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Ground-state cooling of multiple near-degenerate mechanical modes
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We propose a general and experimentally feasible approach to realize simultaneous ground-state cooling of an
arbitrary number of near-degenerate or even fully degenerate mechanical modes, overcoming the limit imposed
by the formation of mechanical dark modes. Multiple optical modes are employed to provide different dissipation
channels that prevent complete destructive interference of the cooling pathway, and thus eliminating the dark
modes. The cooling rate and limit are explicitly specified, in which the distinguishability of the optical modes
from the mechanical modes is found to be critical for an efficient cooling process. In a realistic multimode op-
tomechanical system, ground-state cooling of all mechanical modes is demonstrated by sequentially introducing
optical drives, proving the feasibility and scalability of the proposed scheme. The work may provide new insights
in preparing and manipulating multiple quantum states in macroscopic systems.
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I. INTRODUCTION

Optomechanics [1], exploring interactions between elec-
tromagnetic fields and mechanical vibrations, serves as an
invaluable platform for studying macroscopic quantum phe-
nomena such as macroscopic quantum coherence [2–8] and
classical-to-quantum transition [9–11]. Application-wise, op-
tomechanical sensors have demonstrated ultrahigh sensitivity
in single-particle sensing and precision measurements of dis-
placements, forces, and accelerations [12–14]. A premise of
most of these applications is the ground-state cooling of the
participating mechanical modes to suppress the thermal noise.
However, thus far, though ground-state cooling has been
investigated both theoretically [15–19] and experimentally
[20–27] in a single mechanical mode, simultaneous cooling
of multiple mechanical modes has not been demonstrated yet.
This seriously limits the applications of multimode optome-
chanical systems in quantum many-body simulation [28–30],
quantum information processing [31–34], and multiplexed
sensing devices [35–39].

The major obstacle for multimode ground-state cooling
is the formation of mechanical dark modes [40,41]. As the
mode density of states increases with the size of the sys-
tem, macroscopic resonators inevitably encounter multiple
mechanical modes that are indistinguishable from the optical
mode, i.e., their frequency differences become smaller than
the optical linewidths. During the cooling processes, these
modes hybridize and form dark modes that are decoupled
from the optical field due to destructive interference [42,43],
which prevents further cooling of the system. So far, sev-
eral methods have been theoretically proposed to break the
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dark modes, either lifting the degeneracy of the mechanical
modes [44,45] or inducing nonreciprocal energy flow [46–49].
However, their realizations need either additional coupling
structures [44–48] or sophisticated control over the frequency
and phase of multiple optical pumps [49] that are experi-
mentally challenging. Moreover, the complexity increases
drastically with increasing number of mechanical modes as
interaction engineering is required between each pair of the
mechanical modes. In this paper, we propose an alternative
approach that is capable of simultaneous ground-state cooling
of an arbitrary number of mechanical modes. Multiple optical
modes effectively serve as different dissipation channels for
phonons to break the destructive interference condition, and
thereby prevent the formation of mechanical dark modes.

II. MODEL AND SOLUTION

A. Model of multimode optomechanical system

As shown in Fig. 1(a), we consider that multiple mechani-
cal modes with frequencies ω j and linewidths γ j are coupled
to multiple optical modes with frequencies νk and linewidths
κk . The optical modes are chosen to be well separated to
prevent cross-mode interactions. In the strong drive regime
and in the rotation frame of the drive lasers, the linearized
Hamiltonian of N mechanical modes and M optical modes
reads (see Appendix A)

H = �a†��a + �b†��b + (�a†G�b + �aT G∗�b + H.c.), (1)

where �a = (a1, a2, . . . , aM )T is the vector of linearized
annihilation operators of the cavity modes, and �b =
(b1, b2, . . . , bN )T is the vector of linearized annihilation op-
erators of the mechanical modes. The diagonal matrix �

describes the frequencies of the N mechanical modes, and

2469-9926/2022/105(5)/053518(9) 053518-1 ©2022 American Physical Society

https://orcid.org/0000-0002-0296-7130
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.105.053518&domain=pdf&date_stamp=2022-05-23
https://doi.org/10.1103/PhysRevA.105.053518


LIU, LIU, XU, SHI, XU, GONG, AND XIAO PHYSICAL REVIEW A 105, 053518 (2022)

FIG. 1. (a) Schematic of a mechanical resonator supporting mul-
tiple mechanical modes coupled to an optical cavity. (b) The optical
drive configuration of cooling two mechanical modes via two optical
modes. (c)–(d) The normalized steady-state phonon number n(s)

± /nth

depending on �/κ with single and dual drive, respectively. Here and
hereafter, δωmec = 0.001κ , ω̄mec = 20κ .

the diagonal matrix � denotes the detunings of the M drive
lasers to their corresponding optical modes. G is the linearized
coupling matrix, with element gk, j representing the coupling
strength between the kth optical mode and jth mechanical
mode. The optomechanical driving strength can be charac-
terized by � = ∑M

k=1 �k , with �k = ∑N
j=1 |gk, j |2/κk denoting

the driving strength on the kth optical mode.

B. Analysis of bright and dark modes

We start the analysis with optomechanical cooling of two
near-degenerate mechanical modes with frequencies ω1 and
ω2, and linewidths γ1 and γ2, respectively. To optimize the
optomechanical cooling, the drive lasers are set to the resolved
red sideband of the corresponding optical modes with detun-
ing δk = (ω1 + ω2)/2 = ω̄mec (see Appendix B), as presented
in Fig. 1(b). To simplify the discussion, hereafter we assume
κ1 = κ2 = κ , γ1 = γ2 = γ = 10−4κ , and identical driving
strength �k of every optical mode. The discussion of general
systems parameters can be found in Appendix B. By perform-
ing adiabatic approximation to Eq. (1), the optomechanical
interaction can be effectively understood as a �-dependent
coupling between the mechanical modes that gives rise to two
new mechanical eigenmodes b+ and b−. As � exceeds the me-
chanical frequency difference δωmec = |ω1 − ω2|, b± become
the hybridization of b1,2. For a single optical drive, specifi-
cally, b+ and b− can be written as (gk,1b1 + gk,2b2)/(g2

k,1 +
g2

k,2)1/2 and (−gk,2b1 + gk,1b2)/(g2
k,1 + g2

k,2)1/2 when � �
δωmec. In the Hilbert space spanned by b1 and b2, eigen-
mode b± correspond to the vectors along and perpendicular to
the optomechanical coupling vector �gk = (gk,1, gk,2), respec-
tively, as shown in the inset of Fig. 1(c). Hence, b+ is strongly
coupled to the optical field and termed the bright mode, while
b− is completely decoupled and termed the dark mode.

FIG. 2. (a) Schematic of the energy transfer pathways of two
mechanical modes coupled with two optical drives. (b) Dissipation
spectra of the mechanical modes under the single- (solid blue line)
and dual-drive (dashed red line) conditions, both with � = 0.1κ .
(c)–(d) The imaginary part of the eigenvalues Im[ω]/κ and the com-
position of the b− mode, as a function of �/κ with single (c) and
double (d) drive. The gray dash-dotted line, the dashed red line,
and the solid blue lines denote the optical, b+, and b− modes. Here
cos θ = 0.8.

Figure 1(c) plots the steady-state phonon number of
each mechanical eigenmode, n(s)

± = 〈b†
±b±〉, normalized to

the thermal phonon number nth ≈ (eh̄ω̄mec/kT − 1)−1. The
Born-Markov approximation is applied in the calculation of
steady-state phonon number here and hereafter, as no domi-
nant mode exists in the thermal bath (see Appendix B). While
both mechanical modes can be cooled at weak optical drives,
from the onset of the mechanical strong coupling, the bright
and dark modes start to behave distinctly. Although the bright
mode is further cooled down, the dark mode is heated up
due to its gradual decoupling from the optical modes [40,46].
Particularly, n(s)

− approaches nth at � � δωmec, indicating the
complete suppression of the optomechanical cooling. Such
suppression acts as one of the major obstacles in the cooling of
multimode mechanical oscillators, which has been widely ob-
served in experiments [42,43]. We propose that this challenge
can be resolved when a second optical mode is adopted for
cooling, as seen in Fig. 1(d). Upon introduction of the second
coupling vector �gk′ = (gk′,1, gk′,2), as long as the two coupling
vectors �gk and �gk′ are not collinear (θ 	= 0), no mechanical
mode can be decoupled from both optical modes. Indeed, in
this case, both mechanical modes can be efficiently cooled
either before or after the mechanical strong coupling.

From the energy transfer aspect, different optical modes
serve as different dissipation channels for phonons in optome-
chanical cooling. With a single optical drive, near-degenerate
phonon modes decaying through the same channel interfere
destructively with each other, analogous to the electromag-
netic induced transparency (EIT), as shown in Fig. 2(a) [50].
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Within the transparency window, the mechanical mode is
decoupled from the optical field with its damping rate re-
duced to the intrinsic linewidth γ [Fig. 2(b). When multiple
optical pathways are present, phonon dissipation forbidden
in one pathway can decay through another, which effectively
removes the EIT window and brightens up the dark mode.

The evolution of the mechanical dark mode can be quan-
titatively investigated by the eigenvalues and eigenvectors of
the system, as shown in Figs. 2(c) and 2(d). At � ≈ δωmec,
exceptional points are present at A1 and A2 in the single-
and dual-drive schemes, respectively, indicating the formation
of the bright and dark mechanical modes. In both cases, the
bright modes b+ (red curves) exhibit rapid dissipation rate
increases, quickly reaching their classical cooling limits at
the second exceptional points of the strong optomechanical
coupling, denoted by B1 and B2, respectively. On the other
hand, right after the exceptional points A1 and A2, the dis-
sipation rates of both b− modes (blue curves) decrease as
the driving strengths grow. In the single-drive scheme, it
decreases monotonically to the intrinsic dissipation of the
mechanical mode γ , hence the cooling is completely sup-
pressed. Oppositely, in the proposed dual-drive scheme, the
b− mode is brightened up and eventually reaches an emerg-
ing exceptional point C2. Meanwhile, the eigenvectors show
that in the single-drive scheme the mechanical dark mode
becomes purely phononic with strong optical drive, while in
the dual-drive scheme it is significantly hybridized with the
photonic modes. The brightened b− mode exhibits its classical
cooling limit when reaching point C2, which is character-
ized by n(s)

− = γ nth/(γ + κ ). This value recovers the cooling
limit of the single-mechanical-mode system, demonstrating
the elimination of the dark mode effect. It should also be
noted that the quantum cooling limit of the multimode system
can be estimated as κ2/(16ω̄2

mec), and, at the condition under
investigation, it is 2 orders of magnitude smaller than the
classical limit. The details of the calculation are presented in
Appendix C.

C. Solution of steady-state phonon number

While the restriction on the cooling limit can be lifted
by any drive configuration with noncollinear coupling vec-
tors, a further optimization of the system parameters that can
minimize the required driving strength is important for ex-
perimental realizations. Quantitatively, the steady-state total
phonon number n(s)

tot = n(s)
+ + n(s)

− at a given driving strength
� is calculated in Appendix B, in the drive range where the
bright and dark modes are formed but the system still remains
in the weak coupling regime:

n(s)
tot = 2γ nth(γ + 2�)

γ 2 + 4γ� + 4�2 sin2 θ
. (2)

It can be seen that the angle θ is the key parameter for
achieving efficient cooling, which describes the distinguisha-
bility of the optical modes to the mechanical modes. At
� � γ , when θ = 0, n(s)

tot ≈ nth, the system is equivalent to
being driven by a single optical pump, and the cooling is sup-
pressed. When θ 	= 0, n(s)

tot ≈ nthγ /(� sin2 θ ), indicating that
the cooling is more efficient when the chosen optical modes
exhibit more distinct coupling strengths from the mechanical

FIG. 3. Temporal evolution of the total phonon number ntot(t )
during the cooling process. Hollow circles denote the numerically
calculated phonon number; solid and dashed lines represent the an-
alytically calculated phonon decay rate and the steady-state phonon
number, respectively; the dash-dotted line denotes the steady-state
phonon number cooled by a single-optical drive. Inset: the zoomed-in
plot of κt = [0, 30], represented by the blue shaded region in the
main figure. Here � = 0.05κ and ntot(0) = 100.

modes. Especially, when θ = π/2, ntot reaches the minimum
at a given �. In this case, each drive interacts exclusively
with the b+ or b− mode, and the system can be reduced to
a single-mechanical-mode resonator.

D. Time domain evolution of cooling process

The cooling speed is another important figure of merit
for optomechanical cooling processes. Here, the temporal
evolution of the total phonon number ntot(t ) is calcu-
lated numerically with the fourth-order Runge-Kutta method,
as shown in Fig. 3. The optical drives are turned on
at κt = 0 and kept constant at � = 0.05κ . For 0 < θ <

π/2, ntot(t ) is characterized by a double-exponential decay,
with the fast and slow processes, exp[−4� cos2(θ/2)t] and
exp[−4� sin2(θ/2)t] corresponding to the b+ and b− modes,
respectively. At small κt , the system exhibits a rapid phonon
dissipation of both mechanical modes, characterized by a θ -
independent decay rate of �, till the cooling limitation of the
single-drive configuration (gray dotted line), as shown in the
inset of Fig. 3. Below the single-drive limitation line, most
phonons in the b+ mode have already been dissipated from
the system due to the larger decay rate, and thus the process is
dominated by the b− mode. In this regime, a large θ results in
a significantly accelerated phonon decay rate. In particular,
for the case θ = π/2, the system reduces to the single-
mechanical-mode cooling case with a monoexponential decay
rate of �, until reaching the steady state. Meanwhile, the
steady-state phonon number ntot also decreases while increas-
ing θ , and the numerical results match well with the analytical
solution described by Eq. (2).
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FIG. 4. (a) Evolution of the steady phonon number ñ(s)
j of each

mechanical eigenmode (upper panel), as three optical drives are
quasistatically introduced (lower panel). The mechanical modes are
fully degenerate with ω j/2π = 1.178 MHz, γ j/2π = 39.0 mHz, and
their mode profiles are presented in i–iii; Optical modes have the
linewidths of κk/2π = 0.967 MHz and �0 = 980 Hz. The spatial
profiles are shown in iv. (b) Evolution of n(s)

tot of a N = 10 system as
12 optical drives are introduced sequentially. In each regime divided
by the vertical dashed lines, one optical drive is turned on and
increased from 0 to �0 = 0.1κ , and t0 is an arbitrary timescale which
satisfies t0 � γ −1

j , to make sure that the system is in the quasistatic
limit throughout the evolution.

III. GENERALIZATION TO N-MECHANICAL-MODE
SYSTEM

Finally, we present here that our method can be straightfor-
wardly generalized to arbitrary number of mechanical modes.
In the N dimensional Hilbert space of mechanical modes, a
mode is dark if it is orthogonal to all the coupling vectors
�gk = (gk,1, gk,2, . . . , gk,N ). Hence, a dark subspace can be de-
fined as the orthogonal complement of the span of all coupling
vectors. When M optical modes with linearly independent
coupling vectors are introduced, the dimension of dark sub-
space is reduced to N − M. Given that M � N , all dark modes
are eliminated and the ground-state cooling for N degenerate
mechanical modes can be achieved.

As an example, a silicon nitride membrane with clamped
boundaries inserted into a Fabry-Pérot optical cavity is consid-
ered, with all the optomechanical parameters corresponding to
realistic experimental systems [51–54]. Cooling of the three-
fold degenerate mechanical drum modes (1,7), (7,1), and (5,5)
is demonstrated, with three spatially distinct optical modes
employed to allow large θ , as shown in Fig. 4(a), i–iv. This
drive scheme can be realized by focusing the laser drive
onto different positions of the membrane and adjusting the
membrane position in the cavity [51]. The three optical drives
are turned on sequentially in the quasistatic limit to examine
the phonon number evolution of the three mechanical modes.
When the first drive is turned on and its strength �1 is in-

creased from 0 to �0, the three mechanical modes hybridize to
form one bright mode (b̃1, blue curve) and two dark modes (b̃2

and b̃3, black and magenta curves, respectively). Once turning
on the second drive, one of the dark modes b̃2 is brightened up,
leaving only one dark mode in the system. All three modes are
effectively turned bright and cooled down to ñ(s)

j < 1 when the
third drive is on, achieving simultaneous ground-state cooling
of all three mechanical modes under investigation. We note
that the cooling is independent of the drive sequence as the
system is linearized with a unique steady state, e.g., the steady
state phonon number remains the same when all three drives
are induced at the same time.

For a more general demonstration, the analysis is further
pushed to the cooling process of more mechanical modes, for
example N = 10. With 12 drives quasi-statically introduced
and linearly enhanced in sequence, the result is shown in
Fig. 4(b). When M < 10, in the presence of a new optical
drive, n(s)

tot undergoes a significant decrease and reaches a
cooling limit at n(s)

tot ≈ (10 − M )nth, neglecting the phonon
occupancy of the bright modes, as represented by the blue
dashed line. This steplike cooling curve indicates the succes-
sive elimination of the dark modes by each optical drive, as
predicted by the theory. When M � 10, all dark modes have
been eliminated, and further introduction of additional optical
modes no longer leads to significant cooling other than the
increase of the total drive strength.

As for the cooling limit, when M drives with M = N are
employed and all the dark modes are eliminated, n(s)

tot in weak
coupling regime can be asymptotically described by (see Ap-
pendix B)

n(s)
tot = 1

4γ κnth ‖G−1‖2, (3)

where ‖G−1‖2=
∑N

k, j=1 |(g−1)k, j |2. Here, G−1 exists if and
only if all the coupling vectors are linearly independent. For
each �gk , the rest coupling vectors span an N − 1 dimensional
hypersurface in the N dimensional Hilbert space. For linearly
independent coupling vectors, the cross angle θk between �gk

and this hypersurface is nonzero, and the cooling limit can be
rewritten as (see Appendix B)

n(s)
tot = γ nth

4

N∑
k=1

1

�k sin2 θk
(θk 	= 0). (4)

Hence a larger sin2 θk can result in a better cooling perfor-
mance. Also, if all �k are kept constant, the best cooling is
achieved when all θk = π/2 for k = 1, 2, . . . , N . In this case,
each optical mode solely couples to one mechanical mode.
This result provides a quantitative guidance for selecting the
optical modes that are most suitable for cooling a multiple
mechanical mode system.

IV. CONCLUSION

In this paper, we have proposed a general scheme to realize
the ground-state cooling of near-degenerate or even degen-
erate mechanical modes. Different optical modes provide
different dissipation channels that can effectively eliminate
the mechanical dark modes that obstruct the cooling pro-
cess. The distinguishability of the optical modes from the
mechanical modes is found to be an essential factor that
allows efficient optomechanical cooling. This approach not
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only provides an experimentally feasible method that may
help to solve one of the critical challenges in fundamental and
applied studies on macroscopic optomechanics, but could also
inspire dark mode manipulation and suppression in analogous
systems such as cold atom ensembles.
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APPENDIX A: DERIVATION OF THE LINEARIZED
HAMILTONIAN OF A MULTIMODE OPTOMECHANICAL

SYSTEM

The Hamiltonian of an optically driven multimode optome-
chanical system can be generally written as

H = Hfree + Hint + Hdrive. (A1)

Here, Hfree is the free Hamiltonian of the optical and mechan-
ical modes with

Hfree =
M∑

k=1

h̄νka†
kak +

N∑
j=1

h̄ω jb
†
jb j, (A2)

where ak (a†
k ) is the annihilation (creation) operator of the kth

optical mode with frequency νk and linewidth κk; b j (b†
j ) is the

annihilation (creation) operator of the jth mechanical mode
with frequency ω j and linewidth γ j . These operators obey the
bosonic commutation relations

[ak, a†
k′ ] = δkk′ , [b j, b†

j′ ] = δ j j′ , [ak, b(†)
j ] = 0. (A3)

Hint represents the interaction Hamiltonian between the opti-
cal and mechanical modes [55],

Hint = h̄
M∑

k=1

N∑
j=1

gS
k, ja

†
kak (b†

j + b j ), (A4)

where gS
k, j is the single photon coupling strength between the

kth optical mode and the jth mechanical mode.
Hdrive describes the laser drive on the optical modes,

Hdrive =
M∑

k=1

Qke−iωd
k t a†

k + H.c., (A5)

where Qk is the driving amplitude and ωd
k is the driving fre-

quency for the kth optical mode.
In the rotating frames of the drive lasers S[t] =

exp [ − it
∑

ωd
k a†

kak], the optical operators are transformed
to S†[t]akS[t] = ake−iωd

k t . The Hamiltonian is transformed to
H ′ = S†[t]HS[t] − ih̄S†[t]∂t S[t] and written as

H ′
free =

M∑
k=1

h̄δ′
ka†

kak +
N∑

j=1

h̄ω jb
†
jb j, (A6)

H ′
int = Hint, (A7)

H ′
drive =

M∑
k=1

Qka†
k + H.c. , (A8)

where the original drive detuning δ′
k = νk − ωd

k . With the
Born-Markov approximation, the Langevin equations of the
system can therefore be written as

dak

dt
=

(
−iδ′

k − κk

2

)
ak − i

N∑
j=1

gS
k, jak (b†

j + b j )

− iQk − √
κkain

k (t ), (A9)

dbj

dt
=

(
−iω j − γ j

2

)
b j − i

M∑
k=1

gS
k, ja

†
kak − √

γ jb
in
j (t ), (A10)

where ain
k , bin

j are the input operators of the optical and me-
chanical modes, which obey

〈
ain

k
†
(tk )ain

k′ (tk′ )
〉 = δkk′δ(tk − tk′ )nth(νk ), (A11)

〈
bin

j
†
(t j )b

in
j′ (t j′ )

〉 = δ j j′δ(t j − t j′ )nth(ω j ). (A12)

Here the thermal noise nth(ω) = 1/(eh̄ω/kT − 1) with T being
the environment temperature. The thermal bath is composed
of numerous free-space electromagnetic modes, which all
couple weakly to the system. As no dominant mode exists
in the thermal bath, the back action on the thermal bath can
be ignored and the Markov approximation is applicable. As
the high optical frequency condition h̄νk � kT applies for
common experimental conditions, thermal noise nth(νk ) ≈ 0
for the optical modes. The mechanical modes are nearly de-
generate with ω j ≈ ω̄mec = (

∑N
j=1 ω j )/N , thus all nth(ω j ) ≈

nth(ω̄mec), labeled as nth hereafter. The remaining independent
quadratic expressions of ain

k
(†)

, bin
j

(†)
have zero value expecta-

tions.
The operators o ∈ {a(†)

k , b(†)
j } can be divided into their ex-

pectations and fluctuations, o = 〈o〉 + δo. Defining αk = 〈ak〉
and β j = 〈b j〉, the Langevin equations are split into equa-
tions of the expectations,

dαk

dt
=

(
− iδ′

k − κk

2

)
αk − i

N∑
j=1

gS
k, jαk (β∗

j + β j ) − iQk,

(A13)

dβ j

dt
=

(
− iω j − γ j

2

)
β j − i

M∑
k=1

gS
k, jα

∗
k αk, (A14)

and equations of the fluctuations,

dδak

dt
=

(
−iδk − κk

2

)
δak − √

κ ja
in
j (t )

− i
N∑

j=1

gk, j (δb†
j + δb j ), (A15)

dδbj

dt
=

(
−iω j − γ j

2

)
δb j − √

γ jb
in
j (t )

− i
M∑

k=1

(gk, jδa†
k + g∗

k, jδak ), (A16)
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where the corrected drive detuning and the linear coupling
strength are defined as δk = δ′

k + ∑N
j=1 gk, j (β∗

j + β j ) and
gk, j = gS

k, jαk , respectively, for the kth optical mode and the
jth mechanical mode. The steady-state expectations of the
optical and mechanical modes at d〈o(†)〉/dt = 0 are

αk = −iQk

iδk + κk/2
, (A17)

β j = i
∑M

k=1 gS
k, j |αk|2

iω j + γ j/2
. (A18)

The above Langevin equations of fluctuations are equivalent
to the linearized Hamiltonian

HL =
N∑

j=1

ω jδb†
jδb j +

M∑
k=1

δkδa†
kδak

+
N∑

j=1

M∑
k=1

[gk, jδa†
k (δb j + δb†

j )+H.c.]. (A19)

In the main text and in the following appendices, all the
symbols (δa, δb) are relabeled as (a, b) for simplicity.

APPENDIX B: CALCULATION OF THE STEADY-STATE
PHONON NUMBER

The steady-state phonon number is calculated via the
Lyapunov equation derived from the quantum master equa-
tion [56], and the steady-state phonon number of a mechanical
mode b̃ j = ∑N

j′=1 e j j′b j′ is written as

ñ(s)
j = 〈b̃†

j b̃ j〉 =
N∑

j′=1

N∑
j′′=1

e∗
j j′e j j′ 〈b†

j′b j′′ 〉 (B1)

Analytically, further applying the rotating wave approx-
imation at the red sideband (δk = ω̄mec) and the adiabatic
approximation in the weak coupling regime (gk, j  κk′ ),
terms 〈oo′〉(∗) can be ignored, and the Fourier transformed
Langevin equations of ak are

ak (ω) = −i
∑N

j=1 gk, jb j (ω) − √
κkain

k (ω)

iδk − iω + κk
2

. (B2)

When returning to the time domain, the difference between
b j (ω) and b j (ω j )δ(ω − ω j ) can be ignored for gk, j  κk′ ,
thus ak is expressed as

ak =
N∑

j=1

−igk, jb j

iδk − iω j′ + κk
2

. (B3)

Assuming that the mechanical modes are optically indistin-
guishable (|ω j − ω j′ |  κk ), and that all the drives are located
at the red sideband with δk = ω̄mec ≈ ω j , Eq. (B3) can be
simplified as

ak =
N∑

j=1

−2igk, jb j

κk
. (B4)

After substituting Eq. (B4) into Eq. (A16), the latter becomes

db j

dt
=

(
− iω j − γ j

2

)
b j−2

N∑
j′=1

M∑
k=1

g∗
k, jgk, j′b j′

κk
− √

γ jb
in
j (t ).

(B5)

The second term on the right-hand side of Eq. (B5) represents
the optically induced damping, of which the Hermitian oper-
ator is defined in the matrix form as

P = 2G†K−1G. (B6)

where kkk′ = κkδkk′ . This operator P represents the dissipation
of the mechanical modes induced by the all the optical modes,
which can be decomposed as

P =
M∑

k=1

P(k), (B7)

p(k)
j j′ = 2

g∗
k, jgk, j′

κk
. (B8)

Operator P can be viewed as the dissipation induced by the
kth optical mode which only depends on the driving strength
�k . Each P(k) is proportional to the projection operator along
�g∗

k = (g∗
k,1, g∗

k,2, . . . , g∗
k,N ). As a result, P(k) cannot cool down

any b̃ j with coefficient vector �e j = (e j,1, e j,2, . . . , e j,N )T or-
thogonal to �gk .

By substituting Eq. (B6) into Eq. (A16), the Langevin
equations of b j is rewritten as

db j

dt
=

(
−iω j − γ j

2

)
b j −

N∑
j′=1

p j j′b j′ − √
γ jb

in
j (t ). (B9)

The corresponding effective mechanical Hamiltonian can thus
be defined as

Heff = H0 − iD =
N∑

j=1

h̄ω jb
†
jb j − i

N∑
j=1

N∑
j′=1

b†
j p j j′b j′ , (B10)

with the master equation [56] given by

dρ

dt
= i

h̄
[ρ, H0] − 1

h̄
[D, ρ]+ + 2

h̄
ρ Tr [ρD]

+
N∑

j=1

γ j (nth+1)

2
[2b jρb†

j − b†
jb jρ − ρb†

jb j]

+
N∑

j=1

γ jnth

2
[2b†

jρb j − b jb
†
jρ − ρb jb

†
j]. (B11)

Here, the steady state phonon can be calculated as
〈b†

jb j′ 〉 = Tr[ρb†
jb j′ ]. The nonlinear terms 〈b†

jb
†
j′b j′′b j′′′ 〉 and

〈b†
jb j′ 〉〈b†

j′′b j′′′ 〉 are expected to be very small (〈b†
jb j′ 〉  nth)
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and can be ignored, which simplifies the Lyapunov equation to

d

dt
〈b†

j′b j〉 =
(

iω j′ − iω j − γ j + γ j′

2

)
〈b†

j′b j〉

−
N∑

j′′=1

[p j j′′ 〈b†
j′b j′′ 〉 + p j′ j′′ 〈b†

j′′b j〉] + γ jδ j′ jnth.

(B12)

In the case of M = N = 2 and with symmetric parameters
κ1 = κ2 = κ , γ1 = γ2 = γ , and �1 = �2 = � assumed, the
steady-state total phonon number reads

n(s)
tot = 2γ nth(γ + 2�)

(γ + 2�)2 − 4�2 cos2 θ
(γ+2�)2

(γ+2�)2+δω2
mec

, (B13)

in which δωmec = |ω1 − ω2|, and θ denotes the cross angle
between the coupling vectors �g1 and �g2 with 0 � θ � π/2.

With δωmec  �, Eq. (B13) is simplified to Eq. (2) of the
main text.

The analysis is then extended to systems with N > 2, in
which the coupling vectors are chosen to be linearly inde-
pendent. When the number of optical modes M < N , dark
modes exist. As the phonon numbers of the dark modes are
approximately nth and far outweigh those of the bright modes,
the total phonon number n(s)

tot ≈ (N − M )nth.
When M � N , all dark modes are eliminated and the above

approximation fails. As M exceeds N , the new optical modes
inevitably have linearly dependent coupling vectors with the
existing N optical modes, which can be simply recognized as
a increase of their drive strengths. Therefore, the following
calculations focus on the M = N case. By assuming γ j = γ ,
and γ , δωmec  �k , the Lyapunov equation becomes

PT V + V PT = γ nthI, (B14)

where v j′ j = 〈b†
j′b j〉 and n(s)

tot = TrV . As P is Hermitian, it

is unitarily diagonalizable as PT = S†�S, with diagonal ele-
ments λ j′ j = λ jδ j′ j and the unitary matrix S satisfying S†S =
I . After the substitution, Eq. (B14) can be rewritten as

[SV S†] j′ j = γ nthδ j′ j

2λ j
, (B15)

n(s)
tot = TrV = γ nth

2

N∑
j=1

λ−1
j = γ nth

2
Tr[P−1]. (B16)

Substituting Eq. (B6),

Tr[P−1] = κ

2
‖G−1‖2, (B17)

n(s)
tot = κ

4
γ κnth ‖G−1‖2 . (B18)

The parameter θk is defined as the cross angle between �gk and
the hypersurface spanned by the rest of the coupling vectors,
which can be expressed as

θk = arcsin
�g∗

k · �ck

|�gk||�ck| , (B19)

where �ck is reciprocal vector of �gk , satisfying �g∗
k · �c j = δk j and

0 � θk � π/2. Vectors �ck can be organized into a matrix C =

(G†)−1, and by substituting C into Eq. (B16) it is derived that

n(s)
tot = γ nth

4
Tr G−1KG†−1 = γ nth

4
TrC†KC

= γ nth

4

N∑
k=1

κk|�ck|2 = γ nth

4

N∑
k=1

1

�k sin2 θk
, (B20)

where �k = |�gk|2/κk .

APPENDIX C: CALCULATION OF THE CLASSICAL AND
QUANTUM PARTS OF THE COOLING LIMIT

The classical cooling limit is reached when the sys-
tem enters the optomechanical strong coupling regime. In
this regime, the adiabatic elimination of the optical modes,
Eq. (B3), no longer applies. In the sideband-resolved regime,
the classical cooling limit is obtained by solving Lyapunov
equations.

When M = N = 2, the steady-state total phonon number
of the two mechanical modes can be solved as

n(s)
tot = 2Lnth

L + 2s + 4 sin2 θ − 4s2 cos2 θ

L+2s+4 sin2 θ

, (C1)

where L = γ [(s + 2)2 − 4 cos2 θ ]/κ and s = (γ + κ )/�.
Here, symmetric parameters δωmec = 0, γ1 = γ2 = γ , κ1 =
κ2 = κ , �1 = �2 = �/2 are assumed.

For any θ 	= 0 and s ≈ 0,

n(s)
tot = 2γ nth

γ + κ
. (C2)

If θ = 0, the same condition leads to

n(s)
tot =

(
γ

γ + κ
+ 1

)
nth. (C3)

The quantum cooling limit is calculated by the force
noise power spectral density SFF

j (ω) = ∫ ∞
−∞〈Fj (t )Fj (0)〉eiωt .

The optical force on the jth mechanical mode Fj is
written as

Fj = (xZPF)−1
M∑
k

(gk, ja
†
k + g∗

k, jak ). (C4)

Substituting Eq. (B2) into SFF
j and only keeping the quantum

noise input ain
k , it is derived that

SFF
j (ω) = (xZPF)−2

M∑
k=1

|gk, j |2
(ω − δk )2 + κ2

k
4

. (C5)

The quantum cooling limit can be calculated as

nQ
j = SFF

j (−ω̄mec)

SFF
j (ω̄mec) − SFF

j (−ω̄mec)
. (C6)

Given δk = ω̄mec, κk = κ , this expression reduces to

nQ
j = κ2

16ω̄2
mec

, (C7)

thus the quantum cooling limit does not depend on G under
the current approximation, and the result is the same as the
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single-mode case. In the resolved-sideband regime investi-
gated in the main text with ω̄mec = 20κ , the quantum cooling

limit of every mechanical mode nQ
j < 10−3, which is negligi-

ble compared with the classical cooling limit.
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