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We theoretically propose a synthetic frequency dimension scheme to control the spectrum of a light beam
propagating through an array of evanescently coupled waveguides modulated in time by a propagating sound
wave via the acousto-optical effect. Configurations are identified where the emerging two-dimensional synthetic
space-frequency lattice displays a nontrivial topological band structure. The corresponding chiral edge states can
be exploited to manipulate the frequency spectrum of an incident beam in a robust way. In contrast to previous
works, our proposal is not based on discrete high-Q cavity modes and can be applied to the manipulation of
broadband signals with arbitrary spectra.
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I. INTRODUCTION

The control of the frequency spectrum of a light beam
is of high importance in a number of photonic applications,
from high speed communications to quantum technologies. In
telecommunications, the concept of frequency division multi-
plexing (FDM) is at the basis of 5G technology and allows one
to increase the data throughput by superposing in time signals
with different carrier frequencies [1]. In quantum optics, en-
tanglement and quantum interference processes involving the
frequency and/or temporal degrees of freedom are attracting a
strong interest [2–4] and strategies for a careful compensation
of frequency mismatch between different emitters are often
required [5–7].

In all these applications, the ability of manipulating the
spectrum of generic signals is a fundamental basic block
in the direction of building complex networks. Among the
many processes that can be exploited to this purpose, such as
nonlinear optical wave mixing [8–12] or photon energy lifter
[13,14], a most intriguing one is undoubtedly the dynamical
modulation in time of the optical properties of a medium. Such
mechanism has been recently exploited to realize synthetic
dimensions [15–17] in which the frequency degree of freedom
plays the role of an extra physical dimension. This leads to
an effective description of light propagation in terms of a
higher-dimensional wave equation, where different kinds of
forces can be engineered to control the dynamics in the full
high-dimensional space.

Most of the so far proposed synthetic frequency dimen-
sion schemes rely on the dynamical modulation of resonating
structures like multimode cavities [18,19], where high qual-
ity factors are typically needed. Not only does this impose
stringent limits on the fabrication quality, but also restricts
the signals to be manipulated to quasimonochromatic light
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beams or frequency combs with a spacing commensurate to
the free spectral range of the resonators. The severity of this
restriction is most apparent when contrasted to the typically
broadband nature of telecommunication signals and to the
inhomogeneous broadening of quantum emitters.

This limitation can be overcome by replacing resonating
configurations with propagating ones such as optical waveg-
uides. Recent works have started exploring the temporal
modulation of isolated LiNbO3 optical waveguides [20–22]
using an RF-driven electro-optical effect. However, many in-
teresting phenomena such as topological effects [15,23–25]
requires at least another dimension. Beside using multifre-
quency temporal modulations [26], reciprocal space schemes
[27–29], or spinlike degrees of freedom [30], a most direct
way to increase the dimensionality is to use evanescently
coupled waveguide arrays (CWAs) [31]. A pioneering pro-
posal in this direction was recently put forward, based on a
complicated lattice geometry [32].

In this article, we propose the use of propagating sound
waves to dynamically modulate a simpler uniformly spaced
CWA via the acousto-optic effect. This allows one to realize
a hybrid synthetic space composed by a spatial and a fre-
quency dimension and, thus, observe topological photonics
effects of great interest for applications. While our proposal
directly extends to electro-optically modulated CWAs, the use
of sound-induced acousto-optical modulation in laser-written
amorphous materials rather than the electro-optic effect in
patterned crystalline materials eases fabrication. Moreover,
the larger interwaveguide distances of laser-written devices
are compatible with the long wavelength of the sonic waves
considered in this work. As a result, one can make use of
standard photonic technology to design a suite of efficient
schemes that take advantage of topological protection for
the robust coherent manipulation of the carrier and/or the
linewidth of broadband signals. A crucial further theoretical
step beyond the recent work [32], we explicitly show how our
proposal is able to efficiently manipulate broadband beams
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FIG. 1. (a) Concept of the traveling sound wave used to modulate
a single optical waveguide. (b) Induced 1D spectral lattice in the
dispersion relation of the fundamental waveguide mode. (c) Disper-
sion relation in the frequency lattice, that is the longitudinal wave
vector kz plotted as a function of the frequency momentum k f .
(d) Top (bottom) Illustration of the qualitatively different dynamics
for narrowband (broadband) light beam compared to the modulation
frequency ωm.

with arbitrary spectra other than a comb of monochromatic
components, including single optical pulses. Furthermore, we
highlight how our proposal does not require additional waveg-
uides to selectively inject light into the desired mode of the
lattice.

II. DYNAMICAL MODULATION OF A SINGLE
ISOLATED WAVEGUIDE

Let us start from an isolated optical waveguide, whose
axis is aligned to the z direction. Restricting to its lowest
order mode, the waveguide supports propagating states with
a continuous frequency spectrum ω and propagation constant
κl (ω). Let us now include a monochromatic refractive index
modulation of angular frequency ωm traveling through the
surrounding bulk material with a wave vector km forming an
angle θ with respect to the waveguide axis [see Fig. 1(a)],

�n(r, t ) = 2 δn cos(km · r − ωmt ). (1)

The effect of this monochromatic spatiotemporal modulation
is to linearly couple frequency components that are separated
by the modulation frequency ωm [Fig. 1(b)]. The equation de-
scribing the evolution of each frequency component of the
light beam then takes the form of a Schrödinger-like equa-
tion on a continuous one-dimensional (1D) frequency space
displaying long-range hoppings. Here, the light propagation
direction z plays the role of time and the frequency ω plays
the role of a spacelike variable,

i∂zE (z, ω) = �k

ωm
ω E (z, ω) − β E (z, ω ± ωm). (2)

In this equation, β = δn k0 quantifies the hopping amplitude
and the phase mismatch �k = km cos θ − ωm

∂κl
∂ω

between the
modulation and the optical wave provides a diagonal term
�k
ωm

ωE (z, ω) representing a (static) scalar potential in the

direction of increasing light frequency. The details of the
derivation can be found in Appendix A.

In the limiting case where the input light is either
monochromatic or consists of a comb of monochromatic lines
spaced by ωm, the rigorous form (2) of the propagation equa-
tion can be rewritten in a more familiar form. Such a condition
means that the input beam has the same periodicity as the
acoustic modulation of period Tm = 2π/ωm. In this case, the
symmetry of the system allows one to restrict our attention
to a discrete set of frequencies {ωn} = ω0 + nωm. Then, upon
the definition of the frequency components an(z) = E (z, ωn),
the evolution (2) can be rewritten [15,18,32] in terms of a
discrete 1D lattice corresponding to the synthetic dimension
associated with the light frequency [Fig. 1(c)],

i∂zan(z) = n �k an − β an±1. (3)

While these results were known from previous works, our
formalism allows our study to be straightforwardly extended
to more general cases of broadband beams, for instance, single
optical pulses. Here, the peculiar connectivity induced by the
long-range hopping that is pictorially depicted in Fig. 1(d)
makes the synthetic dimension to have an effectively discrete
(3) or continuous (2) character depending on the bandwidth
of the input beam. With no loss of generality, we restrict for
simplicity to beams with a Gaussian spectral shape,

E0(ω) = e−( ω−ω0
�ω )2

e−ik f (ω−ω0 ). (4)

Here, the k f parameter, hereafter referred to as frequency mo-
mentum, represents the phase relation between the frequency
components of the input beam and plays the same role of
the momentum of a quantum particle or the transverse wave
vector in real space waveguide arrays [31]. The eigenvalues of
(3) are the longitudinal wave vectors of light, which play the
same role of the energy of a quantum particle in a 1D lattice.
In Fig. 1(c) we plot the resulting dispersion relation, namely
kz, normalized to the coupling constant β, as a function of the
frequency momentum.

If the spectrum of a narrowband input signal is limited
within the hopping range �ω � ωm (namely the light pulse
duration τ = 2

√
2 log 2/�ω is longer than the acoustic mod-

ulation period Tm), as in the top line of Fig. 1(d), then all
the components of such an input signal excite a single cell
in the synthetic space and the dynamics of the frequency
spectrum recovers that of a monochromatic beam discussed
in (3) [20,21]. Examples of possible behaviors are shown in
Figs. 2(a) and 2(b) where a narrowband signal with �ω =
0.3ωm is used as an input: In Fig. 2(a), the phase mismatch
�k is set to zero and, as a result, the spectrum envelope gets
broadened by the diffraction in the discrete frequency space.
On the contrary, in Fig. 2(b) periodic oscillations appear as
a result of the linear potential induced by a finite phase mis-
match �k and can be physically interpreted in terms of Bloch
oscillations [20,21].

A richer physics is found when the bandwidth of the in-
jected light pulse is increased to �ω � ωm (i.e., the temporal
duration of the pulse decreased to τ � Tm) and encompasses
several cells. In this case, the dynamical modulation in-
duces a coupling between different frequencies of the same
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FIG. 2. Power spectral density of light traveling in a dynamically
modulated waveguide as a function of the propagation distance.
(a) and (c) Diffraction in the frequency space of a narrowband (a) or
broadband (c) signal with, respectively, �ω = 0.3ωm and �ω =
3ωm. (b) and (d) Bloch oscillations in the frequency space of the same
narrowband (b) and broadband (d) signals in the presence of a finite
phase mismatch �k = β/2. (e) and (f) Propagation in the frequency
space of the broadband signal injected in the waveguide, now with a
time delay �T = ±π/(2ωm ). For this and all the following simula-
tions 800 nm light and a δn = 5 × 10−5 refractive index modulation
are considered.

broadband input signal [Fig. 1(d)] and the dynamics resem-
bles the one of continuous space [Figs. 2(c)–2(f)]. Most
importantly, as the input signal excites multiple sites of
the spectral lattice, the frequency momentum k f becomes
relevant.

Interestingly, whereas k-space momentum selection in
CWAs is typically achieved by tilting the incident beam with
respect to the waveguide axis, here the reciprocal space of the
frequency dimension is the real time and k f can be understood
as the time delay (�T ) of the light pulse with respect to
the sonic modulation. As a consequence, specific frequency
momenta, corresponding to different group velocities in the

reciprocal space, can be simply excited with an appropriate
choice of the arrival time of the light pulse �T .

Examples of the evolution of broadband pulses with �ω =
3ωm are displayed in Figs. 2(c)–2(f) and can be physically un-
derstood in terms of the propagation constant ε vs frequency
momentum k f dispersion relation plotted in Fig. 1(c). In par-
ticular, in Fig. 2(c), �T = 0 is chosen, which corresponds
to the minimum of the dispersion relation. This results in a
ballistic broadening of the spectrum during propagation with
no significant drift. In Fig. 2(d), a finite phase mismatch �k is
instead imposed, which is responsible for Bloch oscillations in
the frequency space, where the spectrum oscillates back and
forth with a period along z inversely proportional to the phase
mismatch �k.

For general values of k f , a blue- or red-wards uniform
drift is observed depending on the value of k f , namely its
temporal delay. Its direction and magnitude is set by the
frequency group velocity dε/dk f , namely the slope of the
dispersion law plotted in Fig. 1(c). The highest group ve-
locities are obtained for frequency momenta k f = ±π/2 and
are directed in the positive and negative directions, respec-
tively: The corresponding z-dependent blue- and red-wards
uniform drifts of the input signal frequency are reported in
Figs. 2(e) and 2(f), where we show the frequency dynamics
of a light pulse injected with time delays �T = ±π/2 in
a phase-matched (�k = 0) system. Quite interestingly, the
efficiency of this time-to-frequency multiplexing conversion
requires the input beam to have a narrow enough distribution
of frequency momenta k f , that is, a wide enough spectrum
�ω > ωm encompassing several cells.

An alternative point of view on this behavior of spectrally
broad and temporally short pulses is obtained by reformulat-
ing (2) in real time,

i∂ze(z, t ) = i
�k

ωm
∂t e(z, t ) − 2β cos(ωmt ) e(z, t ), (5)

where, as before, the role of the space-time variables is ex-
changed: The propagation distance z plays the role of time
and the physical time t is a spacelike variable [33]. The
electric field amplitude e(z, t ) is here measured in the co-
moving frame at the displacement speed vm = ωm/(km cos θ )
of the modulation profile (see Appendix A for the detailed
derivation) and the temporally short light pulse occupies a
small region within the modulation period. The first term
on the right-hand side, proportional to the phase-mismatch
�k, gives a uniform drift of the wave packet along t . This
drift can be understood as due to the wave packet propagat-
ing at speed vg = ∂ω/∂κl in the laboratory frame, while the
modulation wavefronts move at vm. The second term on the
right-hand side can be instead understood in the analogy with
a Schrödinger equation as a t-dependent potential Veff(t ) =
2β cos(ωmt ). The derivative of the potential then provides a
drift of the momentum conjugate to t , that is, the frequency ω.
On the other hand, since the second-order derivative term in
t is missing (we have set the group velocity dispersion of the
waveguides to zero, d2κl/dω2 = 0), there is no kinetic energy
nor any expansion of the wave packet in t .
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FIG. 3. (a) Scheme of a dynamically modulated array of coupled waveguides. (b) Scheme of the two-dimensional Harper-Hofstadter lattice
in the hybrid space composed of the spatial and the frequency dimensions with the corresponding hopping amplitudes. (c) Dispersion relation
of a � = 1/4 HH lattice. Edge states are color coded accordingly to their localization as in (b): green is for left-edge localized states and
orange for right edge. (d) Topological frequency conversion on the right edge of the modulated waveguide array when up–/down-shifting
topological modes are selectively excited using properly delayed pulses. Main panels show the intensity distribution in the hybrid frequency
space of output light. The insets display the power spectral density during propagation on the excited waveguide. Same parameters as in Fig. 2.

III. DYNAMICALLY MODULATED WAVEGUIDE ARRAYS

While the previous results already give a hint of the poten-
tial of modulated waveguides as a tool to control the spectrum
of broadband light pulses, we are now going to see how the
modulation of CWAs can capitalize on topological photonics
effects to increase the robustness of the spectral manipulation.

To this purpose, let us now include a physical dimension
in the model: Consider a 1D array of identical waveguides
distributed along the x direction separated by a constant dis-
tance d [Fig. 3(a)]. For a sonic modulation propagating at an
angle θ with respect to the waveguide axis, the dynamical
modulation can be written in terms of the 
th waveguide
position x
 = 
d as �n
(z, t ) = 2b cos(kz

mz + kx
m
d − ωmt ),

where kz
m = km cos(θ ) and kx

m = ks sin(θ ) are, respectively, the
longitudinal and orthogonal components of the modulation
wave vector with respect to the waveguide axis.

Analogous calculations with respect to the single waveg-
uide case (see Appendix A for details of the derivation) lead
to the following set of propagation equations for the modal
amplitude in the 
th waveguide at frequency ω,

i∂zE
(z, ω) = �k

ωm
ω E
(z, ω)

− βe±i
� E
(z, ω ∓ ωm) − B E
±1(z, ω), (6)

where β is again the coupling coefficient in the frequency di-
mension, B is the coupling coefficient in the spatial dimension
which encapsulates the modal overlap between neighboring
waveguides, �k is the usual phase mismatch term, and � =
kmd sin(θ ).

For a narrowband incident pulse, it is again possible to
discretize the frequency dimension by restricting to {ωn} =
ω0 + nωm. This leads to a two-dimensional (2D) rectangular
lattice [Fig. 3(b)] in a hybrid space composed of a spatial and
a frequency dimension and to a propagation equation:

i∂za
,n = n � k a
,n − β e±i
� an∓1,
 − B an,
±1, (7)

which takes the form of a Harper-Hofstadter (HH) model [24].
Because of the nonreciprocal phase term in the frequency-
space coupling, proportional to β, a loop around a single
plaquette of the rectangular lattice is in fact associated to a
phase shift of � = ∮

c A · dr = kmd sin(θ ). This phase shift
is analogous to the geometric phase acquired by a charged
particle in a constant magnetic field piercing the lattice.

A. Topological 2D physics in the synthetic space

For a rational � = p/q (with p, q co-prime integers), the
band structure of the HH model is composed by q bands
with nonzero Chern numbers signaling nontrivial topological
properties [24]. As a consequence of such nontrivial topology,
in a finite lattice geometry, chiral edge states appear within
each bandgap and can be used to unidirectionally transport
light around the edge of the system. In particular, we consider
a ribbon geometry with a finite extension along the spatial
dimension and infinite in the frequency dimension. The re-
sulting bandstructure is shown in Fig. 3(c): Depending on the
value of the frequency momentum k f , midgap states appear
with well-defined and opposite group velocities, exponentially
localized at the opposite spatial edges of the waveguide array,
indicated by the green and orange curves in the figure. Since
a single state only exists in each gap for each edge, they
are immune to elastic back-scattering on disorder and allow
for unidirectional transport, in our case along the frequency
direction.

To demonstrate that unidirectional states with a specific
chirality can be excited in a realistic experiment we inject a
broadband input state with specific values of the frequency
momenta k f into the left-most waveguide of the array. As
already described in the single waveguide case, the frequency
momentum k f corresponds to the time delay �T with respect
to the dynamical modulation: Having a localized beam in
k f then corresponds to having a temporally short pulse, well
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FIG. 4. Spectral power density distribution as a function of
the propagation distance in the presence of a frequency-dependent
refractive index disorder for a broadband beam propagating in
a single modulated waveguide (left) or in a unidirectionally propa-
gating edge mode of a topological array (right). Same parameters of
Fig. 2; the noise is uniformly distributed with maximum amplitude
�n ≈ β/k0.

shorter than the modulation period Tm and wider in frequency
than the modulation frequency ωm.

Figure 3(d) shows how this procedure indeed results in the
excitation of blue- or red-shifting topological modes, depend-
ing on the excited edge and on the value of the frequency
momentum: As one can see from the dispersion relation of the
specific HH lattice under consideration, each edge supports
indeed a single edge state for each value of k f . Thanks to this
fact, there is no need to use additional “straw” waveguides
to select states with the desired propagation constant [32,34].
As this topological state is exponentially localized at the in-
terface, light stays confined in the vicinity of the spatial edge
and does not substantially penetrate into the bulk waveguide,
whereas the overall frequency spectrum is shifted towards
higher (or lower) frequencies, as illustrated in the inset.

The key novelty of the topologically protected frequency
transport in the hybrid frequency-space lattice is highlighted
in Fig. 4. While in the clean system the frequency shift may
look very similar to the one of the isolated waveguide con-
figuration shown in Figs. 2(e) and 2(f), the behavior in the
presence of disorder is completely different. In the figure,
we consider as an example a frequency-dependent refractive
index, as it would be the case with an impure optical medium.
For an isolated waveguide, such a disorder would induce a
localization effect, so that the frequency conversion is inhib-
ited [Fig. 4(a)]. On the contrary, as shown in Fig. 4(b), when
happening through a topological mode the frequency shift is
robust.

This result demonstrates the power of hybrid frequency-
space lattices for shifting the carrier frequency of a broadband
signal in a topologically protected way. In particular, the
direction and the magnitude of the frequency shift can be
controlled by the temporal delay �T of the incident pulse
and the wave vector of the dynamical modulation. From the
point of view of topological photonics, an exciting asset of
our proposal consists of the possibility of varying the value
of the synthetic magnetic field � through the properties of the
sound wave and, in this way, span across models with different
topological properties. Further manipulation tools are offered
by the dispersion relation of the different waveguides [35]

and/or the frequency dependence of their refractive index
[15], which, respectively, induce external potentials along the
spatial and frequency directions.

B. Edge effects in frequency space

While a fundamental limitation to the size of the lattice is
imposed by the finite physical size of the waveguide array, its
size along the frequency dimension is effectively unbounded.
A higher order expansion of the waveguide dispersion re-
lation, taking into account the group velocity dispersion
∂2κl/∂ω2 of the waveguides [33] would induce a parabolic
confining potential in the frequency dimension, but this effect
is typically only relevant when sizable frequency shifts are
considered, which is not the case of this first study. A detailed
discussion of these higher order effects will be the subject of
a future work.

In this section we follow an alternative route and we show
how absorbing elements with a strongly localized absorption
spectrum (due, for instance, to impurities in the constitutive
material of the optical waveguides) can act as a hard edge
in the frequency dimension, as first proposed in [15], with
interesting applications to filtering or frequency routing.

We consider a frequency-dependent absorption with a
Gaussian profile, centered at a frequency ωa with bandwidth
of �ωa. Such an absorption is modeled as an additional
frequency-dependent term α(ω) in the equation of motion (6):

i∂zE
(z, ω) =
(

�k

ωm
ω + α(ω)

)
E
(z, ω)

− βe±i
� E
(z, ω ∓ ωm) − B E
±1(z, ω), (8)

where we take for concreteness,

α(ω) = −i ᾱ e−( ω−ωa
�ωa )2

, (9)

with a strong ᾱ � β. This latter condition enforces a Zeno
regime where absorption is effectively blocked and negligible
power is dissipated [36]. Because of the peculiar long-range
connectivity that characterizes the synthetic frequency di-
mension, the behavior of the system qualitatively changes
according to the bandwidth of the absorbing impurity.

Let’s first consider a broad absorption spectrum �ωa �
ωm, such that all the frequency components of an incident
wave packet will likewise experience the hard edge in fre-
quency space. As a result, as no counterpropagating states at
the same propagation constant ε exist, the entire wave packet
will be deflected with perfect transmission around the corner
of the hybrid space and will keep propagating along the physi-
cal direction. This behavior is illustrated in Fig. 5 (left), where
a broadband light pulse is injected in the leftmost waveguide
of a dynamically modulated array with the right frequency-
momentum k f to excite a blue-shifting topological mode. As
soon as the wave packet hits the broadband absorption the
blue-shift stops and light is unidirectionally guided along the
spatial dimension. On the contrary, if the absorption spec-
trum is narrowband (�ωa � ωm) the long-range interaction
will allow for some frequency component to freely go across
the absorption band. This behavior is illustrated in Fig. 5
(right). There, a blue-shifting wave packet hits a narrowband
absorption while propagating along the frequency dimension.
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FIG. 5. Spectral power density distribution in each waveguide
after a propagation of 10 cm when a strong absorption, centered at
ω/ωm = 9, is considered. (Left) Broadband absorption acts as an
effective hard wall for the whole wave packet. (Right) Narrowband
absorption acts as an effective hard wall only for a fraction of the
wave-packet spectrum, while the rest keeps propagating undisturbed.
(Insets) Spectral power density distribution as a function of the prop-
agation distance in the leftmost waveguide of the array.

When they collide with the frequency wall, a series of bins
corresponding to the absorption band are chopped out from
the wave-packet spectrum and are deflected along the physical
dimension. The rest of the wave packet does not interact
with the absorption band and keeps propagating along the
frequency dimension in the form of the modulated up-shifting
frequency spectrum visible in the inset.

This unique feature is the result of topological physics (uni-
directional reflection-less propagation) for broadband beams
in a continuous frequency synthetic dimension and does not
have, to the best of our knowledge, any counterpart in cavity-
based topological schemes. With a suitable design of the
central frequency and bandwidth of the absorption band, such
effect could find interesting applications in telecommunica-
tion technology such as frequency filtering, switching, and
(de)multiplexing.

IV. CONCLUSIONS AND PERSPECTIVES

In this work we have proposed a scheme to realize a hy-
brid frequency-space synthetic lattice subject to a synthetic
magnetic field by acousto-optically modulating an array of
waveguides. The strength of the synthetic magnetic field is
controlled by the wave vector of the sound wave and, in turn,
determines the topological properties of the lattice. Specific
values of the frequency momentum in the synthetic direction
can be selected by tuning the arrival time of the incident pulse
with respect to the modulation period, leading to an efficient
time-to-frequency multiplexing conversion.

The proposed scheme paves the way to the use of the
standard photonic technology of laser-written waveguides for
the spectral manipulation of broadband signals. The coherent
nature of the proposed scheme permits its application both to

classical waves and to single- or few-photon quantum wave
packets, e.g., to manipulate their entanglement between time,
frequency, and spatial variables. This opens the way to various
applications in telecommunications and quantum science and
technology.
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APPENDIX A: DERIVATION OF THE EQUATIONS
OF MOTION

In the following we provide further details about the deriva-
tion of the equation of motion in the hybrid space-frequency
lattice.

1. Equation of motion for a single modulated waveguide

Let’s consider paraxial light propagation in an optical
waveguide with the axis aligned to the z direction. Under the
assumption of slowly varying refractive index modulation, the
modal amplitude of the electric field is also assumed to vary
slowly, and the paraxial Helmholtz equation can be rewritten
as a Schrdinger-like equation,

i∂zE (z, t ) = −k E (z, t ) − �n k0 E (z, t ). (A1)

Here k is the light wave vector that is a function of the tem-
poral derivative and the dispersion. We consider a refractive
index perturbation that has a traveling monochromatic wave
profile such as

�n(r, t ) = 2 δn cos(km · r − ωmt ). (A2)

Since the typical optical waveguide width is much smaller
than the wavelength of the perturbation, we assume the per-
turbation phase to be constant in the transverse plane therefore
we can rewrite the modulation as

�n(z, t ) = 2 δn cos(kz
mz − ωmt ), (A3)

where kz
m = km cos(θ ), being θ the angle of the modulation

wave with respect to the waveguide axis, is the z component of
the modulation wave vector. We move to the frequency space
and rewrite (A1) as

i∂zE (z, ω) = −κl (ω) E (z, ω) − k0 �n(z, ω) � E (z, ω),
(A4)

where � denotes convolution in the frequency space,
�n(z, ω) = δne±ikz

mzδ(ω ∓ ωm) is the Fourier transform of
�n(z, t ) and k(ω) is the light wave vector that we can expand
around ω0 as k(ω) = k0 + ω−ω0

vg
, vg being the group velocity in
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the waveguiding structure. We now perform a gauge transfor-
mation and move to the light wave reference frame by defining

E (z, ω) = Ẽ (z, ω)eik(ω)z. (A5)

With this substitution the equation for Ẽ (z, ω) reads

i∂zẼ (z, ω) = −k0 δn e
±i

(
km− ωm

vg

)
zẼ (z, ω ∓ ωm), (A6)

in which we used the fact that k(ω ± ωm) − k(ω) = ±ωm/vg.
We define the phase mismatch between the light wave and the
perturbation as �k = km − ωm/vg and perform another gauge
transformation,

Ẽ (z, ω) = Eei ω
ωm

�kz, (A7)

which allows to write the equation for E:

i∂zE = �k

ωm
ω E − β E (ω ∓ ωm), (A8)

where β = k0δn is a coupling coefficient. The diagonal term
�k
ωm

ωE (z, ω) = V ωE (z, ω) plays the role of an on-site energy
increasing in the direction of increasing frequencies, which is
the analog of a constant scalar potential.

The scalar potential V is proportional to the phase mis-
match:

V ∝ �k = kz
m − ωm

∂k

∂ω
= km cos θ − ωm

vg
, (A9)

where vg ≈ c0/n is the group velocity of light in the waveg-
uide. Here, the phase-matching condition corresponds to
having �k = 0 in (A9).

As the light wave vector is extremely small, one can typi-
cally assume �k ≈ km cos θ . However km = 2πωm/cm, where
cm is the speed of the modulation wave, is a significant
quantity. As a result the slightest deviation from the optimal
propagation angle θ = ±π/2 makes the phase mismatch too
strong to observe any dynamics in the synthetic space at
all. As we further discuss in the implementation section this
motivates the need of precisely controlling the direction of the
light wave which is a notable experimental effort.

2. Equation of motion for a modulated waveguide array

Let’s now consider an array of modulated waveguides. If
we consider no coupling between the individual waveguides
then each waveguide of the array can be described by an equa-
tion analogous to (A1). On the other side, if the waveguides
are weakly coupled (A1) is modified to include a coupling
coefficient between the waveguides yielding the following set
of equations for the 
th waveguide of an array,

i∂zE
(z, t )
 = − k E
 − k0 �n(z, t ) E
(z, t )

− B E
±1(z, t ), (A10)

where we assumed the waveguides to be all identical such that
k
 = k and the hopping amplitude is B.

The refractive index perturbation, as previously consid-
ered, is a traveling wave described by

�n(z, t ) = 2 δn cos(km · r − ωmt ). (A11)

We consider the waveguides to be evenly distributed along
the x direction with an interwaveguide distance d that we as-
sume to be much larger than the waveguide width. The phase
of the perturbation is therefore different in each individual
waveguide, but can be considered constant across the width
of each waveguide. To this aim we discretize the space in the
x direction and define the position of the 
th waveguide as
x
 = d
. The refractive index perturbation can be rewritten as

�n
(z, t ) = 2 δn cos(kz
mz + kx

md
 − ωmt ), (A12)

where kz
m = km cos(θ ) is the longitudinal component while

kx
m = km sin(θ ) is the transverse component of the modulation

wave vector. Following the same steps of the single waveguide
case we move to the frequency space and rewrite (A10) as

i∂zE
(z, ω) = − k(ω) E
(z, ω) − k0 �n
(z, ω) E
(z, t )

− B E
±1(z, ω). (A13)

In this case �n(z, ω) is the Fourier transform of �n(z, t ) and
is written as �n
(z, ω) = e±i(kz

mz+kx
m
d )δ(ω ∓ ωm). We apply to

each waveguide the gauge transformation defined in (A5) and
rewrite (A10) as

i∂zẼ
(z, ω) = − β e±i�kz e±i�
 Ẽ
(z, ω ∓ ωm)

− B Ẽ
±1(z, ω), (A14)

where �k = km cos θ − ωm
vg

is the usual phase mismatch term,
� = dkm sin θ is the modulation phase difference between
two closest waveguides, β is the coupling coefficient in the
frequency space, and B is the coupling coefficient in the
physical space. Using once again (A7) on each waveguide we
can rewrite the latter as

i∂zE
(z, ω) = �k

ωm
ωE
(z, ω) − β e±i�
 E
(z, ω ∓ ωm)

− B E
±1(z, ω). (A15)

APPENDIX B: NOTES ON THE EXPERIMENTAL
IMPLEMENTATION

Our model takes advantage of the continuous spectrum of
modes in waveguides and allows one to effectively manipulate
a TLC signal with arbitrary frequency spectrum. Previous
works have been focused on the modulation of isolated
LiNbO3 waveguides using microwaves and the electro-optical
effect [20,22]. However, LiNbO3 waveguides require com-
plex fabrication procedure and the technology is not suited
for the realization of coupled waveguide arrays, as the strong
confinement of the light field strongly suppresses the evanes-
cent coupling between adjacent waveguides. Furthermore,
refractive index variation via RF modulation requires a strong
electro-optical coefficient which is available in few materials
and especially not in amorphous ones, that are more suited for
the realization of coupled waveguide arrays [31] As a different
and more promising paradigm we consider here the use of
acoustic waves to perform a dynamical modulation of optical
waveguide arrays fabricated using femtosecond laser writing
in SiO2 glass [31].

The numerical calculations presented in the main text as-
sume a modest refractive index increase of 2 × 10−5 that,
using a 100-MHz acoustic wave generates frequency shift of
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FIG. 6. Schematic of the proposed experiment. (a) Front view
of the device. A thin layer of a piezoelectric material is deposited
on a SiO2 sample with surface waveguides. (Inset) The evanescent
tail of the Rayleigh wave supported by the piezolayer leaks into
the fused silica waveguide modulating the refractive index via the
acousto-optic effect. (b) Top view of the device. Interdigitalized
transducers (IDTs) with a fixed distance d are lithographed on the
sample surface.

≈800 MHz after a 10-cm propagation into a single modu-
lated waveguide. Higher frequency shifts are achievable using
higher frequency acoustic waves, up to the point where higher
order phenomena becomes important such as the dispersion
of the coupling coefficient in the frequency space or the
parabolic confining potential in the frequency space caused
by group velocity dispersion.

However, the higher the frequency of the dynamical mod-
ulation the more dramatic is the effect of phase mismatch,
thus a mechanism to enforce directional excitation of the
sound wave with high precision is required. To this aim, we
suggest exciting the sound wave using an array of emitters.
On one hand multiple emitters allow one to shape the front
of the acoustic wave, thus getting closer to the ideal plane
wave front. On the other hand, the use of multiple equispaced
emitters with an externally controllable phase relation allows

one to effectively control the propagation angle of the modu-
lation. The ability to electronically control the phase relation
between different emitters would also allow the realization of
reconfigurable devices.

Previous works have inspected the propagation of pressure
waves in bulk fused silica samples [37] characterizing the
acousto-optical effect on ion-diffused waveguide structures in
a low acoustic-frequency regime. Despite the attractiveness
of bulk acoustic waves, that would allow one to perform
dynamical modulation of two-dimensional waveguide arrays
hence potentially achieving an effective three-dimensional
(3D) physics [23], the power decay of spherical waves is
too fast to allow for an homogeneous modulation of large
waveguide arrays.

To overcome this issue, in recent years, a strong effort
has been devoted to the integration of surface acoustic wave
(SAW) technologies [38]. Being confined to the surface, the
power scaling with the traveled distance is in fact much
slower, allowing one to conserve the acoustic power through-
out the entire sample length. Moreover, SAW transducers
can be realized with extremely high operating frequencies
[38,39], leading to bigger frequency shifts in our proposed
modulator.

SAWs are typically excited using interdigitalized transduc-
ers (IDTs), whose fabrication is compatible with the standard
lithographic process and is particularly suited for the real-
ization of emitter arrays [38]. In particular, in our proposed
scheme, IDT arrays could be lithographed on the fused sil-
ica glass after sputtering the surface of the sample with a
piezoelectric film as in Fig. 6. Although in this scheme the
SAW is peaked in the thin piezoelectric layer, if the optical
waveguides are realized sufficiently close to the interface a
reasonable overlap is expected [39] between the evanescent
tail of the acoustic wave (in the order of an acoustic wave-
length) and the optical mode field, leading to the required
effective index modulation.
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