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Optical transport lengths quantifying depolarization in experiments on random media
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When light diffuses in random media, the intensity decays and at the same time the polarization state is
scrambled. As explanation for this apparent inseparability, theoretical work has identified a profound relation
between length scales of optical transport and depolarization. Here, we experimentally confirm and quantify their
proportionality with thickness-dependent depolarization measurements in colloidal suspensions of microscopic
constituents. The observed equivalences accurately predict the nonlinear evolution rate of depolarization over a
large range of penetration depths. Our results provide a simple relation, that connects light diffusion in strongly
scattering media with measurable polarization signatures over wide spectral ranges and scatterer concentrations.
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I. INTRODUCTION

In many research fields, from astronomy, atmospheric
physics, and spectroscopy down to bio-imaging, multiple
scattering progressively changes the direction and original
polarization state of light [1–6]. The transformations of these
two seemingly independent properties of light are correlated
to each other in structurally random media [7,8]. In these
media, the diffusion of light is governed by two length scales,
the mean free path � describing the interspace between two
scattering events and the transport mean free path �∗ corre-
sponding to the distance that light travels until its direction
k is randomized, as illustrated in Fig. 1(a) [9]. Efforts to
clarify their relationship to depolarization promise to supply
numerous optical fields of study with new analytical tools.
Randomization of the propagation direction of light is com-
mon in interstellar dust [10], clouds [11], biological tissues
[12,13], turbid media [14], and in general in all “white” mat-
ter. In observations, randomization of the polarization state
manifests as depolarization. Depolarization is a macroscopic
observable that arises from ensemble averaging of polarized
fields over intervals of time or space smaller than that of the
acquisition. Despite its stochastic nature, the measurement of
depolarization enables the recovery of microscopic parame-
ters and processes that are difficult to observe by other means
[9]. Examples are refractive indices in inhomogeneous media
or distances between microscopic defects and their motion
[7–9].
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The present paper demonstrates that dynamic light trans-
port quantities � and �∗ can be directly obtained from
depolarization measurements. Our paper provides an exper-
imental confirmation that these quantities are equivalent to
length scales of depolarization and quantifies their propor-
tionality. Previously, studies on Rayleigh and Mie scatterers
have suggested the connection between length scales of op-
tical depolarization and diffusion of light [7]. More recently,
corresponding explicit expressions have been theoretically es-
tablished in [15,16]. They are valid for the diffusive regime for
which polarization resolved optical transport equations were
derived in [17,18]. To analyze the dynamics of polarized
light transport we, however, draw on a phenomenological
model that is especially suited for experimental data. We
measure light depolarization as a function of the light pene-
tration depth into media through Mueller matrix ellipsometry
[19–23]. We then describe the evolution of polarization
states with a random-walk model [24,25] that naturally
gives rise to measurable depolarization length scales. Finally,
we compare their values and spectra to predictions for �

and �∗.

II. EXPERIMENTAL SETUP

Uniform colloidal suspensions are prepared at various
volume fractions φ between 0.5 and 9.6% by mixing pure
water with a commercial master solution (microparticles.de)
of φ = 9.6%. The suspension consists of polystyrene spheres
of diameter 1.5 ± 0.05 µm. Interparticle correlations and their
influence on � and �∗ are negligible at these concentrations
[26]. The particle density (1.05 g/cm3) is similar to that of
water and no sedimentation was observed over the duration of
experiments.

For measurements, the suspensions are injected via a sy-
ringe into a commercial fluid cell (Omni Cell, Specac), the
thickness z = 12–2000 µm of which is adjusted by a variety
of Polytetrafluoroethylene (PTFE) spacers. To fully determine
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FIG. 1. (a) Sketch of the randomization of k in real space for two
different ratios of �∗/�. A shorter transport mean free path �∗ implies
faster randomization. (b) A random walk of the optical property � in
the birefringence or dichroism plane represents the randomization of
polarization [see Eq. (3)]. (c) Schematic of the experiment. Polarized
and collimated LED light is sent through a colloidal suspension of
fixed size spheres over varying thicknesses. The outgoing light is
analyzed with polarization optics and a photodiode and the resulting
Mueller matrix is obtained

their optical response the z-dependent Mueller matrices are
acquired in the visible and near infrared from 385 to 940 nm
at normal incidence and room temperature with a Woollam
VASE ellipsometer equipped with additional compensators to
acquire all 16 Mueller matrix elements. In an ellipsometer
the sample is illuminated by a collimated beam with various
well-defined polarization states, and, after interaction with the
sample, the polarization changes are analyzed. The Mueller
matrix, obtained in this way, contains the entire polarization
response of our samples for a given thickness and particle
concentration. As is detailed below, our experimental condi-
tions are such that only the diagonal terms are significant; they
directly give, after decomposition, the depolarizations σ 2

b for
the different polarization bases [22].

To provide sufficient optical intensity, high power LEDs
with low coherence are employed as light sources and with
spectral bandwidths of �λ ∼ 10 nm to avoid speckles. The
incident beam is collimated to ensure a pure polarization state
Sin and has a diameter of 5 mm while the emerging diffuse
beam is detected through a 5-mm aperture. Reproducibility is
successfully verified by repetitively measuring specific data
points (λ, φ) on different days and samples. A schematic of
the setup is shown in Fig. 1(c).

The Brownian motion of the particles influences the exper-
imental Mueller matrices on time scales of tacq ∼ 0.1 s, which
is much smaller than the measurement time tacq ∼ 30 s. As a
consequence, the detector captures a large ensemble of light
paths. However, we stress that, instead of being detrimental
to the results, this effect ensures better statistics due to the
consideration of a larger ensemble of particle configurations.
In the analysis, this is taken into account by the averaging
operator 〈...〉 as discussed in Eq. (2) of the main text.

III. RESULTS AND DISCUSSION

A. Polarized light diffusion in random media

Stochastic modeling approaches successfully reproduce
polarization signatures caused by multiple scattering in ex-
periments on random media [7,24,25]. Early observations
showed a linear evolution of depolarization quantities at large
light penetration depths z that agreed well with Monte Carlo
simulations [7]. Later studies put forth analytical stochastic
differential equations for polarization diffusion that showed
a more accurate correspondence with measured depolariza-
tion values and provided a deeper picture about contributing
phenomena [25]. The depolarization curve as a function of
z displays two regimes: a linear evolution at large z and a
nonlinear transient behavior at short z. Each regime exhibits
distinct polarization dynamics [25], that are discussed in more
detail in the following.

Using � and �∗ in a random medium, light propagation
can be modeled as an ensemble of photon trajectories. Each
photon with position r(t ) performs an isotropic random walk
with direction changes due to stochastic scattering processes.
Its mean-squared displacement σ 2

r (τ ) = 〈|r(t + τ ) − r(t )|2〉
follows the equation [27]

σ 2
r (τ ) = Dτ (1)

over a time duration τ , where D is the diffusion coefficient
defined by D = c�∗/3, c is the energy velocity of light in the
medium, and 〈...〉 denotes ensemble averaging.

Since the dynamics in real space are governed by char-
acteristic length scales, we expect the same to be true in
polarization space. In analogy to the coordinate vector of light
r in real space, a set of three two-dimensional vectors �b, (b ∈
{L, L45,C}) encodes the accumulated polarization state of the
light in the birefringence-dichroism space [Fig. 1(b) ]. These
elements exist in three different bases—linear (L), linear at
±45◦ (L45), and circular (C) [28]—and change randomly
at each scattering event. The mean-squared polarization dis-
placement,

σ 2
b (z) = 〈|�b(z) − �b(0)|2〉, (2)

defines the depolarization and depends on the light penetra-
tion depth z into the medium [24,25]. In analogy to Eq. (1),
experiments have shown that σ 2

b (z) satisfies [7,25]

lim
z�zT

b

σ 2
b (z) = Bbz + Kb, (3)

for large z, with zT
b a characteristic length scale that is defined

below. Comparison of Eqs. (1) and (3) reveals that Bb defines a
diffusion coefficient for polarization states and its inverse B−1

b
is the associated depolarization length scale. The additional
variance Kb accounts for depolarization contributions earlier
along the z propagation. It is a testimony to the fact that
the polarization diffusion σ 2

b (z) exhibits different statistics at
small penetration depths 0 � z � zT

b when compared to σ 2
r (t ).

These contributions are short lived and decay exponentially
over the transient regime zT

b [25]. Previous studies found
that σ 2

b (z) evolves nonlinearly in this regime [23,25]. This
behavior quickly recedes as z enters the stationary regime
for z � zT

b . The two length scales zT
b and B−1

b are prominent
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features of depolarization and summarize the overall behavior
of different σ 2

b (z) curves.
In order to determine zT

b and B−1
b experimentally, the

depolarization curve σ 2
b (z) needs to be acquired in both char-

acteristic regimes. The random perturbation of �b(z) along
the propagation direction z follows an Ornstein-Uhlenbeck
process [29], i.e., a stochastic differential equation, the
coefficients of which encode microscopic dynamics. The ac-
cumulated optical property relates to its polarization velocity
pb(z) through

�b(z) =
∫ z

0
pb(s)ds. (4)

pb(z) satisfies the stochastic differential equation [30]:

dpb(z)

dz
= Abpb(z) + �b

dNb(z)

dz
, (5)

with Nb(z) a unit normal noise vector, �b a real 2 × 2 noise
amplitude, and Ab a real 2 × 2 drift matrix.

As a consequence, the dynamics of pb(z) are not com-
pletely random, but originate from an interplay between
random noise provided by Nb(z) and deterministic inter-
change and damping given by Ab [Eq. (5]. At short distances
z, the term Abpb(z) dominates. At large distances both terms
drive the dynamics. For this reason the depolarization σ 2

b (z)
experiences two distinct regimes at different scales of z
[Eq. (3)].

The analytic expression for the z-dependent curves of
σ 2

b (z), derived from Eqs. (2), (4), and (5) (see Appendices), is
later fitted to the experimental data. The fits provide estimates
for the coefficients Ab and �b, that define explicit expressions
for B−1

b = B−1
b (Ab,�b) and zT

b = zT
b (Ab). The present paper

correlates these coefficients to the physical properties of the
individual scatterers in random media. To do so effectively,
we perform experiments on a model system with microscopic
scatterers, the optical properties of which are well defined.

B. Light depolarization measurements

In our experiments we measure �b(z) and its uncertainties
σ 2

b (z) by Mueller matrix ellipsometry [20] and subsequent
differential decomposition of the matrices [21–23]. We do
this for uniform colloidal suspensions of spherical polystyrene
(PS) particles with diameter 2r = 1.5 µm at different volume
fractions φ and a wide range of sample thicknesses z illu-
minated in transmission by low-coherence sources at various
wavelengths λ. Volume fractions as large as 9.6% are probed
which still allow neglecting optical short-range interactions
[31–33]. Together with the refractive indices of the scatterers
np and solvent ns our system is then fully characterized.

The spherical symmetry of the scatterers reduces the sys-
tem description to only three variables (x, m, φ), with the size
parameter x = 2πnsr

λ
and the relative refractive index m = np

ns
[34]. A change in the wavelength λ is equivalent to an inverse
change in the particle radius r. Consequently, our results can
be extended to (λ, r, ns, np) that lead to similar (x, m).

Colloidal suspensions of PS spheres have several advan-
tages [26]. They are easy to control experimentally and their
single-particle scattering is described exactly through Mie
theory, from which the length scales � and �∗ are computed as
functions of (x, φ, m) [9]. Any change in these variables will
lead to different evolution of pb(z). Due to their symmetry, the
scatterers depolarize exclusively by multiple scattering. The
closeness of the density of water and PS spheres suppresses
sedimentation over the course of the experiment. The thermo-
dynamic behavior of the beads is also well understood. We
make use of known relationships between φ and the struc-
ture factor during the computation of (�, �∗) to account for
interparticle correlations [35,36]. Furthermore, polystyrene
spheres of 1.5 µm exhibit minuscule optical absorption and
a large scattering cross section in the visible spectrum.

Large single-particle scattering cross sections are crucial
in order to access both depolarization regimes (transient and
stationary) experimentally. The strongly increasing attenua-
tion due to multiple scattering as a function of z constrains
the available z range. Particle sizes with the largest scattering
cross sections maximize the therein generated depolarization.

C. Relation between light depolarization lengths and transport
parameters

We want to express light depolarization in terms of the
transport parameters � and �∗. Therefore, it is important to
differentiate their signatures in spectra of zT

b and B−1
b . This

is possible for the chosen size of PS beads because � and �∗
exhibit distinct spectral behaviors. While the mean free path
� displays a minimum at 600 nm, due to a Mie resonance, the
transport mean free path �∗ increases monotonically with the
wavelength as presented in Fig. 2(a) .

Our suspensions of 1.5-µm PS spheres generate noise
that matches the Gaussian process described by Eqs. (4)
and (5). All measured Mueller matrices are diagonal, i.e.,
they are perfect depolarizers and produce maximum entropy
[37,38]. For this reason, an incident Stokes vector Sin =
(S0

in, S1
in, S2

in, S3
in)T produces the outgoing Stokes vector

Sout (z) that reads [25]

Sout (z) = I (z)

⎛
⎜⎜⎜⎝

S0
in

S1
in exp

[−σ 2
L45(z) − σ 2

C (z)
]

S2
in exp

[−σ 2
L (z) − σ 2

C (z)
]

S3
in exp

[−σ 2
L (z) − σ 2

L45(z)
]

⎞
⎟⎟⎟⎠, (6)

with the transmitted irradiance I (z), the Stokes parameters
S0−3, and the depolarizations σ 2

b [Eq. (2)] associated with
polarization bases b ∈ {L, L45,C}. The mean values 〈�b(z)〉
vanish and do not contribute in Eq. (6) because the Mueller
matrices are diagonal. We assume that the nonzero variances
σ 2

b (z) are predominant compared to higher-order statistical
moments, as is confirmed in the following, where we demon-
strate the accuracy of the model.

Good agreement is observed between measurements and
fits of σ 2

b (z) as shown in Fig. 2(b) for the three optical prop-
erties L, L45, and C, at chosen (φ = 1.1%, λ = 530 nm).
The stochastic model perfectly reproduces the expected tran-
sient and stationary regimes of the data. Over the transient
regime, 0 � z < zT

b , the variance σ 2
b (z) evolves nonlinearly,
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(a)

(b)

FIG. 2. (a) Light transport quantities (solid lines) � in blue (dark
gray) and �∗ in green (light gray) show distinct spectra. Measured
depolarization length scales zT

b in blue (dark gray) symbols and B−1
b

in green (light gray) symbols follow � and �∗ for linear (square) and
circular (circle) polarization [Eq. (7)]. (b) Measured depolarization
(symbols) with corresponding fits to Eq. (5) (solid lines) as a function
of sample thickness z for a wavelength λ = 530 nm. Each data set
belongs to one of the bases, linear L (square), linear L45 (triangle),
and circular C (circle). The transient regime is characterized by zT

b .
The diffusion coefficient Bb gives rise to the linear growth of depolar-
ization in the stationary regime. Its inverse B−1

b is the corresponding
depolarization length. All graphs are drawn at a volume fraction of
φ = 1.1% and sphere size 2r = 1.5 µm.

and subsequently enters the stationary regime, zT
b < z, where

it approaches the linear trend of Eq. (3). Excellent correspon-
dence between data and model is observed for all measured
(λ, φ).

We experimentally varied the wavelength over λ ∈
[385 nm; 940 nm] and recovered the spectra of zT

b and B−1
b

as shown in Fig. 2(a). Here, clear differences between the
two quantities are seen. While zT

b exhibits a minimum around
λ = 600 nm, B−1

b increases monotonically with λ for all po-
larization bases. They follow � and �∗, the spectra of which
are overlaid with associated colors. This relationship persists
when the volume fraction φ ∈ [0.48%; 9.6%] is varied. It is
also observed that all length scales decrease monotonically
with increasing φ.

To investigate the apparent relationship between these
length scales, in Fig. 3 all measured data for zT

b and B−1
b are

plotted as functions of � and �∗, respectively. All points follow

(a) (b)

(d)(c)

FIG. 3. Depolarization length B−1
b (a, b) and transient length zT

b

(c, d) plotted as functions of �∗ and �, respectively. Data points were
obtained from parameters Ab and �b using fits to Eq. (5), while �

and �∗ were computed from Mie theory using the known values of
(φ, x). Each color and symbol corresponds to a different volume
fraction of scatterers measured at different wavelengths. The left and
right columns correspond to linear (L) and circular (C) polarization,
respectively.

straight lines evidencing a simple proportionality between the
length scales. Hence, we obtain the following relationships:

zT
b (�) = cT

b �(λ, φ),

B−1
b (�∗) = cB

b �∗(λ, φ), (7)

with fitted dimensionless coefficients cT
b and cB

b reported in Ta-
ble I. The direct proportionality holds over nearly two orders
of magnitude with no additional contributions.

This result directly links depolarization to the properties of
the scattering medium. Explicit formulas are well established
for (�, �∗) [9]. By substitution into Eq. (7) they generate
explicit formulas for (zT

b , B−1
b ) in terms of the medium prop-

erties (x, φ). This not only enables quantitative predictions
of depolarization, but also offers new avenues to measure
(�, �∗). Polarization measurements allow us to determine �

and �∗ using Eqs. (4)–(7). This provides the advantage that
acquisition times much longer than the fast diffusion of light

TABLE I. Linearity coefficients (cT
b , cB

b ) between real and polar-
ization spaces as given by Eq. (7), fit from Fig. 3 and given with 95%
confidence intervals (linear L, linear L45, and circular C).

L L45 C

cT
b 1.68 ± 0.05 1.70 ± 0.06 2.13 ± 0.04

cB
b 4.88 ± 0.14 4.85 ± 0.13 1.45 ± 0.04
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are sufficient. The following discussion highlights the wide
validity of the coefficients cT

b and cB
b for random media.

We expect that the values of cT
b and cB

b are not only
invariant with respect to λ and φ but also to r for a sus-
pension of spheres and fixed illumination conditions. In our
experiments the parameters (x, φ, m) fully characterize length
scales for multiple scattering [9,34] and depolarization. The
wavelength and particle radius contribute equally in the ratio
x and do not occur elsewhere. Consequently, a change of
wavelength λ is equivalent to an inverse change of radius r
and results in the same x and (�, �∗). Therefore, the observed
invariance of the coefficients (cT

b , cB
b ) with respect to x in-

cludes λ and r.
With Eq. (7) there is experimental evidence for a deep

physical connection between the randomization of the prop-
agation direction of light k and depolarization. Our results
indicate that, in random media, it is impossible to restrict
diffusion to only the polarization or the real space. Both
domains appear inseparable and the coefficients (cT

b , cB
b ) give

measures for how the rates of their dynamics compare to each
other. For example, cT

L gives a transient regime zT
L lasting ≈1.7

scattering events (Table I). After this distance the depolariza-
tion dynamics approach their long-term steady-state behavior.
Here, with a factor of cB

L ≈ 4.9, the rate 1/�∗ at which the
k vector is disoriented is considerably higher than the rate
of depolarization BL. Diffusion of circularly polarized light
through the medium is slower compared to linearly polarized
light, because cB

C is smaller than cB
L and cB

L45.
Finally, the experimental result in Eq. (7) reveals de-

tails about the physical processes behind the depolarization
dynamics. It establishes the following relationship between
the drift matrix Ab and � upon substitution of zT

b (Ab) =
1/

√
det(Ab):

det(Ab) = (
cT

b �
)−2

. (8)

This has conceptual implications. In the phenomenological
model [Eq. (5)] the drift matrix Ab encodes the deterministic
dynamics that connect past and present values of p(z). Its in-
verse determinant quantifies the resilience of the polarization
during diffusion in the medium. Therefore, a small determi-
nant protects the state from perturbations over long distances.
Experimentally, Eq. (8) shows that � characterizes the de-
terministic processes. These dominate the dynamics at the
beginning of the medium and cause the nonlinear evolution of
σ 2

b (z) in the transient regime 0 � z � zT
b . We expect that the

relationship of � and A stems from the deterministic nature
of single scattering, where changes in polarization amount to
linear maps.

In similar fashion, the model Eq. (5) endows B−1
b with a

mixed dependence on A and �. Given the experimental link
between A and � in Eq. (8), it is natural to ask whether B−1

b
is also a function of �. This idea is supported by theory given
in [16] where depolarization lengths are presented as simulta-
neous functions of � and �∗. Despite this, we were unable to
observe any such effect under our experimental conditions. In
the diffusion regime (z � zT), the associated depolarization
length scale B−1 depends on �∗ only [Eq. (7)]. Contributions
from A and � associated with � are absent.

IV. CONCLUSION

In conclusion, we present an experimental confirmation of
recent theoretical work that connects length scales associated
with light transport with those related to depolarization in
random media [16]. Here, we observe direct proportionality
for both � and �∗ and their respective depolarization length
scales in the transient and stationary regimes. These optical
relations hold for wide ranges of particle density and wave-
length. We anticipate that the presented relations between
simple-to-calculate parameters � and �∗ and depolarization
metrics zT

b and B−1
b will greatly aid efforts to optically de-

termine the distances between scatterers through polarization
measurements.
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APPENDIX A: MEAN FREE PATHS

In ensembles of spherical scatterers the mean free paths �

and �∗ depend on individual and collective properties of the
particles [9]:

� =
(

3φ

2k2
s r3

∫ 2ks

0

dCsca

dq
F (q, φ)qdq

)−1

,

�∗ =
(

3φ

4k4
s r3

∫ 2ks

0

dCsca

dq
F (q, φ)q3dq

)−1

. (A1)

Here, ks is the k vector inside the solvent, r the radius of the
spheres, and φ their volume fraction. The integration is per-
formed numerically. The differential scattering cross section
dCsca/d	 follows from Mie theory and is given by the series
[34]

dCsca

d	
= 2π

k2
s

∣∣∣∣∣
∞∑

l=0

√
2l + 1(alXl,±1 ± ibl r̂ × Xl,±1)

∣∣∣∣∣
2

, (A2)

which converges sufficiently around the order

lmax = floor(ksr + 4.05(ksr)1/3 + 2). (A3)

We use the following definition for the vector spherical har-
monics [35],

Xl,m = L̂Yl,m(θ, φ)√
l (l + 1)

, (A4)

in terms of the standard spherical harmonics Yl,m and angular
momentum operator L̂. The coefficients al and bl read
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al=
jl (kr) d

du [u jl (ksu)]u=r− kp

ks

μp

μs
jl (kpr) d

du [u jl (ksu)]u=r

kp

ks

μp

μs
jl (kpr) d

du

[
uh(1)

l (ksu)
]

u=r−h(1)
l (ksr) d

du [u jl (kpu)]u=r

,

bl=
μp

μs
jl (ksr) d

du [u jl (ksu)]u=r− kp

ks
jl (kpr) d

du [u jl (ksu)]u=r

kp

ks
jl (kpr) d

du

[
uh(1)

l (ksu)
]

u=r−
μp

μs
h(1)

l (ksr) d
du [u jl (kpu)]u=r

,

(A5)

with jl (x) the spherical Bessel functions and h(1)
l (x) spherical

Hankel functions of the first kind. Here μ is the magnetic
permeability and the subscripts “p” and “s” denote quantities
inside the particle and the solvent, respectively.

The mean free paths � and �∗ [Eq. (A1)] use the Percus-
Yevick approximation [36] for the static structure factor of
hard spheres given by

F (q, φ) = 1

1 − NC(q, φ)
, (A6)

where

NC(q, φ) = −24φ

(
λ1

[
sin(2qr) − (2qr) cos(2qr)

(2qr)3

]

− 6φλ2

[
[(2qr)2 − 2] cos(2qr) − 2(2qr) sin(2qr) + 2

(2qr)4

]

− φ
λ1

2(2qr)6
{[(2qr)4 − 12(2qr)2 + 24] cos(2qr) + [24(2qr) − 4(2qr)3] sin(2qr) − 24}

)
. (A7)

This expression depends on the volume fraction φ, the spheres
radius r, and the parameters λ1 and λ2 which are defined as

λ1 = (1 + 2φ)2

(1 − φ)4
and λ2 = −(1 + φ/2)2

(1 − φ)4
. (A8)

The structure factor F (q, φ) is based on the statistical me-
chanics of hard sphere colloids and characterizes their spatial
correlations. Within our experimental ranges for wavelengths
λ and volume fractions φ, contribution from the structure
factor F (q, φ) only weakly perturbs the behavior of � and �∗.

APPENDIX B: EXPRESSION FOR DEPOLARIZATION

The two-element vector �b(z) describes polarization
changes in the birefringence-dichroism space in one of the
three possible polarization bases b ∈ {L, L45,C}. The rate
pb(z) = d

dz �b(z) satisfies the stochastic differential equa-
tion given by

dpb(z)

dz
= Abpb(z) + �b

dNb(z)

dz
, (B1)

and has the formal solution [25]

pb(z) = eAbzpb(z0) +
∫ z

z0

eAb(z−r)�bdN(r). (B2)

Our system of colloidal spheres does not polarize at z = 0.
Therefore, we set

�b(z0) = pb(z0) = 0, and z0 = 0. (B3)

Through the use of Itô′s isometry [25] we obtain the covari-
ance matrix of pb

Cov[pb(u), pb(v)] = 〈
pb(u)pT

b (v)
〉

=
∫ min(u,v)

0
eAb(u−r)�b�

T
b eAT

b (v−r)dr

(B4)

and the covariance matrix of �b:

Cov[�b(s),�b(t )] =

×
∫ s

0
du

∫ t

0
dv

∫ min(u,v)

0
eAb(u−r)�b�

T
b eAT

b (v−r)dr. (B5)

The experimentally accessible depolarization σ 2
b (z) is the

trace of Eq. (B5) evaluated at s = t = z, which permits the
following simplifications:

σ 2
b (z) = Tr

{ ∫ z

0
du

∫ z

0
dv

∫ min(u,v)

0
eAb(u−r)�b�

T
b eAT

b (v−r)dr

}

=
∫ z

0
du

∫ z

0
dv

∫ min(u,v)

0
Tr

{
eAb(u−r)RTQbReAT

b (v−r)
}
dr

=
∫∫∫

Tr
{
RTe�b(u−r)RRTQbRRTe�b

T(v−r)R
}
dudvdr

=
∫ z

0
du

∫ z

0
dv

∫ min(u,v)

0
Tr

{
e�b(u−r)Qbe�b

T(v−r)
}
dr.

(B6)

The product �b�
T
b is symmetric and positive semidefinite

which allows its diagonalization by a rotation matrix R(β )
with angle β and Qb = diag[q2

b,1, q2
b,2]. To eliminate R, we

first transform Ab into a new matrix �b = RAbRT. Then we
use the trace invariance with respect to cyclic permutations
of factors and the identity RRT = 1. This simplification is
desirable because it reduces the parameter space to six in-
dependent variables (�b,11,�b,12,�b,21,�b,22, q2

b,1, q2
b,2). Note
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that the rotation angle β does not appear in the final expression
of Eq. (B6). The 2 × 2 matrices �b and Qb are determined
through fits. Although the drift matrix Ab can not be fully
recovered, its properties such as its determinant and trace
are shared by �b. The two matrices are related through an
unknown similarity transformation �b = RAbRT.

The rotational invariance of the expression for σ 2
b (z) with

respect to R(β ) implies that the six recovered parameters
in general describe the evolution of pb(z) in coordinates
that are arbitrarily rotated with respect to birefringence-

dichroism coordinates. Out of the eight degrees of freedom
given by the parameters of Ab and �b the experimentally
observed evolution for σ 2

b (z) has two that are not directly
measurable.

Initial fits showed that the eigenvalues of Ab are always
complex conjugates. In the following this is used to further
simplify the expression of Eq. (B6) with the introduction of
the real γb/2 and imaginary ωb/2 parts of the eigenvalues of
Ab. The six parameters of the model then read (γb, ωb, �b,12,
�b,21, q2

b,1, q2
b,2). With

γb = Tr(Ab) = Ab,11 + Ab,22 = 2Re[eig(Ab)],

ωb = i
√

(Ab,11 − Ab,22)2 + 4Ab,12Ab,21 = 2Im[eig(Ab)], (B7)

and after integration of Eq. (B6), the model of σ 2
b (z) has the following general form:

σ 2
b (z) = Bbz + Kb + [Db cos(ωbz/2) + Eb sin(ωbz/2)]eγbz/2

+ [Gb cos(ωbz) + Hb sin(ωbz) + Ib]eγbz. (B8)

The coefficients have the following explicit expressions:

Bb = −2(
γ 2

b + ω2
b

)2

[(
q2

b,1 + q2
b,2

)(
ω2

b − γ 2
b

) − 4(�b,12 − �b,21)
(
�b,12q2

b,2 − �b,21q2
b,1

)

+ 2γb
(
q2

b,1 − q2
b,2

)( − ω2
b − 4�b,12�b,21

) 1
2
]
, (B9)

Kb = 1

γb
(
γ 2

b + ω2
b

)3

[
6
(
q2

b,1 + q2
b,2

)(
γ 2

b − 3ω2
b

)
γ 2

b + 4
(
11γ 2

b − ω2
b

)
(�b,12 − �b,21)

(
�b,12q2

b,2 − �b,21q2
b,1

)

− 6
(
q2

b,1 − q2
b,2

)
γb

(
3γ 2

b − ω2
b

)( − ω2
b − 4�b,12�b,21

) 1
2
]
, (B10)

Db = −1(
γ 2

b + ω2
b

)3

[(
8γ 3

b − 24γbω
2
b

)(
q2

b,1 + q2
b,2

) + (
q2

b,2 − q2
b,1

)(
24γ 2

b − 8ω2
b

)( − ω2
b − 4�b,12�b,21

) 1
2

+ 64γb(�b,12 − �b,21)
(
�b,12q2

b,2 − �b,21q2
b,1

)]
, (B11)

Eb = 1

ωb
(
γ 2

b + ω2
b

)3

[(
8ω4

b − 24γ 2
b ω2

b

)(
q2

b,1 + q2
b,2

) + 32(�b,12 − �b,21)
( − �b,21q2

b,1 + �b,12q2
b,2

)(
γ 2

b − ω2
b

)

+ (
24γbω

2
b − 8γ 3

b

)(
q2

b,1 − q2
b,2

)( − ω2
b − 4�b,12�b,21

) 1
2
]
, (B12)

Gb = 1

ω2
b

(
γ 2

b + ω2
b

)3

[(
q2

b,1 − q2
b,2

)(
2ω4

b − 6γ 2
b ω2

b

)( − ω2
b − 4�b,12�b,21

) 1
2 + (

2γ 3
b ω2

b − 6γbω
4
b

)(
q2

b,1 + q2
b,2

)
+ (

12γbω
2
b − 4γ 3

b

)
(�b,12 − �b,21)

(
�b,12q2

b,2 − �b,21q2
b,1

)]
, (B13)

Hb = −1

ωb
(
γ 2

b + ω2
b

)3

[(
2ω4

b − 6γ 2
b ω2

b

)(
q2

b,1 + q2
b,2

) + (
12γ 2

b − 4ω2
b

)
(�b,12 − �b,21)

(
�b,12q2

b,2 − �b,21q2
b,1

)

+ (
6γbω

2
b − 2γ 3

b

)(
q2

b,1 − q2
b,2

)( − ω2
b − 4�b,12�b,21

) 1
2
]
, (B14)

Ib = 4

γbω
2
b

(
γ 2

b + ω2
b

) (�b,12 − �b,21)
(
�b,12q2

b,2 − �b,21q2
b,1

)
. (B15)

We define the depolarization length scales as follows. From
Eq. (B8) it is evident that all terms except Bbz + Kb de-
cay exponentially when γ < 0 for large penetration depths
z. This condition is satisfied throughout our data and leads

to the expression

lim
z�0

σ 2
b (z) = Bbz + Kb, (B16)
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and the identification of B−1
b as the stationary depolarization

length [Eq. (B9)]. The eigenvalues of Ab [Eq. (B7)] define
the rate of decay for the nonlinear terms in Eq. (B8). Hence,
the length of the transient regime is proportional to zT

b (Ab) =
1/

√
det(Ab) = 2/

√
γ 2 + ω2.

Note that σ 2
b (z) of Eq. (B8) is positive semidefinite for

z > 0 due to its derivation from the covariance matrix in
Eq. (B5). Therefore, the depolarization curve automatically
passes through the origin. With Eq. (B16) this implies that Bb

is strictly positive. Propagation in the stationary regime can
only increase, not decrease depolarization.
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