra-
man effect on the constituents is different, being dependent on
the differences of the temporal and spectral widths. Note that
only the center frequency of one of the constituents is shifted
towards a ZDF and that we have three different temporal
durations characterizing one compound state. The temporal
evolution also reveals that the duration of the molecule state
changes with ongoing propagation. Frequency shifts induce
also a change in the temporal properties [37,38,44,51]. Here
it leads to a compression for the subpulse in AD2 down to
approximately 7 fs where stage II sets in. This results also in
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FIG. 9. Impact of the Raman effect on the compound with a stronger constituent in AD1. White solid and dashed lines indicate trajectories
of associated solitons S − AD1 and S − AD2 with fitted parameters t1 = 33 fs at ω1 = 1.2 rad/fs and t2 = 20 fs at ω1 = 2.939 rad/fs,
respectively. (a) Dynamical evolution in the time domain. The reference frame moves with velocity vref = vg(ω0 = 2.55 rad/fs). (b) and
(c) Evolution in the frequency domain. In (b) the black dashed line (labeled ω1−C) indicates the frequency centroid of the subpulse. The pink
dashed line S − AD1,z shows the trajectory of a further associated soliton at z ≈ 2 m. In (c) the black solid line (labeled ωGV ) indicates the
frequency group-velocity matched to ω1−C . The vertical dotted line indicates zero-dispersion frequency ωZ2. The horizontal gray dashed line
marks the distance at which energy transfer to the region of normal dispersion sets in.

a temporal compression for the entire compound at this point.
With ongoing propagation, although there is no frequency
shift, the molecule state broadens because the remaining pulse
changes its properties due to the depletion of the binding
partner. The trajectory of the frequency centroid ω1−C for the
constituent in AD1 is highlighted by a black dashed line in
Fig. 8(b). A black solid line in Fig. 8(c) shows ωGV , i.e.,
the frequency group-velocity matched to ω1−C . An uniform
frequency downshift for both subpulses occurs until the fre-
quency of the stronger constituent in AD2 reaches the ZDF
and stage II initiates. The subpulse accumulates in the vicinity
of the ZDF due to the spectral recoil effect [73] and energy
is steadily shifted to the region of normal dispersion. We
observe that this has an immediate powerful effect on the
weaker subpulse in AD1: Although there is no ZDF barrier
for this subpulse, its center frequency shift is canceled as well
[Fig. 8(b)].

Next we will facilitate intuition on how the above effects
affect each subpulse. We first perform an additional numeri-
cal experiment for each subpulse, clarifying the propagation
dynamics of a fundamental soliton with duration and cen-
ter frequency that match those of the subpulse at z = 0 m.
Below, for brevity, we refer to such a specially tailored
fundamental soliton as an associated soliton. The frequency
centroids of these associated solitons are included as white
dashed and solid lines in Figs. 8(a)–8(c). Comparing their
frequency centroids to the actual subpulse spectra, we find
excellent agreement for the strong subpulse [Fig. 8(c)] and
large deviations for the weak subpulse [Fig. 8(b)]. Since
for the chosen parameters the larger part of the spectral en-
ergy in this scenario is located in AD2, it is exactly this
subpulse that determines the behavior of the other one. In-

deed, both subpulses remain group-velocity matched. This
is evident from Fig. 8(c), where ωGV , i.e., the frequency
group-velocity matched to ω1−C , is included. This strong
self-preservation, supported by the inherent binding mecha-
nism of the soliton molecule, leads to a stable decelerated
propagation of the state [Fig. 8(a)]. The resulting group ve-
locity is determined by the stronger subpulse, approaching
the ZDF. With further propagation in stage II, energy is trans-
ferred into region ND and the energy of the strong subpulse
is reduced. Nevertheless, the binding between the two con-
stituents is strong enough to allow the existence of a molecule
state.

The second example is chosen in such a way that the
subpulse in AD1 is dominant. Thus, we can investigate what
happens if the stronger subpulse does not meet any ZDF.
The evolution in the time and frequency domains is shown
in Figs. 9(a), 9(b) and 9(c), respectively. At first, similar to
the preceding case, the strength of the shift is dominated by
the stronger subpulse (which is now located in AD1). Note
that the subpulse in AD2 exhibits a much smaller temporal
duration and its associated soliton achieves a much stronger
deceleration [see Fig. 9(c)]. As above, there is an abrupt can-
cellation of the frequency shift for both pulses in stage II. This
time, however, the change is induced by the weaker pulse.
Surprisingly, we still observe the existence of a molecule state
with further propagation. The stronger pulse does not directly
dissolve from the molecule state and the frequency centroids
of both subpulses remain group-velocity matched, determined
by the velocity close to the ZDF for the weaker pulse in AD2.
For comparison, we plot the trajectories of associated solitons
in Figs. 9(b) and 9(c). In addition, we provide the trajectories
for yet another associated soliton, modeled after the strong
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FIG. 10. Generation process of a molecule state with three subpulses. (a) Group-velocity dispersion (GVD) curve that exhibits three
domains of anomalous dispersion and allows for group-velocity-matched propagation of three frequencies at which GVD is anomalous.
Domains of normal dispersion are shaded gray. (b) Spectra at z = 0 cm (dashed line) and z = 20 cm (solid line). The latter shows the triplet
state, including any accompanying radiation. (c) Evolution in the time domain. (d) Time-domain intensity and (e) spectrogram at z = 20 cm
for σ = 40 fs in Eq. (8).

subpulse at a z position within stage II, where the energy shift
to the region of normal dispersion has set in already [pink line
in Fig. 9(b)].

Due to the recoil effect, the weaker pulse radiates and
transfers energy to the normal dispersion regime, leading to
a slow depletion of one of the constituents of the bound state.
The depletion of the binding partner occurs steadily and for
very large propagation distances, the bound state eventually
dissolves. We find that the remaining subpulse, i.e., the one
in AD1, forms a fundamental soliton which is now under the
usual influence of a SFS (not shown).

As in Refs. [69,72], we observe that the Raman effect is not
detrimental to the copropagation of temporally locked pulses.
Although in our systems the competition between the binding
mechanism and Raman effect is quite distinctive, as the un-
derlying conditions provide a strong counteracting interaction
between the subpulses, a molecule state is supported despite a
strong perturbation. Our analysis of the two simple examples
above provides a deeper understanding of the molecule state
and the strength of cohesion displayed by its constituents. Our
approach for investigation of the bound state relies on the
interpretation of two pulses with well-separated spectra, with
a binding mechanism provided by incoherent XPM. Let us
note that the dynamics of the molecule states can be much
more complicated, e.g., forming an oscillating compound
state or a state with a spectrum reaching over the normal
dispersion regime. To thoroughly characterize the effect of
Raman scattering on such molecule states as well, further
investigations and complementary approaches of analysis are
necessary. Nevertheless, our simple picture reveals intriguing
dynamics, such as the cancellation of the self-frequency shift
for the entire pulse compound, even though just one of its
constituents approaches a zero-dispersion point. This appears
directly interesting for applications, as the properties for one
pulse can be transferred to another pulse over a wide gap in
the spectrum.

D. Molecule states with three subpulses

Three-soliton molecules, i.e., bound states consisting
of three solitons, have been demonstrated in dispersion-
managed fibers [75]. More recently, polychromatic soliton
molecules with up to three frequencies, i.e., three-color soliton
molecules, have been studied in theory and experiment for a
mode-locked laser cavity [31]. Such a concept has even been
expanded to spectrally periodic structures.

Here we transfer the concept of such multicolor
compound states to the presented framework. To support
a moleculelike bound state with three distinct subpulses in
our system, a propagation constant is needed that allows
for group-velocity matching of three distinct frequencies
for which group-velocity dispersion is anomalous. A
representative group-velocity dispersion profile satisfying
these requirements is shown in Fig. 10(a). It exhibits
multiple separate domains of anomalous dispersion. Based
on the underlying propagation constant, the generation
process of a molecule state with three distinct subpulses,
subsequently referred to as a triplet state, is shown in
Fig. 10(c). Therefore, three fundamental solitons with
durations t1 = t2 = t3 = 60 fs and center frequencies
ω1 = 1.711 rad/fs, ω2 = 3.233 rad/fs, and ω3 =
4.976 rad/fs are initially superimposed and propagated using
Eq. (1). Similar to the generation process of two-frequency
pulse compounds discussed above, this results in a localized
state as well as additional radiation. Here the localized state
now exhibits three distinct subpulses.

Upon propagation, an increase in peak intensity and a
decrease in the duration of the localized state, resulting from
the mutual interaction between the three subpulses, are clearly
visible [Fig. 10(c)]. Figure 10(b) shows the spectrum of the
triplet state at z = 20 cm (solid line). In comparison to the
initial spectrum (dashed line), strong spectral broadening of
the initial pulses is evident. A spectrogram of the field at
z = 20 cm is shown in Fig. 10(e), highlighting the tripartite
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structure of the localized state in the time-frequency plane. All
three subpulses exhibit similar intensities. The simultaneous
presence of several frequencies is also reflected by the highly
fringed appearance of the time-domain intensity shown in
Fig. 10(d). From this figure it can also be seen that the duration
of the triplet state is much shorter than any initial soliton; we
estimate its duration to be approximately equal to 19 fs.

IV. CONCLUSION

We have performed numerical simulations to investigate
the properties of heteronuclear two-color soliton molecules.
We characterized the rearrangement and final distribution of
energy among the constituents of such molecules for two
different generation mechanisms, which allowed us to draw
connections between the contributing parameters as well as
to gain insight into the highly dynamic molecule generation
process.

We further discussed the impact of different types of per-
turbation on the molecule states. We assessed the role of
third-order dispersion in terms of a simplified modeling ap-
proach, wherein molecule states are described via coupled
nonlinear Schrödinger equations. Perturbing only a single
subpulse by third-order dispersion, we found that the entire
pulse compound is affected. This highlights the cross-phase-
modulation-induced binding between the constituents of a
molecule, enabling both its constituents to remain group-
velocity matched despite perturbations. Studying the impact
of the Raman effect, we found that this mutual binding re-
sults in astounding dynamics of the molecule states: The
self-frequency shift of the entire pulse compound is can-

celed, even though only one of its subpulses approaches a
zero-dispersion point and so experiences a spectral recoil. Fur-
thermore, this behavior is independent of whether the stronger
or weaker subpulse is constrained by the zero-dispersion
point. An investigation of these perturbations revealed that
the constituent subpulses of the molecule state are strongly
connected. Changes imposed on one subpulse individually are
transferred to the second one over a large frequency gap and
influence the propagation dynamics of the entire inseparable
compound.

Finally, we transferred the concept of multicolor molecule
states to the system presented herein, by showing how a
molecule state with three subpulses can be realized by means
of an adequate propagation constant. This underlines the
flexibility of the system, limited only by the choice of the
propagation constant. This opens up the possibility to generate
molecule states with many constituents as well as generation
mechanisms for very broad and bright spectra, possibly with
supercontinuum properties.
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