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Trapping and self-assembly of particles by photonic chiral surface waves
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Trapping and self-assembly of particles by a single photonic chiral surface wave (PCSW) in a waveguide
is investigated in this work. Through rigorous calculations, stability analysis, and physical interpretation using
response theory of optical force, we show that particles of arbitrary sizes, shapes, and dielectric constants can
be stably trapped and assembled in the waveguide which is counterintuitive since a propagating surface wave
usually exerts a pushing or pulling force on the particle and transports it. The ability of confinement is due to
that the PCSW can navigate the particle and recover to its original state. Because of the unique propagating
and scattering properties, there is no interaction among the particles when the particles are far away enough.
Thus, the particles are independently trapped during the self-assembly process. This work provides a different
approach to manipulate small particles by using the PCSW.
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I. INTRODUCTION

Optical trapping—the localization and manipulation of
microscopic particles by light [1–3], has advantages of
noncontact and noninvasive manipulation at the proper wave-
length and hence has been intensely exploited in various
scientific areas including atomic physics [4–6], biological sci-
ence [7–9], Raman spectroscopy [10], and quantum physics
[11]. Relying on the optical gradient force due to the inhomo-
geneity of light intensity, a single tightly focused laser beam
can trap microscopic particles, which is well known as the
optical tweezers [1–3]. Ingenious ways were invented to shape
the laser beam to achieve novel functionalities [12].

In addition to conventional laser beams that propagate
in free space, the localized surface plasmons [13–16] and
surface waves including evanescent waves [17–20], surface
plasmon polaritons [21–23], and Bloch surface waves [24,25]
have been used for manipulating particles in the past decade.
Owing to the enhanced electromagnetic intensity and intensity
gradient near the interfaces, the localized surface plasmons are
able to trap microscale and even nanoscale particles [26–29].
On the other hand, the flexibility on controlling the scattering
of surface waves enables the surface waves to pull [30–34]
and push [35] particles, offering a different paradigm in op-
tomechanics [14,35–37]. At present, optical manipulations by
surface waves are mainly focused on a single particle. When
there is a collection of particles, optical binding [38–41] that
is due to the multiple scattering among particles must be taken
into account.

Recently, a novel type of surface wave—the photonic chiral
surface wave (PCSW) which is supported on the interface
between the photonic Chern insulator and topologically trivial
material, has been proposed and widely studied. The PCSW

*nwang17@szu.edu.cn

propagates unidirectionally and can continuously navigate
around obstacles and restore to its original states due to the
topological protection [42,43]. With the intriguing transport-
ing and scattering properties, the PCSW has been applied in
optical manipulations with unique properties. For example,
by using the PCSW, an optical pulling scheme that is robust
against the shapes, sizes, and permittivity of particles and even
sharp corners can be achieved [36].

Instead of studying the transportation ability of the PCSW,
in this work, we focused on the use of PCSW for optical
trapping of particles. The PCSW we considered is supported
in an air waveguide sandwiched between a magneto-optical
photonic crystal (PC) which acts as a Chern insulator and
an ordinary PC. The two PCs possess the same lattice con-
stant; hence, the waveguide preserves discrete translational
symmetry. We found that within a lattice constant along the
waveguide direction, the particle with small scattering cross
section can be stably trapped to one or two positions which
are located on the high-symmetry lines (edge and center) of
the supercell. When the scattering cross section of the particle
is too large, it is stably trapped with the help of both the optical
force and restriction of the waveguide boundary. Owing to
the novel transporting and scattering properties of the PCSW,
multiple particles can be individually trapped without the op-
tical binding force, enabling the self-assembly of particles in
the waveguide.

The paper is organized as follows: first, the
waveguide supporting the chiral surface wave is introduced.
Then, the equilibrium position of a single particle inside the
waveguide is searched accompanied by the stability analysis.
Response theory of optical force (RTOF) [44,45] is used to
interpret the numerical results. Then, the self-assembly of two
and three cylinders is studied. Then, the trapping of cylinders
with square and equilateral triangular shapes is discussed
briefly. Photophoretic forces are also discussed. Finally, a
summary is given.
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FIG. 1. (a), (b) Stereogram schematic and top view of the waveguide that supports a chiral surface mode. The waveguide is formed by an
air gap sandwiched between a magneto-optical PC (red) and an ordinary PC (blue). The lattice constants of both PCs are a, and the ambient is
air. The gray lines denote two thin barriers to prevent the particles from entering into the PCs, the cylinders are infinite along z direction. (c),
(d) Band diagrams of the two PCs for TM polarization. The band gap between the third and fourth bands of the ordinary PC and the band gap
between the second and third bands of the magneto-optical PC are shaded in yellow, and the Chern numbers of the bands near the band gaps
are indicated. (e) Projection bands (blue) of the PCs and the surface band (red) at the interface (the lower is the magneto-optical PC) between
the two PCs. The black dot denotes the chiral surface mode that is excited.

II. RESULTS AND DISCUSSION

A. The waveguide supporting the photonic chiral surface wave

The waveguide supporting a single photonic chiral surface
mode is schematically shown in Figs. 1(a) (stereogram) and
1(b) [top view of (a)], where an air gap along the x direc-
tion is sandwiched between a magneto-optical PC (red disks)
and an ordinary PC (blue disks). The two PCs are further
separated by 0.5a, where a is the lattice constant of both
PCs. So, the center-to-center distance between the bottom
cylinders of the upper PC and the top cylinders of the lower
PC is 1.5a. The radii of the cylinders of the magneto-optical
PC and the ordinary PC are 0.15a and 0.3a, respectively.
Two extremely thin polytetrafluoroethylene (εr = 2.1) plates
(marked by the gray lines) are placed at the top and bottom
of the air gap, respectively, to prevent the particles inside
the waveguide from entering into the PCs. For the ordinary
PC, the relative permittivity and permeability of the cylinders
are εr=5.5, μr=1.0. For the magneto-optical PC, the relative
permittivity of the cylinder is εr= 12.5, and the relative per-
meability tensor is

μr=

⎛
⎜⎝

1 −0.4i 0

0.4i 1 0

0 0 1

⎞
⎟⎠ . (1)

The most commonly used magneto-optical material is
yttrium-iron-garnet (YIG), of which the permeability tensor
can be tuned by adjusting the biased magnetic field [46].
However, the operation frequency of YIG is usually lim-
ited to the microwave regime. For higher-frequency domain,
we can use composite materials with the magneto-optical
effect enhanced by surface plasmon resonance [47–49]. Re-
cently, Banthí et al. [50] experimentally realized simultaneous
large magneto-optical effect and low optical losses using the
Au/Co/Au magnetoplasmonic nanodisks with SiO2 dielectric
layer inserted properly at the optical frequency domain.

The band diagrams of the two PCs for TM (Ez) polarization
are plotted in Figs. 1(c) and 1(d), respectively. As we can
see, the second band gaps (shaded in yellow) of the two PCs
overlap. The operating frequency of the waveguide will be
in this overlapping range. Also, the Chern numbers of the
bands near the two band gaps are calculated and indicated in
the figure. For the ordinary PCs which possess time-reversal
symmetry, all the bands are topologically trivial, namely their
Chern numbers are zeros. But, for the magneto-optical PC,
since the band gap is formed due to the lifting of degeneracy
between the second and third bands at the г point induced by
time-reversal symmetry breaking, the bands above and below
the band gap become topologically nontrivial.

By summing up the Chern numbers of all bands below
the band gap, we obtained that the gap-Chern number of
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FIG. 2. The Poynting vectors of a PCSW propagating in the
waveguide without (a) and with (b) a particle located in the waveg-
uide. The radius and refractive index of the particle are r = 0.15a
and n = 4.0, respectively. The location of the particle is x = 19a and
y = 0.0973a. (c), (d) Enlarged view of the rectangle areas in (a) and
(b), respectively.

the ordinary PC is zero, while the gap-Chern number of the
magneto-optical PC is 1. Therefore, according to the bulk-
boundary correspondence [51], there will be a chiral surface
mode with the positive group velocity (propagating along the
positive-x direction) on the interface formed by the upper or-
dinary PC and the lower magneto-optical PC. In Fig. 1(e), the
projections of the bulk bands (blue lines) of the two PCs and
the surface band (red line) on the interface by a supercell cal-
culation are shown. As expected, there is one gapless surface
state with the positive group velocity. In the waveguide, the
PCSW is excited at a given frequency ω = 0.618c/a [marked
by the black dot in Fig. 1(e)] by a line current source located
in the waveguide. Throughout this paper, the current source
is 0.01A. Figures 2(a) and 2(b) show the Poynting vectors
of a PCSW propagating in the waveguide without [Fig. 2(a)]
and with a particle [Fig. 2(b)] located in the waveguide. The
radius and refractive index of the cylinder are r = 0.15a, and
n = 4.0, respectively. The location of the cylinder is x = 19a
and y = 0.0973a. Figures 2(c) and 2(d) are the zoomed view
of the rectangle areas in Figs. 2(a) and 2(b), respectively. As
can be seen from Figs. 2(b) and 2(d), there is no leftward
energy flux when away from the cylinder and the energy fluxes
recover themselves about half lattice period downstream from
the cylinder. Therefore, the PCSW can navigate the particle
and propagate forward without reflection. In the following, we
will show that this PCSW can trap and self-assemble multiple
cylinders inside the waveguide.

B. Stable trapping of cylinders

We have performed full-wave simulations with commercial
software COMSOL MULTIPHYSICS and applied the Maxwell
stress tensor (MST) to calculate the optical force [52]. For
a time-harmonic wave, the time-averaged optical force on a
particle located in air is rigorously calculated by an integral of

FIG. 3. Longitudinal (a) and transversal (b) optical forces acting
on the dielectric cylinder as a function of its location (x, y) within
a rectangular region as marked by the black dotted rectangle in
Fig. 1(b). The radius and refractive index of the cylinder are r =
0.15a and n = 2, respectively. (c), (d) Divergence and curl of the
optical force. (e), (f) Zoomed view of the rectangular area in (c) and
(d), respectively. The stars denote the equilibrium position.

the MST over a closed surface enclosing the particle:

F =
∮

S

↔
T · ndS, (2)

where S is the closed surface immersed in air, n is the outward
normal unit vector of S, and dS is the differential element of

the surface.
↔
T is the MST given by

↔
T = 1

2
ε0

[
EE∗ + c2BB∗ − 1

2
(E · E∗)

↔
I − c2

2
(B · B∗)

↔
I
]
,

(3)
where E and B are the electric and magnetic fields,
respectively,ε0 is the permittivity of the free space, c is the

light speed in vacuum,
↔
I is the 3 × 3 identity matrix, and

* denotes taking the complex conjugate. The particle we
consider is a cylinder which is infinitely long along the z direc-
tion. Based on Eq. (2), the longitudinal (x direction) and the
transversal (y direction) optical forces on a dielectric cylinder
with the radius r = 0.15a and the refractive index n = 2.0
as function of its locations (x,y) within a rectangular region
[marked by the dotted rectangle in Fig. 1(b)] are calculated
and shown in Figs. 3(a) and 3(b), respectively. This rectan-
gular region basically covers all the positions that the particle
can reach along the y direction. Note that the x coordinates of
the cylinders of the PCs are Na, where N is an integer, and
the central line of the air gap is at y = 0. Because there is
no mirror symmetry with respect to y = 0, the chiral surface
mode is neither even nor odd, and the transversal optical
force is not necessarily zero at y = 0. Thus, we have to seek
equilibriums along the y direction. From Fig. 3, we see that the
optical force repeats itself when the particle moves a lattice
constant along the x direction. This is expected because the
waveguide preserves discrete translational symmetry along
the x direction. Another key point is that the longitudinal
optical force is always zero when the particle is located at
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FIG. 4. (a), (b) Optical forces calculated by using the MST (blue
solid line) and RTOF (red circles) along an axial segment. The y co-
ordinates of the cylinders in (a) and (b) are fixed at y = −0.116 84a
and y = 0.0973a, respectively. The radii and refractive indices of
the cylinders are (a) r = 0.12a, n = 4 and (b) r = 0.15a, n = 4,
respectively. (c), (d) Phase responses corresponding to (a) and (b),
respectively.

x = Na and x = (N + 1/2)a, irrespective of its transversal
location, which can be interpreted by the RTOF [44,45].

RTOF is proposed by Rakich et al. based on the virtual
work principle in the adiabatic limit [44,45]. It provides a
powerful tool to analyze the optical force in multiport pho-
tonic systems. Because the waveguide supports only one mode
[see Fig. 1(e)], there will be no mode conversion. According to

RTOF, the optical force acting on the particle can be calculated
by

F(x, y) = I (x, y)

ω
∇φ(x, y), (4)

where ω is the angular frequency of light, I and φ are the
power and the phase response with respect to the location
of the particle. The power and the phase response can be
evaluated from the complex amplitude of the scattered mode
defined as

E = 1

2
vgε0εr

∫
EzeigE∗

z dS, (5)

where Ezeig is the electric field distribution of the eigenmode
[see its real part, shown in Figs. 5(e) and 5(f)] by the supercell
calculation, Ez is the electric field distribution inside a unit
supercell at a fixed location downstream from the particle, and
vg = dω/dk denotes the group velocity of the chiral surface
mode. The power and phase response are then calculated
according to

I = |E |2, φ= Arg(E ). (6)

Due to discrete translational symmetry of the waveg-
uide, both I and φ restore their initial values when the
particle moves a lattice constant along the x direction.
As a result, ∂φ(x, y)/∂x oscillates between positive and
negative, and the longitudinal equilibrium (Fx = 0) occurs
when ∂φ(x, y)/∂x= 0. It has been shown that φ(x, y) has
even symmetry with respect to high-symmetry lines x =
Na and x = (N + 1/2)a when the particle is symmetric
(round shape for example) [53] (see the Appendix). There-
fore, ∂φ(Na, y)/∂x = ∂φ(Na + a/2, y)/∂x = 0, leading to

FIG. 5. Equilibrium positions of the cylinder as functions of its refractive index [(a) and (b)] and its radius [(c) and (d)]. The blue circles
denote that the cylinder is trapped at the position x = Na, while the orange hexagons represent that the cylinder is trapped at the position
x = (N + 0.5)a, where N is an integer. The radii in (a) and (b) are r = 0.12a and r = 0.15a, respectively, and the refractive indexes in (c) and
(d) are n = 1.5 and n = 4.0, respectively. The red stars in (a) and (b) denotes the y coordinates used in Figs. 3(a) and 3(b), respectively. The
red stars in (b) and (d) are for the same particle. (e), (f) Distribution of electric fields and magnetic fields.
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FIG. 6. Eigenvalues of the force constant matrices of the equilib-
rium positions in Fig. 5(d).

the vanishment of longitudinal optical force at the high-
symmetry lines of the supercell x = Na and x = (N + 1/2)a.

To show the validity of Eq. (4), we considered two typical
cases and showed the results in Figs. 4(a) and 4(b), respec-
tively. The results calculated by using the MST [Eq. (2)] and
RTOF [Eq. (4)] are shown by the blue solid lines and red
circles, respectively. Clearly, these two results agree excel-
lently well with each other, verifying the validity of Eq. (4). In
Figs. 4(c) and 4(d), we also plotted the corresponding phase
responses. Clearly, φ(x, y) = φ(x + a, y) is indeed periodic
and even symmetric with respect to the lines x = Na and
x = (N + 1/2)a.

Since Fx(Na, y) = Fx(Na + a/2, y) ≡ 0, we can find the
equilibriums on the xy plane by just searching Fy = 0 along
the high-symmetry lines x = Na and x = (N + 1/2)a. How-
ever, the particle can be trapped only when the equilibrium is
stable. The stability of the equilibrium can be determined by
studying the eigenvalues of the force constant matrix around
the equilibrium [54],

↔
K =

(
∂Fx
∂x

∂Fx
∂y

∂Fy

∂x
∂Fy

∂y

)
, (7)

where the matrix elements ∂Fi/∂r j are numerically obtained
by using the finite-difference method. For example, ∂Fx/∂x =
lim
�x

[Fx(x0 + �x, y0) − Fx(x0, y0)]/�x, where (x0, y0) is the

coordinate of the equilibrium and �x is the longitudinal dis-
placement of the particle from the equilibrium. Ignoring the
ambient damping, the equilibrium is stable only when both

eigenvalues of
↔
K are purely real and negative [55].

In Fig. 5, we showed the stable equilibrium positions of
dielectric cylinders with different radii and refractive indices.
In Figs. 5(a) and 5(b), the radii of the cylinders are fixed
while their refractive indices vary from 1 to 5. In contrast,
the refractive indices of the cylinders in Figs. 5(c) and 5(d)
are fixed while their radii change. The blue circles denote
that the cylinder is stably trapped at x = Na, while the or-
ange hexagons indicate that the cylinder is stably trapped at
x = (N + 1/2)a. As a typical example, the eigenvalues of
↔
K for the equilibriums indicated in Fig. 5(d) are plotted in
Fig. 6. All the eigenvalues are real and negative, indicating
the equilibriums are indeed stable.

In most cases, the cylinder can be trapped either at x = Na
or x = (N + 1/2)a. However, for some special cases, e.g.,
when the refractive index is n = 1.5 and the radius varies
from 0.27a ∼ 0.3a, the cylinder can be captured at both sets

of positions. Also, the cylinders are likely trapped at y < 0.
This is because when the radius and the refractive index of
the cylinder are relatively small so that the scattering is not so
significant, the optical force is dominant by the optical gradi-
ent force which tends to confine the cylinder at the positions
where the electromagnetic fields are strong. From Figs. 5(e)
and 5(f), we see that the strong electromagnetic fields are
located at y < 0. In Figs. 3(c) and 3(d), we depicted the
divergence and curl of the optical forces, where the parameters
of the cylinder are r = 0.12a and n = 2.0. The enlarged view
of the rectangle region (marked by the dotted lines) containing
the equilibrium position (stars) is plotted in Figs. 3(e) and
3(f). Clearly, the divergence of the force near the equilibrium
position domains indicates that the optical force is dominant
by the optical gradient force [56].

As can be seen from Figs. 5(b) and 5(c), the cylinder cannot
be trapped solely by the optical force when the refractive
index is too high or the radius is too large. However, since
the longitudinal optical force oscillates between positive and
negative, there is at least one stable longitudinal equilibrium
(Fx = 0, ∂Fx/∂x < 0) for any y when x varies a lattice period.
As such, even though the cylinder cannot be trapped solely by
the optical force, it will move upward or downward consis-
tently and be finally confined with the help of both the optical
force and the elastic force of the plate as it reaches the plate.

C. Self-assembly of cylinders

Since there is no mode conversion (including the backward
surface mode), the chiral surface wave can bypass the obsta-
cles without backscattering and restore to its original states
after propagating a distance. Consequently, when a second
cylinder is located far enough behind the first one, there will
be no electromagnetic coupling from the first cylinder to the
second one. On the other hand, because the chiral surface
wave is immune to the backscattering, there will also be no
electromagnetic coupling from the second cylinder to the first
one. As a result, there is no optical binding force between
the two cylinders, and they can be trapped by the chiral sur-
face wave independently when they are separated far enough.
Obviously, such analysis and conclusion can be applied to
arbitrary number of cylinders which are separated far enough
from each other.

Figure 7 depicts the optical forces acting on two identical
cylinders. The cylinder on the left is fixed at the position
where it can be stably trapped in the absence of the cylinder
on the right. These two cylinders are located at the same
y and separated by Na along the x direction, where N is
an integer. Four pairs of identical cylinders are considered
and their optical forces are plotted in different columns of
Fig. 7. The longitudinal and transversal optical forces are
shown in the upper and lower panels of Fig. 7, respectively.
It is shown that for each pair of identical cylinders, they are
subjected to almost the same transversal optical force. This
indicates that the PCSW almost exerts no optical torque on
the cylinder pairs. When the scattering cross sections of the
cylinders are not so large, the cylinders can achieve stable
equilibriums for the separation over 10a; see Figs. 7(a)–
7(c) and 6(e)–6(g). For the last pair of identical cylinders
whose scattering cross sections are much larger, the separation
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FIG. 7. The optical forces acting on two identical cylinders vs their separations. The blue circles (red squares) denote the optical forces
acting on the left (right) cylinder. The longitudinal and transversal optical forces are shown in the upper and lower rows, respectively. In each
column, the radii, refractive index, and y coordinates of the two cylinders are fixed. From left to right, r = 0.12a, n = 1.6, y = −0.1497a;
r = 0.12a, n = 4, y = −0.1168a; r = 0.15a, n = 3, = −0.1105a; and r = 0.15a, n = 4.2, y = 0.0642a. (The amplitude of the source was
not given).

for achieving stable equilibriums has to be over 13a; see
Figs. 7(d) and 7(h).

Figure 8 depicts the optical forces acting on three identical
cylinders. The parameters of the three cylinders are the same
with those in Fig. 5(b). For the sake of convenience, locations
of the first and the third cylinders are fixed and they are
separated by 31a, while the second cylinder in the middle of
them is moved from left to right at an interval of the lattice
constant a. In the same way, the fixed cylinders (the first and
the third cylinders) are located at the positions where they can
be stably trapped without the moving one, meanwhile all the
cylinders are aligned in a line parallel to the x axis. �x in
Fig. 8 denotes the distance between the first and the second
cylinder. It is shown that when 10a � �x � 20a, i.e., the
distances between the adjacent cylinders are both not less than

FIG. 8. The optical forces acting on three identical cylinders. (a)
and (b) denote fx and fy, respectively. The first and the third cylinders
are fixed with a separation between them of 30a, while the second
cylinder is in the middle of them and moved from left to right with
a step of a. �x denotes the distance between the first and the second
cylinders. The parameters of the three cylinders are the same as those
in Fig. 5(b).

10a, all three cylinders can reach the equilibriums. Because of
the complexity of numerical calculation, we only showed the
cases of two and three cylinders. However, in principle, we
can trap arbitrary number of cylinders to realize self-assembly
of cylinders into one-dimensional array by using the PCSW if
the waveguide is long enough.

D. Trapping of cylinders of square and triangular shapes

Figure 9 shows the stable equilibrium positions of dielec-
tric cylinders of square [Fig. 9(a)] and triangular [Fig. 9(b)]
shapes as functions of refractive indices. The side lengths of
the squares and equilateral triangles are both 0.2a, and the
refractive index ranges from 1.1 to 4. The blue circles denote
that the particles are stably trapped at x = Na, while the
orange hexagons indicate that the particles are stably trapped
at x = (N + 1/2)a.

FIG. 9. The stable equilibrium positions of dielectric cylinders
with square and triangular shapes as functions of refractive index.
The side lengths of the squares and equilateral triangles are both 0.2a.
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FIG. 10. Temperature distribution near the cylinder.

E. Photophoretic force

We also investigate the force induced by the light-induced
thermal effect, i.e., the photophoretic force. For a typical
example, here we assume the real part and imaginary part of
the refractive index of the dielectric cylinder in the waveguide
is 4 and 0.01, respectively. Because, the losses of dielectrics
are usually negligible, the imaginary part of the dielectric
cylinder is overestimated. The radius is 0.15a. We first calcu-
late the electric field distribution using the software COMSOL

MULTIPHYSICS where the particle is located at the equilibrium
position (x = 20a, y = 0.097 34a). Then, the heat power
volume density Q can be calculated as [57]

Q = 1
2ε0ω|E|2Im[εr], (8)

where ε0 is the permittivity in free space, ω is angular fre-
quency of the PCSW, E denotes the electric fields, Im[]
denotes the imaginary part of [], εr is the relative permittivity
of the particle. The heat power volume density Q is considered
as the heat source in the thermal transfer problem solved by
COMSOL. The heat conductivity of air and the cylinder in the
waveguide are ka = 0.04 WK-1 m-1 and kp = 2 WK-1 m-1,
respectively. The temperature distribution is plotted in Fig. 10.

The photophoretic force acting on the cylinder is computed
as [58–60]

F PPF
x(y) = − 15kBα

64
√

2σcs

dT

dx(y)
l, (9)

where kB = 1.38 × 10−23J K−1 is Boltzmann constant;
σcs=4.3 × 10−19m2 is the scattering cross section of air
molecules at 1 atm and the room temperature. The thermal
accommodation coefficient α at T = 300 K is about 0.8–
0.9; here, we take α = 0.8. dT

dx = T (x=19.15a)−T (x=18.85a)
2r and

dT
dy = T (y=0.2473a)−T (y=−0.0527a)

2r are the temperature gradient
across the particle with r being the radius of the cylinder; l
is the size of the particle parallel to the temperature gradient
of the particle. According to Eq. (9), the calculated pho-
tophoretic forces at the equilibrium position are F PPF

x =2.6 ×
10−6pN/μm and F PPF

y = − 3.5 × 10−3pN/μm, respectively,
which are several orders weaker than the optical force (about
1 pN/μm) which can be ignored compared with the optical
force of the nonequilibrium positions. As a consequence, the
thermal effect could be neglected in the optical trapping.

III. CONCLUSIONS

In summary, we show the stable trapping and self-assembly
of particles of arbitrary sizes, shapes, and dielectric constants
can be achieved by PCSWs. The achievement of the stable
trapping and self-assembly is due to the fact that the PCSW
can navigate the particles and restore to its original state.
Although the chiral surface wave is propagating, the trapping
and self-assembly are static, which is in stark contrast to those
of using freely propagating beams [39–41] and topologically
trivial surface waves where trapping and self-assembly are
dynamic. Due to the novel transporting and scattering prop-
erties, topologically nontrivial surface waves including the
PCSWs, photonic helical surface waves, and valley-polarized
surface waves have great prospects in optical manipulation
applications. Our work paves the way for optical trapping and
self-assembly based on topological nontrivial surface waves.
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APPENDIX: SYMMETRY OF THE PHASE RESPONSE

In this Appendix, we will show that for a circular cylinder,
the phase response as a function of the cylinder’s location
possesses the even symmetry about the high-symmetry lines
of the unit cell. For example, for the high-symmetry line
x = Na, where N is an integer, the phase response is identical
for the cylinder located at the original position (gray disk)
and for the cylinder located at its mirror-reflection position
(dashed circle) as shown in Fig. 11(a).

We first demonstrate the equivalence of the phase re-
sponses between system 1 shown in Fig. 11(b) and system 2
shown in Fig. 11(c). The source and monitor points of system
1 (2) are marked by A (B) and B (A) in Fig. 11(a), respectively.
Interchanging the source and monitor points and reversing the
sign of the biased magnetic field (transposing the permeability
tensor) of system 1, system 2 is obtained. According to the
Lorentz reciprocal theorem [61–63], the input and output of
the two systems are equivalent. As such, the phase responses
of the two systems detected are equal, ϕ1 = ϕ2. Then, we
rotate system 2 with respect to the high-symmetry line (the
purple dashed line) 180◦ to obtain system 3 as shown in
Fig. 11(d). Note that the rotation turns system 2 upside down.
Thus, the directions of biased magnetic fields in system 2
and system 3 are opposite. The equivalence between system
2 and system 3 leads to the identity of the phase responses,
ϕ2 = ϕ3. As a consequence, ϕ1 = ϕ3. Also, system 3 can be
obtained by just moving the circular cylinder in system 1 to
its mirror-reflection position respect to the high system line.
Therefore, the phase responses are the same when the circular
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FIG. 11. (a) Schematics of the structure with the particle at its original position (gray disk) and the mirror-reflected position (dashed circle).
The operations are conducted in two steps: from the original system (b) to its reciprocal pair (c), and to (e) the system after a mirror operation.
“+” and “−” signs represent the direction of the biased magnetic field along z direction.

cylinder is moved to its mirror-reflection position, indicating
that the phase response ϕ(x, y) possesses even symmetry with

respect to the high-symmetry lines x = Na. Similarly, it is true
for high-symmetry lines x = (N + 1/2)a.
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