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Tailoring propagation of light via spin-orbit interactions in correlated disorder
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Based on the fundamental interplay between spatial wavefronts and polarization degrees of freedom, spin-orbit
interactions (SOI) of light constitute a novel tool for optical control at the nanoscale. While well described in
simple geometries, SOI of light in disordered environments, where only a partial knowledge of the material’s
microscopy is available, remain largely unexplored. Here, we show that in transversally random media the
disorder correlation can be exploited to tailor a variety of trajectories for ballistic beams via SOI. In particular,
we show the existence of an oscillating spin Hall effect, stemming from the deformation of the phase of the
wavefront due to SOI. In combination with a weak measurement, this phenomenon can also be maximized by
an optimal choice of the disorder correlation.
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I. INTRODUCTION

Spin-orbit interactions of light refer to the interplay be-
tween the polarization and wavefront of optical beams,
usually encoded in spin and orbital angular momenta. This
mechanism is attracting a lot of attention as it brings about a
vast number of potential applications in the control of light
at the nanoscale, the optical manipulation of small objects
or for metrology purposes in nanostructures (see [1–3] for
recent reviews). A particular manifestation of SOI of light is
the optical spin Hall effect (SHE), an analog of the electronic
spin Hall effect that lies at the core of spintronics [4,5]. In
optics, the SHE describes transverse beam shifts occurring at a
subwavelength scale [6]. Although naturally small, SHEs have
been observed at interfaces using weak-measurement methods
[7–9], in glass cylinders exploiting multiple reflection [10],
or in nonparaxial configurations [11–13]. An important class
of systems exhibiting SHEs are inhomogeneous materials.
A seminal example is gradient-index media: while geomet-
rical optics predicts that beam trajectories are not affected
by polarization, at the wave level circularly polarized beams
experience helicity-dependent transverse shifts [14,15]. Akin
to the electronic SHE where the electron spin couples to a
potential gradient, in optics the photon helicity couples to the
refractive-index gradient, a mechanism that can be interpreted
in terms of geometric Berry phase [16,17].

Beyond the case of a controlled inhomogeneity, it was re-
cently shown that a SHE of light could also emerge for beams
propagating in transversally disordered media [18]. In prac-
tice, clarifying the role of SOI in disordered environments is
important for at least two reasons. First, disordered materials
are in general more the rule than the exception, in particular at
the nanoscale where SOI typically operate. In addition, recent
progresses in wave control or imaging have shown the great

potential of treating disorder as a tool rather than as a nuisance
in general [19–24]. Whether this potential could be pushed to
the realm of spin-orbit physics remains an open question. In
this article, we take a step in that direction by theoretically
showing that the combined influence of SOI on the amplitude
and the phase of the optical wavefront can be exploited to tai-
lor a variety of transverse motions for the ballistic component
of light in a disordered medium, the so-called coherent mode.
This control relies on two fundamental ingredients, neglected
in [18], the disorder correlation and the random variations
of the refractive index. In particular, we find that a proper
choice of the disorder correlation makes it possible to realize
an oscillating SHE, see Fig. 1, and a corresponding oscillation
of the beam polarization. This phenomenon, a consequence of
the interferential nature of the coherent mode, was not previ-
ously known. Remarkably, while such an oscillating SHE is
naturally small and may be hidden by multiple scattering, we
show that these drawbacks can be both overcome. First, by a
weak-measurement detection scheme allowing one to amplify
SOI of light to the macroscopic level and, second, by a proper
tuning of the disorder correlation to minimize the propagation
distance at which the SHE occurs.

II. THE MODEL

Consider a monochromatic, polarized optical field
E0(r⊥) = E0(r⊥)e0 impinging at z = 0 on a three-
dimensional material lying in the half-plane z > 0 [r⊥ =
(x, y)]. We choose E0(r⊥) = [2/(πw2

0 )]1/2 exp(−r2
⊥/w2

0 +
ik0x) with k0w0 � 1, which describes a tilted, collimated
beam of waist w0, as illustrated in Fig. 1(a). The
polarization vector lies in the (x′, y) plane, perpendicular
to the direction of propagation. We take it to be of
the form e0 = (x̂′ + eiφ ŷ)/

√
2. We focus on a dielectric
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FIG. 1. (a) Propagation of a tilted beam of transverse wave vector
k0 = k0x̂ in a medium disordered in plane (x, y) (correlation length
σ ). At a distance z, the beam centroid along x is k̂0z. Due to spin-
orbit interactions, the beam also has a transverse motion Ry(z) along
y (spin Hall effect). (b) Ry(z) for circularly polarized incident light
(φ = −π/2), at k̂0 = 0.1. The three trajectories correspond to the
points A (k0σ = 0.62286), B (k0σ = 0.8749), and C (k0σ = 0.84)
in Fig. 2, where SOI respectively affect only the amplitude (zL =
∞), only the phase (zS = ∞), and both the phase and amplitude (zL/S

finite) of the wavefront. In cases B and C, a SHE oscillating around
k−1

0 appears. (c) For a beam linearly polarized at 45◦ in the plane
(x′, y) (φ = 0), a SHE is also present but oscillates around 0.

medium with transverse spatial disorder: its permittivity
ε(r⊥) = ε̄ + δε(r⊥) has a random component δε in the plane
(x, y), but is homogeneous along z [25–27]. In practice, this
geometry can be realized using two-dimensional photonic
lattices imprinted onto a photorefractive crystal [25,26]
or a glass [28]. We model the disorder fluctuations by a
random function of zero mean and Gaussian correlation,
〈δε(r⊥)δε(0)〉 = γ /(4πσ 2) exp(−r2

⊥/4σ 2), where γ is the
disorder amplitude, σ the correlation length, and the brackets
refer to disorder averaging.

As the beam propagates in the medium, the components Ej

( j = x, y, z) of the electric field obey
[(

� + ω2ε(r⊥)/c2
0

)
δi j − ∇i∇ j

]
Ej (r⊥, z) = 0, (1)

with ω the carrier frequency and c0 the vacuum speed of light.
In this article, we study the evolution of the coherent mode,
of intensity distribution Ic(r⊥, z) = |〈E(r⊥, z)〉|2, after a prop-
agation distance z. The coherent mode refers to the portion
of light propagating ballistically in the medium, i.e., in the
forward direction x̂, as opposed to light undergoing multiple
scattering [29]. To access this intensity distribution, we exam-
ine the Fourier components of the average field. The latter are
formally given by 〈Ẽ(k⊥, z)〉 = exp(ikzz − i�z/2kz )Ẽ0(k⊥),
where Ẽ0(k⊥) = √

2πw0 exp[−(k⊥ − k0)2w2
0/4] is the field

momentum distribution at the interface z = 0 and kz =√
k2 − k2

⊥, with k = √
ε̄ω/c0 the total wave number. The

quantity �, known as the self-energy tensor [29], encodes all

effects of the disorder. Its real part describes how the phase of
the wavefront evolves on average in the disorder (mean refrac-
tive index), while its imaginary part governs the attenuation of
its amplitude (extinction coefficient). An explicit calculation
detailed in Appendix A gives

〈Ẽ(k⊥, z)〉 = Ẽ0(k⊥)eikzz[e−i
1z/2kz e0

+ (e−i
2z/2kz − e−i
1z/2kz )p(k⊥)]. (2)

The complex numbers 
1 and 
2, evaluated below, are combi-
nations of eigenvalues of �. The existence of two independent
self-energies here stems from the fact that as soon as the inci-
dent beam is tilted, i.e., k0 �= 0, the statistical isotropy in the
plane perpendicular to the direction of propagation is broken,
making momentum conservation along z (due to translation
invariance along that direction) the unique symmetry of the
problem. In Eq. (2), the first term in the right-hand side (r.h.s.)
describes an evolution without spatial deformation. Its ampli-
tude is controlled by 
1, which defines the mean free path
along z, zs = −kz/ Im(
1), beyond which the coherent mode
is attenuated due to scattering in other directions [27,29].
The second term in the r.h.s. is proportional to the projection
p(k⊥) = (ê⊥ · e0)ê⊥ + (ẑ · e0)ẑ of the polarization onto the
(ê⊥ = k⊥/k⊥, ẑ) plane. It describes a wavefront deformation
coupling polarization and momentum and, as such, encodes
the phenomenon of spin-orbit interaction. Notice that this
deformation only arises when 
1 �= 
2.

III. CENTROID EVOLUTION

To show the effect of the SOI term in Eq. (2), we examine
the beam centroid, defined as

〈R(z)〉 =
∫

dr⊥r⊥Ic(r⊥, z)∫
dr⊥Ic(r⊥, z)

. (3)

The first term in the r.h.s. of Eq. (2) gives the main
contribution to this quantity: 〈R(z)〉 � k̂0z. This result fea-
tures a straight-line propagation with fixed polarization; see
Fig. 1(a). It also coincides with the prediction of the parax-
ial limit, where k̂0 = k0/k 
 1. Indeed, at small angle one
finds 
1 − 
2 = O(k̂2

0 ) → 0, so that statistical isotropy in the
(x′, y) is restored and the second term in Eq. (2) vanishes. In
general, however, 
1 and 
2 differ, leading to a nontrivial
component Ry(z) of 〈R(z)〉 along the transverse direction y
[30]. Indeed, inserting Eq. (2) into Eq. (3) we find

Ry(z) = − sin φ

k0

[
1 − cos z/2zL

cosh z/2zS

]
+ cos φ

k0

sin z/2zL

cosh z/2zS
. (4)

This transverse motion is governed by two core parameters,
zS = [Im(
2 − 
1)/kz]−1 and zL = [Re(
2 − 
1)/kz]−1,
which represent respectively the length scales over which SOI
modify the amplitude and the phase of the coherent mode. The
first term in Eq. (4) was originally discovered in [18], for an
elementary model of uncorrelated disordered and discarding
refractive-index effects [i.e., Re(
1), Re(
2) = 0]. Under
these approximations, zL → ∞ and zS → zs/k̂2

0 , so that
Ry(z) = − sin φ/k0[1 − cosh−1(zk̂2

0/2zs)]. This describes a
monotonic shift existing only for beams of finite helicity
(or spin) sin φ. In the more realistic case considered here,
however, the physics pertaining to Eq. (4) is much richer
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FIG. 2. Length scales zL and zS controlling the SHE as a function
of the disorder correlation length, for k̂0 = 0.1 and in units of the
mean free path zs. At points A and B, zL = ∞ and zS = ∞, respec-
tively. At point C, both zS and zL are finite. The inset shows that zs/zL

reaches a maximum at lower correlation lengths. At this maximum,
the oscillating SHE occurs at the scale of a few zs.

since the modifications of the refractive index due to SOI
give rise to spatial oscillations of the beam at the scale of
zL, modulating a monotonic component governed by zS. In
Eq. (2), these oscillations originate from the interference
between the SOI term and itself, and between the SOI term
and the paraxial one.

Both zS and zL are functions of k̂0, the deviation from
paraxiality, and σ , the disorder correlation. We have computed
them from 
1 and 
2; see Appendix B for the exact analytical
expressions. The results, shown in Fig. 2, reveal the interesting
feature that z−1

L and z−1
S vanish at specific values of k0σ (points

A and B, respectively). In practice, this offers the possibility
to tailor various types of SHEs via σ . To illustrate this idea,
we show in Fig. 1(b) and 1(c) the transverse motion realized
for φ = −π/2 and 0 at points A and B, as well as at point
C where both zS and zL are finite. In configuration A, SOI
only affect the amplitude of the wavefront. This leads to
a monotonic increase of Ry(z) toward the asymptotic value
1/k0 for z � zS, effectively reproducing the result of [18].
In case B, in contrast, SOI are purely of phase origin, and
Ry(z) exhibits oscillations around 1/k0. In the generic case
C, finally, the oscillations are present but damped. Another
interesting prediction of Eq. (4) is that an oscillating SHE can
arise even for linearly polarized beams (φ = 0), i.e., without
initial spin; see Fig. 1(c). We will come back to this intriguing
phenomenon below.

IV. POLARIZATION EVOLUTION

The SHE of the coherent mode is accompanied by an
evolution of its mean polarization direction e(z). The lat-
ter follows from Eq. (2), using the fact that the momentum
distribution of the beam always remains peaked around k0:
e(z) � 〈Ẽ(k0, z)〉/|〈Ẽ(k0, z)〉|, with

〈Ẽ(k0, z)〉 ∝ [e−i
2z/2kz x̂′ + eiφe−i
1z/2kz ŷ]. (5)

FIG. 3. Evolution of the polarization state e(z) on the Poincaré
sphere when starting from a circularly polarized beam (φ = π/2),
in configurations A, B, and C. Axes are parametrized by the Stokes
parameters U , V , and Q.

Equation (5) showcases the breaking of statistical isotropy
when 
1 �= 
2. It also indicates that SOI naturally imprint
birefringence to the random medium. From Eq. (5), we infer

e(z) = x̂′ + eiφ+iz/2zL e−z/2zS ŷ√
1 + e−z/zS

, (6)

whose evolution is represented on the Poincaré sphere of
Fig. 3 for a circularly polarized beam, in the three configu-
rations discussed above. In case A, the polarization directly
turns from circular to linear following the shortest path on the
Poincaré sphere. In contrast, in configuration B the oscillating
SHE is associated with a permanent, periodic evolution of
the helicity. In the generic case C, finally, the oscillation of
helicity is damped and e(z � zS) converges to the attractor
point x̂′. Fundamentally, the dual evolutions of Ry(z) and e(z)
originate from the conservation of angular momentum

k0Ry(z) + V (z) = constant = V (0) = sin φ. (7)

In this relation, V (z) = 2
∫

dr⊥ Im(〈E∗
x 〉〈Ey〉)/

∫
dr⊥Ic is the

spin angular momentum (i.e., the amount of circularly po-
larized light in the beam, V axis in Fig. 3) and k0Ry(z) is
the beam orbital momentum, with Eq. (7) implying a mutual
conversion between the two [31]. For φ = π/2 and in case
A, the initial spin is monotonically converted into orbital
momentum while the beam is monotonically shifted. In cases
B and C, in contrast, the exchange between V and Ry involves
successive mutual conversions, hence the periodic trajectories.
Together with Eq. (5), the conservation of angular momentum
also sheds light on the second term in Eq. (4), which predicts
a SHE for a spinless incident beam, V (0) = 0. In that case,
the beam spontaneously acquires a finite spin thanks to the
birefringence effect, Eq. (5). A transverse motion then spon-
taneously appears, satisfying Eq. (7). Interestingly, the SOI
birefringence resembles the magneto-optic Voigt (or Cotton-
Mouton) effect, where a magnetic field perpendicular to the
direction of propagation converts a linear polarization into an
elliptic one [32]. In our scenario, the role of the magnetic
field is played by k0. The analogy ends here though, since no
transverse motion arises in the Voigt effect.
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V. PRACTICAL OBSERVATION

Under normal conditions, the oscillating SHE described
here is tenuous for two main reasons. First, because it oc-
curs at the scale k−1

0 . Although this scale greatly exceeds the
optical wavelength, it remains small compared to the beam
width w0. Second, because the coherent mode attenuates as
exp(−z/zs) due to multiple scattering.

In practice, the first difficulty can be circumvented by
exploiting the principle of weak quantum measurements
[7,9,33,34], where one performs a post-selection of the
transmitted light along a polarization direction eout. In this
configuration, the beam centroid is defined as

〈R(z)〉 =
∫

dr⊥r⊥|〈e∗
out · E(r⊥, z)〉|2∫

dr⊥|〈e∗
out · E(r⊥, z)〉|2 . (8)

To amplify the SHE, the idea is to start from a beam lin-
early polarized along e0 = x̂′. SOI then split the beam into
two parts, whose far tails have finite and opposite helici-
ties. By detecting light using a nearly orthogonal polarizer
eout ∝ ŷ + iδx̂′ with |δ| 
 1, one can then select out these
tails and amplify the first term in Eq. (4) from k−1

0 to w0.
In Appendix C we show that a similar strategy can be used
to enhance the second term in Eq. (4), using a post-selection
polarizer eout ∝ ŷ+δx̂′.

The second difficulty, the attenuation of the coherent mode
due to scattering, can on the other hand be overcome by again
taking advantage of the disorder correlation. To see how, we
show in the inset of Fig. 2 the ratio zs/zL of the mean free path
to the SOI parameter zL at smaller values of k0σ . We observe
that at a given angle k̂0 this ratio reaches a maximum where
zL is of the order of a few zs only. By properly choosing σ ,
it is therefore possible to make the SHE appear at a pretty
short scale. In Fig. 4, we show several types of transverse
trajectories of the coherent mode computed from Eq. (8), by
combining the weak measurement technique together with the
maximization of zs/zL via σ (see Appendix C for the analyt-
ical expressions of 〈R(z)〉 in this configuration). The insets
demonstrate the possibility to realize a sizable Ry(z) over
distances z/zs where the coherent mode remains observable.

VI. CONCLUSION

In conclusion, we have shown the existence of an os-
cillating spin Hall effect in transversally random media,
controllable and amplifiable with the disorder correlation.
While this phenomenon is visible in the coherent mode after
disorder averaging, we expect it to be detectable for a sin-
gle realization as well provided the beam crosses a material
volume much larger than the disorder correlation length. Gen-
erally speaking, the control of spin-orbit interactions of light
in disorder could be further improved using other degrees of
freedom such as scatterer resonances [35] or time-dependent
beams [36,37]. Spatio-temporal spin-orbit interactions seem,
in particular, a promising direction of research [38–40].
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APPENDIX A: DISORDER-AVERAGED FIELD

In this Appendix, we derive the general expression of
the average electric field, Eq. (2). To this aim, we rely on
the disorder-averaged Green’s tensor of the Helmholtz equa-
tion (1), 〈G(r⊥, z)〉, which we compute by perturbation theory
assuming weak disorder. Once 〈G〉 is known, the electric field
follows from

〈Ẽ(k⊥, z)〉 = 2i
√

k2 − k2
⊥〈G(k⊥, z)〉Ẽ0(k⊥). (A1)

The Fourier transform of the Green’s tensor with respect to r⊥
and z obeys the Dyson equation

〈G(k⊥, kz )〉 = [G(0)(k⊥, kz )−1 − �(k⊥, kz )]−1, (A2)

where

G(0)
i j (k⊥, kz ) = δi j − k̂ik̂ j

k2 − k2
⊥ − k2

z + i0+ (A3)

is the Green’s tensor of the homogeneous background medium
of permittivity ε̄. The wave number is k = ω/c, with c =
c0/

√
ε̄. k̂i = ki/k refer to the components of the three-

dimensional wave vector, and i = x, y, z in the Cartesian basis.
In Eq. (A2), the self-energy � is a 3 × 3 symmetric matrix. At
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weak disorder, it is given by the Born approximation [41]


i j (k⊥, kz ) � k4
∫

d2k′
⊥

(2π )2

B(k⊥ − k′
⊥)(δi j − k̂′

i k̂
′
j )

k2 − k′2
⊥ − k2

z + i0+ , (A4)

where B(k⊥ − k′
⊥) = γ exp[−σ 2(k⊥ − k′

⊥)2] is the disorder
power spectrum, i.e., the Fourier transform of the correlator
of permittivity fluctuations. To compute the average Green’s
tensor, it is sufficient to evaluate �(k⊥, kz ) for k⊥ aligned with
the x axis. In this case, 
xy = 
yz = 0. By performing the two
tensor inversions in the Dyson equation (A2), we obtain

〈Gi j (k⊥, kz )〉 = G1(k⊥, kz )δi j − G2(k⊥, kz )k̂ik̂ j

+ 1

k̂2
⊥

[G1(k⊥, kz ) − G2(k⊥, kz )]

× (δizk̂ j k̂z + δ jzk̂ik̂z − δizδ jz − k̂ik̂ j ), (A5)

where

G1(2)(k⊥, kz ) = 1

k2 − k2
⊥ − k2

z − 
1(2)(k⊥, kz )
, (A6)

with 
1(k⊥, kz ) = 
yy and 
2(k⊥, kz ) = 
xx(1 − k̂2
⊥) +


zz(1 − k̂2
z ) − 2
xzk̂⊥k̂z. As explained in the main text, the

average Green’s tensor here depends on two independent self-
energies because the system has a unique spatial symmetry,
the conservation of momentum along z. At weak disorder, the
parameters 
1(2) are typically small compared to k2

0 . In this
limit, the Fourier transform of Eq. (A5) with respect to kz,
Gi j (k⊥, z) = ∫

dkz/(2π )Gi j (k⊥, kz )eikzz, reads

〈Gi j (k⊥, z)〉 = −i
eikzz

2kz

[
e−i
1z/2kzδi j − e−i
2z/2kz k̂ik̂ j

+ e−i
1z/2kz − e−i
2z/2kz

k̂2
⊥

× (δizk̂ j k̂z + δ jzk̂ik̂z − δizδ jz − k̂ik̂ j )

]
, (A7)

where kz now stands for (k2 − k2
⊥)1/2. By inserting this ex-

pression in Eq. (A1), we finally obtain Eq. (2). Since, for
a collimated beam, Ẽ0(k⊥) is peaked around k⊥ = k0, the
self-energies can be evaluated on shell, i.e., approximating

1(2) � 
1(2)(k0, (k2 − k2

0 )1/2).

APPENDIX B: SPIN-ORBIT INTERACTION PARAMETERS

The evolution of the beam centroid, Eq. (4), is controlled
by the two spin-orbit parameters zS = [Im(
2 − 
1)/kz]−1

and zL = [Re(
2 − 
1)/kz]−1. To compute them explicitly,
one needs the expressions of the self-energies 
1 and 
2,
which follow from Eq. (A4). Using the definitions of 
1 and

2 evaluated on shell, we obtain

z−1
L = γ k3 p.v.

∫ ∞

0

k̂2
0α dα

4πk2
0σ

2
√

1 − k̂2
0 (1 − α2)

e−k2
0σ 2(1+α2 )

× [
2k2

0σ
2(−2α2 + k̂2

0 (1 + α4)
)
I0

(
2k2

0σ
2α

)
+α

(
2 + 4

(
1 − k̂2

0

)
k2

0σ
2α − k̂2

0α
2
)
I1

(
2k2

0σ
2α

)]
(B1)

and

z−1
S = γ k3 k̂2

0e−2k2
0σ 2

8k2
0σ

2
√

1 − k̂2
0

[
4
(
1 − k̂2

0

)
k2

0σ
2I0

(
2k2

0σ
2
)

− (
2 + 4k2

0σ
2 − k̂2

0

(
1 + 4k2

0σ
2))I1

(
2k2

0σ
2)], (B2)

where In is the n-order modified Bessel function of the first
kind and p.v. denotes the principal value. Notice that both z−1

L

and z−1
S vanish in the paraxial limit k̂0 → 0, corresponding to


1 → 
2. In this case, spin-orbit corrections to the coherent
mode become negligible. We finally provide the explicit ex-
pression of the mean free path along z, zs = − Im(
1)/kz:

z−1
s = γ k3 e−2k2

0σ 2

4
√

1 − k̂2
0

[
I0

(
2k2

0σ
2
) − k̂2

0 I1
(
2k2

0σ
2
)

2k2
0σ

2

]
.

APPENDIX C: WEAK MEASUREMENT

As in deterministic systems [7,9,33,34], the method of
weak quantum measurements makes it possible to amplify the
spin Hall effect in a random medium. Here we explain how it
can be exploited to selectively amplify both contributions of
the coherent mode centroid, Eq. (4). To this aim, we consider
an incident beam linearly polarized along e0 = x̂′. With this
initial state, we show in Fig. 5 the spatially resolved Stokes
parameters of the beam along the transverse direction y at a
fixed, finite value of z. These parameters respectively repre-
sent the distributions of circularly polarized light,

V (y) = 2 Im[〈E∗
x (x = 0, y, z)〉〈Ey(x = 0, y, z)〉]∫

dr⊥Ic(r⊥, z)
, (C1)

the distribution of light linearly polarized along the x′ or y
axes,

Q(y) = |〈Ex(0, y, z)〉|2 − |〈Ey(0, y, z)〉|2∫
dr⊥Ic(r⊥, z)

, (C2)

and the distribution of light linearly polarized at ±45◦ in the
plane (x′, y),

U (y) = 2 Re[〈E∗
x (0, y, z)〉〈Ey(0, y, z)〉]∫

dr⊥Ic(r⊥, z)
. (C3)

These polarization distributions satisfy Q2 + V2 + U2 = I2,
with

I (y) = |〈Ex(0, y, z)〉|2 + |〈Ey(0, y, z)〉|2∫
dr⊥Ic(r⊥, z)

(C4)

the total intensity distribution along y.
We first discuss the case zL = ∞, Fig. 5(a), (configuration

A in the main text), where only the first term in the r.h.s.
of Eq. (4) is expected. In terms of polarization distributions,
this manifests itself by the fact that U (y) = 0. The effect of
spin-orbit interactions is then to split a small portion of the in-
cident beam into two components of circularly polarized light
with opposite helicity, as described by the V distribution in
Fig. 5(a). By detecting light by means of a nearly orthogonal
polarizer eout ∝ ŷ + iδx̂′ with |δ| 
 1, one can then eliminate
the main Q component, and select out either the positive or
negative V contributions depending on the sign of δ. Spatially,
these contributions are typically shifted by the beam width w0.
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(a)

(b)

FIG. 5. Spatially resolved Stokes parameters along direction y
of a beam prepared with initial polarization e0 = x̂′, after a prop-
agation distance z in the random medium, for k̂0 = 0.1. Axes are
normalized using the beam width w0, and we set k0w0=8. I(y) is
the total intensity distribution, Q(y) [resp. U (y)] the distribution of
light linearly polarized along x̂′ or ŷ [resp. (x̂′ ± ŷ)/

√
2], and V (y)

the distribution of circularly polarized light. Panel (a) corresponds to
configuration A (zL = ∞), with z/zS = 3π . Panel (b) corresponds
to configuration B (zS = ∞), with z/zL = −π . The two terms in
Eq. (4) can be separately amplified by post-selecting out the V or
U components, respectively.

Let us now consider the general scenario where zL is finite.
In this case, we find that U (y) is not zero any more, i.e., a small
part of the beam further splits into two components linearly
polarized along (x̂′ ± ŷ)/

√
2 during propagation. This case is

displayed in Fig. 5(b), in the particular limit zS = ∞ (con-
figuration B in the main text). This more general polarization
structure offers the possibility to selectively magnify either
the first or the second term in Eq. (4), by respectively post-
selecting out the V or U components. To select and amplify the
first term, the procedure is as described above, i.e., one detects
the beam using a post-selection polarizer eout ∝ ŷ+iδx̂′. If,
on the other hand, one wishes to observe and amplify the
second term in Eq. (4), the U component of the polarization
distribution must be selected out. In the same spirit, this can
be achieved using a post-selection polarizer eout ∝ ŷ + δx̂′.

The intensity distributions of the coherent mode following
the weak measurement post-selection are obtained by insert-
ing Eq. (2) and the definitions of the SOI parameters zS and
zL into Eq. (8). This gives the following expressions for the
projection of the beam centroid onto the y axis:

Ry(z) = − δ

k0

1 − e−z/2zS cos(z/2zL)

δ2 + (
1

k0w0

)2|1 − e−z/2zS eiz/2zL |2 (C5)

for eout ∝ ŷ + iδx̂′ [amplification of the first term in Eq. (4)],
and

Ry(z) = δ

k0

e−z/2zS sin(z/2zL)

δ2 + (
1

k0w0

)2|1 − e−z/2zS eiz/2zL |2 (C6)

for eout ∝ ŷ + δx̂′ [amplification of the second term in
Eq. (4)]. The intensity distributions shown in Fig. 4 finally
follow from |〈e∗

out · E(r⊥, z)〉|2/ ∫
dr⊥|〈e∗

out · E(r⊥, z)〉|2 ∝
exp[−(y − Ry(z))2/w2

0].
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