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Reflection, transmission, and surface susceptibility tensor of two-dimensional materials
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In a recent experiment, the out-of-plane surface susceptibility of a single-layer two-dimensional atom crystal
in the visible spectrum has been measured. This susceptibility gives a measurable contribution to the reflectivity
of two-dimensional materials. Here we provide a complete theoretical description of the reflective properties,
considering incoming s- and p-polarized plane waves at any angle of incidence on the crystal, computing local,
reflected, and transmitted electromagnetic fields. We finally connect the microscopic polarizability to both the
in-plane and the out-of-plane macroscopic surface susceptibilities.
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I. INTRODUCTION

Two-dimensional (2D) crystals are the thinnest materials
that can be produced [1,2]. They are composed of only one
atomic plane like graphene or boron nitride [3,4], or one
molecular plane like transition-metal dichalcogenides [5,6].
This planar configuration make them highly anisotropic in
the direction perpendicular to the crystal plane. For instance,
they can have in-plane macroscopic dimensions [7–10] while
keeping an out-of-plane thickness of the order of one atom.
This particular geometry suggests that also their optical re-
sponse should be anisotropic, at least in the vertical direction
to the crystal plane. Ab initio calculations indeed predict
this anisotropy for a 2D crystal [11–13]. Notwithstanding the
enormous progresses in thin films and 2D materials optical
characterization [14–21], it turns out that a measurement of
the out-of-plane optical constants of a 2D crystal is still a
difficult task [22].

These materials are usually deposited on a substrate the
optical response of which is added to that of the monolayer.
This is enough to hide the contribution coming from the out-
of-plane optical constants of the single-layer crystal [22]. In
thin-film optics, the sensitivity of a measurement to vertical
anisotropy is dependent on the path length of the light through
the film, which is extremely limited when we deal with these
atomically thin crystals [22]. As a consequence, optical ex-
periments of monolayers, deposited on some substrate, have
access only to the in-plane optical constants of the samples
that are studied [6,14–16,19–21,23].

Only recently an experiment successfully measured the
out-of-plane optical constants of 2D crystals, namely,
graphene and monolayer MoS2 [24]. The substrate contri-
bution was eliminated by a complete immersion of these
single-layer crystals in a transparent polymer. Experimental
data indicate that the out-of-plane surface susceptibility (χ⊥)
is a measurable and finite quantity different from the in-plane
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surface susceptibility (χ‖), while the out-of-plane surface con-
ductivity was zero within the experimental errors.

One might expect that a 2D crystal with atomic thickness
along the vertical direction has a vanishing χ⊥, χ⊥ being
a macroscopic quantity. Indeed some of the most cited pa-
pers about optics in 2D crystals assume a null χ⊥ [25–28].
All the other papers describe the linear optical response of
a monolayer assuming isotropy even in the vertical direc-
tion [6,22,23]. The aim of this paper is to prove that χ⊥
is indeed finite and different from χ‖ in a rigorous analytical
way.

We will start with a microscopic description of a 2D crys-
tal, as done in Ref. [29], and then will connect it to the
macroscopic one, by means of a procedure similar to that
used in Ref. [30]. The results in Refs. [29,30] were limited
to normal incidence; therefore, they had no access to χ⊥.

II. MICROSCOPIC THEORY

We consider an insulating 2D crystal, in the vacuum,
composed by atoms with isotropic polarizability α placed
on a 2D Bravais lattice (Fig. 1). A plane wave propagat-
ing in a generic direction specified by the unit vector ŝ =
cos φ sin θ x̂ − sin φ sin θ ŷ + cos θ ẑ is defined by the polar
angles θ (the incident angle) and φ (the azimuthal angle).
Here x̂, ŷ, ẑ are unit vectors along the x, y and z direc-
tions. The incident electric field varies periodically in time,
�Ei(t ) = �Ei eiωt , where ω is the frequency so that k = ω/c is
the wave-vector magnitude and λ = 2π/k is the wavelength
of light. The charge distribution in the crystal is distorted by
the electric field, which generates oscillations of the electric
dipoles placed at the Bravais lattice sites. The total electric
field which acts on a single dipole is the local field �Eloc. It is
the superposition of the incident field �Ei and the contributions
arising from all the other dipoles. Because of translation in-
variance, we make the hypothesis that the local field has the
same magnitude at any lattice site and has the same frequency
of the incident field but with a different phase.
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FIG. 1. s-polarized (p-polarized) electric (magnetic) field inci-
dent with an angle θ on a single-layer two-dimensional atomic
crystal, modeled by dipoles placed on a regular lattice in the x-y
plane. The two half spaces, separated by the crystal, are denoted by
the labels 1 and 2.

Computation of the local field

We compute the local field acting on the dipole at the origin
of our reference system (Fig. 1). The contributions to this
local field are given by the fields coming from the oscillating
dipoles placed at the points labeled by the integers m and n,

which are given by [31–33]

�Emn = Pmn

4πε0r3
mn

[
3( �̃p · r̂mn)r̂mn − �̃p

− 1

c2
(r̂mn × �̈p) × r̂mn

]
(1)

where �̃p = �p(t − rmn
c ) + rmn

c �̇p(t − rmn
c ). �p is the induced dipole

moment at each lattice site, ε0 is the vacuum permittivity, c is
the velocity of light in the vacuum, and �rmn = rmn(cos ϑmnx̂ +
sin ϑmnŷ), while r̂mn = �rmn/rmn. In Eq. (1) we included the
retardation effects, which are crucial, as we will see here and
also shown in Ref. [29], for deriving the Fresnel coefficients,
which is the aim of the paper. The phase in the prefactor is
given by

Pmn = ei(ωt−k rmn ) e−ikδmn (2)

with a phase shift δmn the modulus of which is the distance
of the point (rmn cos ϑmn, rmn sin ϑmn, 0) from the plane wave
crossing the origin of the reference frame with equation ŝ ·
�r = 0. As a result, in quite general terms, the phase shift δmn

can be written as

δmn = rmn sin θ cos(ϑmn + φ). (3)

The components of �Emn are, therefore,

Emn,x = eiωt

4πε0 r3
mn

e−ik (rmn+δmn )
{

px
[
(3 cos2 ϑmn − 1)(1 + ik rmn) + k2r2

mn sin2 ϑmn
]

+ py cos ϑmn sin ϑmn
[
3(1 + k rmn) − k2r2

mn

]}
, (4)

Emn,y = eiωt

4πε0 r3
mn

e−ik (rmn+δmn )
{

py
[
(3 sin2 ϑmn − 1)(1 + ik rmn) + k2r2

mn cos2 ϑmn
]

+ px cos ϑmn sin ϑmn
[
3(1 + k rmn) − k2r2

mn

]}
, (5)

Emn,z = eiωt

4πε0 r3
mn

e−ik (rmn+δmn ) pz
[
k2r2

mn − 1 − ik rmn
]
. (6)

Without loss of generality we will take φ = π/2 (see Fig. 1)
so that the phase shift reduces to

δmn = −rmn sin θ sin ϑmn. (7)

Summing over ϑmn, the last terms in Eqs. (4) and (5) are
zero, since those terms are odd under ϑmn → ϑmn + π for our
choice of the reference frame. As a result each component of
the field �Emn is proportional only to a single corresponding
component of the dipole vector.

For the square lattice rmn = a
√

m2 + n2, where a is the
lattice parameter, and tan ϑmn = n/m, while for the trian-
gular lattice rmn = a

√
(m + n/2)2 + 3n2/4 and tan ϑmn =√

3 n/(2m + n). After summing over the dipoles, and using

�p = αε0 �Eloc (8)

we get numerical evidences that

′∑
m,n

Emn,x = α

4πa3

(
C0 + ika

C1

cos θ

)
Eloc,x, (9)

′∑
m,n

Emn,y = α

4πa3
(C0 + ikaC1 cos θ )Eloc,y, (10)

′∑
m,n

Emn,z = α

4πa3
(−2C0 + ikaC1 f (θ ))Eloc,z, (11)

where the prime on the summation symbol indicates that
the origin, n = m = 0, is excluded from the sum. C0 is the
static result already reported in our previous papers [29,34]
(C0 ≈ 4.517 for the square lattice and C0 ≈ 5.517 for the
triangular lattice) and C1 = −2πNa2, where N is the density
of dipoles (N = 1/a2 for the square lattice, N = 2/

√
3a2 for

the triangular lattice).
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FIG. 2. f (θ ) as a function of the angle of incidence θ . The
square dots refer to the square lattice and the triangular dots refer to
the triangular lattice. The dots are numerical results, summing over
almost 104 sites, while the line is given by Eq. (12).

We notice that the θ dependence vanishes in the static limit,
namely, in the long-wavelength limit, ka → 0, and appears in
the three field components as 1/ cos θ , cos θ , and a combina-
tion of them:

f (θ ) = 1

cos θ
− cos θ = sin θ tan θ. (12)

As shown in Fig. 2, the θ dependence in Eq. (11) is the same
for both square and triangular lattices. Analogous checks have
been performed to verify 1/ cos θ and cos θ in Eqs. (9) and
(10), respectively. The local field at one site is due to the
incident field and the contributions from the other oscillating
dipoles. We have, therefore, to solve the following equation:

�Eloc = �Ei +
′∑

m,n

�Emn. (13)

We can now easily find the local field �Eloc from Eqs. (9)–(11)
and C1 = −2πNa2, getting

Eloc,x = Eix

1 − C0α
4πa3 + ik αN

2
1

cos θ

, (14)

Eloc,y = Eiy

1 − C0α
4πa3 + ik αN

2 cos θ
, (15)

Eloc,z = Eiz

1 + C0α
2πa3 + ik αN

2 sin θ tan θ
. (16)

These equations show that the local field, and therefore also
the macroscopic polarization vector, as we will see, are con-
nected to the incident field via a diagonal tensor.

III. MACROSCOPIC THEORY

In this section, we will find the expression for the re-
flected and transmitted fields and the relation in between
the microscopic polarizability α and the macroscopic surface
susceptibility of the crystal. Because of momentum conserva-
tion, the reflected field will propagate along the unit vector
ŝr = − sin θ ŷ − cos θ ẑ, and the transmitted field along the
same unit vector ŝ of the incident field.

The first macroscopic quantity that we can introduce is the
surface polarization �P

�P = N �p = ε0αN �Eloc (17)

using Eq. (8) and it is related to the incident field from
Eqs. (14)–(16). The surface susceptibility is a diagonal tensor
that, similarly to that connecting �Eloc and �Ei, connects �P with
the macroscopic field �E :⎛

⎝Px

Py

Pz

⎞
⎠ = ε0

⎛
⎝χxx 0 0

0 χyy 0
0 0 χzz

⎞
⎠

⎛
⎝Ex

Ey

Ez

⎞
⎠. (18)

In order to find the expressions for χxx, χyy, and χzz and for
Ex, Ey, and Ez, we will consider the case of s- and p-polarized
incident waves.

A. s wave

For an s-polarized incident wave the electric field oscillates
along the x direction (see Fig. 1). We choose �Ei = Ei x̂, �Er =
Er x̂, and �Et = Et x̂ for the incident, reflected, and transmitted
beams. Equations (14)–(18) imply that only the components
Eloc,x, Px, and Ex are non-null in this case. This allows us to fix
χxx. The polarization vector varies in time since �Eloc ∝ eiωt ;
therefore, along the crystal plane, it gives rise to an in-plane
surface electric current JPx , which is given by

JPx = ∂Px/∂t = iωPx = iωε0αNEloc,x. (19)

This surface current generates a macroscopic electromagnetic
field that propagates in two different directions. The first goes
along the unit vector ŝr and it corresponds to the reflected
field. The second one goes along the unit vector ŝ and, in
superposition with the incident field, it gives rise to the trans-
mitted field (see Fig. 3). The total macroscopic field is given
by the incident field plus the macroscopic field generated by
the dipoles. It must obey the following boundary conditions
[25,26,35–38]:

ẑ ∧ ( �E2 − �E1) = 0, (20)

ẑ ∧ ( �H2 − �H1) = JPx x̂, (21)

where the subscript 1 (2) refers to the limit of the macroscopic
field when it approaches the crystal from above (below).
These equations show that the component of the macroscopic
electric field generated by the dipoles is continuous across
the crystal surface whereas the component of the macroscopic
magnetic field due to the dipoles is discontinuous. Using

η �H = ŝ ∧ �E (22)

where η is the wave impedance of the vacuum, and since ẑ ∧
ŝ ∧ �E = − �E cos θ , we can write Eqs. (20), (21), and (18) in
terms of the electric-field components:

Ei + Er = Et , (23)

Ei − Er = Et + ηJPx

cos θ
, (24)

Et = Px

ε0χxx
. (25)
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FIG. 3. For an s-polarized wave, the total macroscopic electromagnetic field is the sum of the incident field plus the radiation-reaction field
due to the surface electric current associated to the surface polarization Px . For a p-polarized wave, the total macroscopic electromagnetic field
is the sum of the incident field plus the radiation-reaction fields due to the surface electric current associated to Py and the surface magnetic
current (see text) associated to Pz. The radiation-reaction fields propagate along ŝr (reflected field) and ŝ (transmitted field).

We have three equations with three unknown variables: Er ,
Et , and χxx. Defining the reflection and the transmission coef-
ficients as rs = Er/Ei and ts = Et/Ei, respectively, we obtain

rs = −ikχxx

ikχxx + 2 cos θ
, (26)

ts = 1 + rs, (27)

χxx = 4πa3Nα

4πa3 − C0α
. (28)

The Fresnel coefficients for the s-polarized wave are the same
already obtained in Ref. [28]. The surface susceptibility is
the same obtained for normal incidence [29,30], showing that
nonlocal effects are excluded in our theory.

Our microscopic theory allows us also to compute the
radiation-reaction electric field acting on the dipole at the
origin of our reference frame [30], getting

ERx = ikaC1α

4πa3 cos θ
Eloc,x = − ηJPx

2 cos θ
. (29)

This is clearly a macroscopic quantity as well as JPx . We now
show that it corresponds to the macroscopic field generated
by the oscillating dipoles. Using Eq. (29) in Eq. (24) we can
rewrite Eqs. (23)–(25), getting

Er = ERx ,

Et = Ei + ERx ,

χxx = Px

ε0(Ei + ERx )
, (30)

finding that ERx is equal to Er and, in superposition with Ei, it
gives the transmitted field. For that reason we can identify ERx

with the macroscopic electric field generated by the oscillating
dipoles that propagates along ŝ and ŝr directions (see Fig. 3),
while, from the last equation, the full macroscopic electric
field on the crystal plane can be identified with the sum of
the radiation-reaction field and the incident field, namely,
Ex = Ei + ERx .

B. p wave

For a p-polarized wave the incident, reflected, and trans-
mitted magnetic fields oscillate along the x direction (see
Fig. 1). We choose, therefore, �Hi = −Hi x̂, �Hr = −Hr x̂, and
�Ht = −Ht x̂. Since we computed the local electric field, it

is useful to first write explicitly the incident, reflected, and
transmitted electric fields:

�Ei = Ei cos θ ŷ + Ei sin θ ẑ = Eiy ŷ + Eiz ẑ,

�Er = −Er cos θ ŷ + Er sin θ ẑ = Ery ŷ + Erz ẑ,

�Et = Et cos θ ŷ + Et sin θ ẑ = Ety ŷ + Etz ẑ, (31)

where Ei = ηHi, Er = ηHr , and Et = ηHt . Equations (14)–
(18) imply that we can fix separately χyy and χzz. In this case
we have one varying macroscopic surface polarization along
the crystal plane (Py) and one perpendicular to the crystal
plane (Pz). These two components induce two surface cur-
rents JPy and JPz , respectively. They generate two macroscopic
fields propagating along the ŝ direction and two along the ŝr

direction. According to the superposition principle the total
macroscopic field is the sum of the incident field and the
macroscopic fields generated by the two currents considered
separately (see Fig. 3). The expression of the in-plane electric
current is

JPy = ∂Py/∂t = iωPy = iωε0αNEloc,y. (32)

In the radiation zone the electromagnetic field, due to an
electric dipole oscillating in the ẑ direction, is identical to an
electromagnetic field due to a magnetic dipole oscillating in
the −x̂ direction [32]. Hence, a polarization Pz generates an
out-of-plane electric surface current equivalent to an in-plane
magnetic surface current, responsible for the discontinuity of
the macroscopic electric field [35–38]. Using Pz ∝ Eloc,z ∝
Ei,z and �Ei ∝ ei(ωt+ky sin θ ), we have

JPz x̂ = − 1

ε0
ẑ ∧ �∇Pz = ik sin θ

ε0
Pz x̂. (33)
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We must solve two separate sets of boundary conditions for
the macroscopic field:

ẑ ∧ ( �E2 − �E1) = 0, ẑ ∧ ( �E2 − �E1) = JPz x̂,

ẑ ∧ ( �H2 − �H1) = JPy ŷ, ẑ ∧ ( �H2 − �H1) = 0. (34)

In terms of the magnetic-field components, Eqs. (34) and (18)
become

Hi − Hr‖ = Ht‖, Hi − Hr⊥ = Ht⊥ + JPz

η cos θ
,

Hi + Hr‖ = Ht‖ + JPy , Hi + Hr⊥ = Ht⊥,

η cos θ Ht‖ = Py

ε0χyy
, η sin θ Ht⊥ = Pz

ε0χzz
, (35)

where Hr‖ (Hr⊥) is the contribution to the reflected field due
to the in-plane (out-of-plane) surface current and Ht‖ and Ht⊥
are the total macroscopic magnetic fields immediately below
the crystal for the two cases considered separately. We have,
then, the following solutions:

χyy = 4πa3Nα

4πa3 − C0α
, χzz = 2πa3Nα

2πa3 + C0α
,

Hr‖
Hi

= ikχyy cos θ

ikχyy cos θ + 2
,

Hr⊥
Hi

= −ikχzz sin θ tan θ

ikχzz sin θ tan θ + 2
,

Ht‖
Hi

= 2

ikχyy cos θ + 2
,

Ht⊥
Hi

= 2

ikχzz sin θ tan θ + 2
.

(36)

This finding is a very interesting result because it shows that
our crystal has an isotropic in-plane surface susceptibility
(χ‖ = χxx = χyy) different from the out-of-plane suscepti-
bility (χ⊥ = χzz); namely, we are dealing with an uniaxial
crystal. We can also evaluate the ratio χ⊥/χ‖. Choosing the
value of a = 0.26 nm, for atom polarizabilities α typically
varying in the range between 1 and 30 cm−3, the χ⊥/χ‖ ratio
varies in between 0.93 and 0.1 (0.94 and 0.18) for a triangular
lattice (for a square lattice). These values are of the same order
of magnitude of what has been observed [24].

The full reflected field from the crystal is Hr = Hr‖ + Hr⊥
(see Fig. 3), so that we can finally derive the reflection coeffi-
cient for 2D crystals, rp = Hr/Hi, getting

rp = ikχyy cos θ

ikχyy cos θ + 2
− ikχzz sin θ tan θ

ikχzz sin θ tan θ + 2
. (37)

We compute now the radiation-reaction electric field acting on
the dipole at the origin along the y and z directions,

ERy = ikaC1α cos θ

4πa3
Eloc,y = −ηJy cos θ

2
(38)

and

ERz = ikaC1α(sin θ )2

4πa3 cos θ
Elocz = − ik(sin θ )2

2ε0 cos θ
Pz

= − tan θ

2ε0

∂

∂y
Pz = − tan θ

2
JPz , (39)

and we show that these macroscopic quantities correspond to
the macroscopic fields generated by the oscillating dipoles.
We can rewrite Eqs. (36) in terms of the electric fields,

Eiy + Ery‖ = Ety‖, Eiz + Erz⊥ = Etz⊥,

Eiy − Ery‖ = Ety‖ − 2ERy , Eiz − Erz⊥ = Etz⊥ − 2ERz ,

ε0χyyEty‖ = Py, ε0χzzEty⊥ = Pz, (40)

which give the following solutions:

Ery‖ = ERy , Erz⊥ = ERz ,

Ety‖ = Eiy + ERy , Etz⊥ = Eiz + ERz ,

χyy = Py

ε0(Eiy + ERy )
, χzz = Pz

ε0(Eiz + ERz )
. (41)

We can interpret these equations in the following way. The
in-plane (out-of-plane) electric surface current JPy (JPz ) gen-
erates a macroscopic electromagnetic field propagating along
the ŝ and ŝr directions. We identify ERy (ERz ) as the electric-
field component along the y direction (z direction) of this
macroscopic field. From Eqs. (31), we can write the first two
equations on the left-hand-side of Eqs. (45) as

Hr‖ = − ERy

η cos θ
= −HR‖,

Ht‖ = Hi + ERy

η cos θ
= Hi + HR‖, (42)

and the first two equations on the right-hand-side of Eqs. (41)
as

Hr⊥ = ERz

η sin θ
= HR⊥,

Ht⊥ = Hi + ERz

η sin θ
= Hi + HR⊥. (43)

The full reflected field (see Fig. 3) is, therefore,

Hr = −HR‖ + HR⊥ (44)

while the full transmitted field is given by the superposition of
the incident field and the two macroscopic fields propagating
in the ŝ direction (see Fig. 3), generated by the two currents:

Ht = Hi + HR‖ + HR⊥. (45)

We can finally derive the transmission coefficient, defined by
tp = Ht/Hi, getting

tp = 1 − ikχyy cos θ

ikχyy cos θ + 2
− ikχzz sin θ tan θ

ikχzz sin θ tan θ + 2
. (46)

Finally the equations in the last line of Eqs. (45) provide the
macroscopic electric fields Ey and Ez. They are related to
the radiation-reaction electric fields. Along the y direction we
have Ey = Ei cos θ + ERy while along the z direction we have
Ez = Ei sin θ + ERz .

IV. CONCLUSION

We have shown that a 2D crystal, microscopically com-
posed by atoms with an isotropic polarizability α, has both
a macroscopic χ‖ and a macroscopic χ⊥ such that χ⊥ �= χ‖
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and χ⊥ �= 0, in contrast to some theoretical models, gener-
ally used to derive reflection and transmission coefficients for
these materials, which assume either a null χ⊥ [25–28] or
an isotropic susceptibility [6,15,16,19,23]. We also find that
χ⊥ < χ‖, as one can see by inspecting Eq. (38), confirming
that the ratio χ⊥/χ‖ is compatible with the experimental
observations [24]. We observe that in the presence of an
anisotropic polarizability it would be enough to simply re-
place α with αx, αy, and αz in the expressions for χxx, χyy,
and χzz, respectively. Moreover, our treatment, presented here
for a couple of monoatomic crystals with one atom per unit
cell, can be extended to crystals with a two-atom basis like
the honeycomb lattice, as done in Refs. [29,34]. The effect of
different geometries can be always encoded in the susceptibil-
ity tensor keeping the expressions for the Fresnel coefficients
the same.

Our microscopic theory provides both the local and the
radiation-reaction fields when an incoming electromagnetic
plane wave shines on a 2D material. The radiation-reaction
fields coincide with the macroscopic fields scattered by the
crystal, and they contribute to the reflected and the transmitted
radiations. This analysis allows us, then, to derive the com-
plete set of Fresnel coefficients and their dependence on the
angle of incidence.

In particular we describe the reflection of an incident p
wave, as obtained by the superposition of the scattered electro-
magnetic fields due to in-plane electric and in-plane magnetic
surface currents. The first current is related to a macroscopic
surface polarization oscillating in the crystal plane, and the
second one is related to a macroscopic surface polarization
oscillating perpendicularly to the crystal plane. Combining
the boundary conditions for these two currents we provide a
simple expression for the macroscopic electric fields along the
y and z directions, which turn out to be the sum of the related
components of the incident field with the radiation-reaction
field along the same directions. For an s-polarized wave,
only an in-plane electric surface current is involved, so the
reflected field is given by the scattered electromagnetic field
due to only an in-plane current and the macroscopic electric
field is the sum of the incident field plus the radiation-reaction
field.
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