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Dynamical emission of phonon pairs in optomechanical systems
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The multiphonon state plays an important role in quantum information processing and quantum metrology.
Here we propose a scheme to realize dynamical emission of phonon pairs based on the technique of stimulated
Raman adiabatic passage in a single-cavity optomechanical system, where the optical cavity is driven by two
Gaussian pulse lasers. By exploring quantum trajectories of the state populations and the average phonon number,
we find that the dynamical phonon-pair emission can be realized under the appropriate parameter conditions and
is tunable by controlling the time interval between the consecutive pulses of pump lasers. In particular, the
numerical results for the standard and generalized second-order correlation functions of the mechanical mode
show that the system can behave as an antibunched phonon-pair emitter. Our proposal can be extended to achieve
an antibunched n-phonon emitter, which has potential applications for on-chip quantum communication.
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I. INTRODUCTION

The realization of the nonclassical states has become an in-
teresting and important research topic in quantum information
science, with potential applications in quantum communica-
tion [1], quantum metrology [2], quantum lithography [3],
quantum spectroscopy [4,5], and quantum biology [6,7]. Re-
cently, the generation of n-quanta states has been studied
theoretically in multilevel atomic systems [8–17], Rydberg
atomic ensembles [18,19], cavity quantum electrodynamics
(QED) systems [20–31], circuit QED systems [32], waveg-
uide QED systems [33–35], Kerr cavity systems [36,37], and
cavity optomechanical systems [38]. In particular, an emitter
of n-photon bundles, releasing their energy in the bundle of
n photons, was first proposed by Sánchez Muñoz et al. in a
cavity QED system [20].

Subsequently, a series of schemes on the n-photon and
n-phonon bundle emissions have been proposed in a variety
of quantum systems, e.g., cavity [22–27] and circuit QED
systems [32]. The antibunched n-photon and n-phonon bundle
emissions can be used to realize multiphoton and multiphonon
sources [39,40], respectively. However, since the high-order
process of the single-photon (single-phonon) transition is
generally very weak, the experimental realization of the mul-
tiphoton (multiphonon) state is still a challenge.

In this work, we propose a scheme for implementing dy-
namical phonon-pair emission in a cavity optomechanical
system composed of an optical cavity and a mechanical res-
onator [41–46], where the optical cavity is driven by two
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Gaussian pulse lasers. Under the appropriate parameter con-
ditions, the dimensions of the Hilbert space of the cavity
and mechanical modes are truncated up to 1 and 2 exci-
tations, respectively. Based on the technique of stimulated
Raman adiabatic passage (STIRAP) [47–49], the population
transfer between zero-phonon state and two-phonon state
can be realized in the absence of dissipation in the system.
In the presence of dissipation, we find that the dynamical
phonon-pair emission can be observed by analyzing quantum
trajectories of the state populations and the average phonon
number in the system. In addition, we investigate quantum
statistics of the dynamical phonon-pair emission by numer-
ically calculating the standard and generalized second-order
correlation functions in the mechanical mode. It can be found
that the system behaves as an antibunched phonon-pair emit-
ter when the time interval T between the consecutive pulses
of pulse lasers is much larger than the mechanical lifetime
1/γm, i.e., γmT � 1. Particularly, compared to the previous
n-phonon bundle emission [23,25], the time interval of the
dynamical phonon-pair emission can be tuned by adjusting the
time interval between the consecutive pulses. Our work opens
up a route to achieve an antibunched phonon-pair emitter,
which could be useful for quantum information processing
and for medical applications.

The rest of this paper is organized as follows. In Sec. II,
we introduce the physical model and present the Hamiltonian
of the system. In Sec. III, we derive an effective Hamiltonian
of the system in a finite-dimensional Hilbert space and ana-
lyze the generation of the two-phonon state. In Sec. IV, we
study the dynamical emission of phonon pairs by analyzing
quantum trajectories of the state populations and the average
phonon number in the system. We also investigate the sta-
tistical properties of the dynamical phonon-pair emission by
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numerically calculating the standard and generalized second-
order correlation functions in the mechanical mode. Finally,
we present some discussions on the experimental parameters
and conclude this work in Sec. V.

II. MODEL AND HAMILTONIAN

As schematically shown in Fig. 1(a), we consider a cav-
ity optomechanical system which consists of a single-cavity
mode coupled to a mechanical mode via radiation-pressure
interaction. The cavity is driven by two Gaussian pulse driv-
ing fields with corresponding driving carrier frequencies ω1

and ω2, where each driving field is composed of a series of
consecutive Gaussian wave packets. The Hamiltonian of the
system reads as (h̄ = 1)

H = ωca†a + ωmb†b − ga†a(b† + b)

+ [�1(t )a†e−iω1t + �2(t )a†e−iω2t + H.c.] (1)

with the time-dependent amplitudes of the driving fields

�i(t ) = �0

∞∑
k=0

exp

[
− (t − ti − kT )2

2σ 2

]
, i = 1, 2. (2)

Here a† (a) is the creation (annihilation) operator of the cavity
mode with resonance frequency ωc, b† (b) is the creation (an-
nihilation) operator of the mechanical mode with resonance
frequency ωm, and g is the single-photon optomechanical cou-
pling strength. The parameters �0 and

√
2σ are, respectively,

the amplitude and duration of the Gaussian wave packets [50].
t1 + kT (t2 + kT ) corresponds to the time instant when the
pulse �1(t ) [�2(t )] reaches its maximum value, where k is
an integer and T is the time interval of consecutive Gaussian
wave packets.

FIG. 1. (a) Schematic diagram of a cavity optomechanical sys-
tem consisting of a single-cavity mode coupled to a mechanical
mode via radiation-pressure interaction. The optical cavity is driven
by two Gaussian pulse driving fields �1(t ) and �2(t ). (b) The res-
onant transition of the effective Hamiltonian H (2)

eff at the coupling
strength g/ωm ≈ 0.765, where there is no transition between |0, 2〉
and |1, 2̃(1)〉. Other parameters are �1 ≡ ω1 − ωc = −g2/ωm and
�2 ≡ ω2 − ωc = −g2/ωm − 2ωm.

In the rotating frame with respect to ωc, Hamiltonian (1)
becomes

Hr = ωmb†b − ga†a(b† + b) + [�1(t )a†e−i�1t

+ �2(t )a†e−i�2t + H.c.], (3)

where �1 = ω1 − ωc and �2 = ω2 − ωc are detunings be-
tween the carrier frequencies of two pulse driving fields and
the cavity frequency, respectively.

By introducing a conditional displacement operator
D(βa†a) = exp[βa†a(b† − b)] with β = g/ωm, the first two
terms Hs = ωmb†b − ga†a(b† + b) of Eq. (3) can be diagonal-
ized as

Hs =
∞∑

n,m=0

En,m|n, m̃(n)〉〈n, m̃(n)|, (4)

where the eigenstates of Hs are |n, m̃(n)〉 = |n〉a ⊗ |m̃(n)〉b =
|n〉a ⊗ D(nβ )|m〉b, and the corresponding eigenvalues
are En,m = mωm − g2n2/ωm. Here |n〉a (n = 0, 1, 2, . . .)
are the number states of the cavity mode, |m〉b (m =
0, 1, 2, . . .) are the number states of the mechanical mode,
and |m̃(n)〉b are the n-photon displaced number states of
the mechanical mode. In particular, when n = 0, we have
|0, m̃(0)〉 = |0, m〉.

By using the eigenbasis of the Hamiltonian Hs, Hamilto-
nian (3) can be further written as

Hr = Hs +
∞∑

n,m,q=0

{A(n)
m,q[�1(t )e−i�1t + �2(t )e−i�2t ]

× |n, m̃(n)〉〈n − 1, q̃(n − 1)| + H.c.}, (5)

where we introduce the coefficients A(n)
m,q =√

n b〈m|D(−β )|q〉b. The coefficients can be calculated
by [51]

A(n)
m,q =

⎧⎨
⎩

√
n
√

m!
q! e− β2

2 βq−mLq−m
m (β2), m < q

√
n
√

q!
m! e

− β2

2 (−β )m−qLm−q
q (β2), m � q

(6)

where Lq
m(x) are the associated Laguerre polynomials. In the

rotating frame with respect to Hs, the Hamiltonian (5) is trans-
formed as

HI =
∞∑

n,m,q=0

{A(n)
m,q[�1(t )ei(δn,m,q−�1 )t + �2(t )

× ei(δn,m,q−�2 )t ]|n, m̃(n)〉〈n − 1, q̃(n − 1)| + H.c.}, (7)

where the variable δn,m,q = En,m − En−1,q = (m − q)ωm −
g2(2n − 1)/ωm.

III. EFFECTIVE HAMILTONIAN AND GENERATION OF
THE TWO-PHONON STATE

In this section, we will derive the effective Hamiltonian
for HI in a finite-dimensional Hilbert space and analyze the
generation of a two-phonon state.

A. Effective Hamiltonian in a confined Hilbert space

To analyze the generation of N-phonon states, we de-
rive the effective Hamiltonian for HI in a finite-dimensional
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Hilbert space. Under the condition of the resolved sideband
(i.e., the cavity-field decay rate κ is much smaller than the
mechanical frequency ωm), we choose the driving carrier
frequencies ω1 and ω2 to satisfy the resonance transitions

of |0, m〉 �1(t )←→ |1, m̃(1)〉 and |0, m + 2〉 �2(t )←→ |1, m̃(1)〉, re-
spectively [see Fig. 1(b)]. Hence, the two driving detunings
are �1 = −g2/ωm and �2 = −g2/ωm − 2ωm. In this circum-
stance, Hamiltonian (7) can be broken down into two parts:

HI = H̃I + H ′
I , (8)

where H̃I denotes the resonant transitions

H̃I =
∞∑

m=0

[�1(t )A(1)
m,m|1, m̃(1)〉〈0, m|

+ �2(t )A(1)
m,m+2|1, m̃(1)〉〈0, m + 2|] + H.c., (9)

and H ′
I corresponds to the off-resonant transitions

H ′
I =

∞∑
n,m,q=0

′{A(n)
m,q[�1(t )eiδ(1)

n,m,qt + �2(t )eiδ(2)
n,m,qt ]

× |n, m̃(n)〉〈n − 1, q̃(n − 1)| + H.c.}. (10)

Here the primed summation in Eq. (10) excludes those
terms of the Hamiltonian H̃I , and the off-resonance detunings
δ(i)

n,m,q = δn,m,q − �i are given by

δ(1)
n,m,q = (m − q)ωm − 2g2

ωm
(n − 1), (11a)

δ(2)
n,m,q = (m − q + 2)ωm − 2g2

ωm
(n − 1). (11b)

Here q = m in Eq. (11a) and q = m + 2 in Eq. (11b)
for n = 1.

In order to neglect the off-resonant transition part H ′
I , the

parameter conditions |δ(i)
n,m,q| � |A(n)

m,q|�0 (i = 1, 2) should be
satisfied. In particular, in order to ignore H ′

I , we need to block
the transitions from one-photon states |1, m̃(1)〉 to two-photon
states |2, m̃(2)〉, and this requires |δ(i)

2,m,q| � |A(2)
m,q|�0. Since

the coefficients |A(2)
m,q| � 1, as shown in Fig. 2(b), the parame-

ter condition is [52]

�0 �
∣∣∣∣2g2

ωm
− Kωm

∣∣∣∣ (12)

with K being the nearest integer to 2(g/ωm)2. Hence, when the
parameter condition of Eq. (12) is satisfied, the Hamiltonian
HI can be approximately reduced to H̃I , which describes the
resonant transitions between zero-photon states |0, m〉 and
one-photon states |1, m̃(1)〉.

In addition, the dimension of the Hilbert space of the
mechanical mode can also be approximately truncated up to
m = N by choosing the single-photon optomechanical cou-
pling strength g = gN , where gN is the minimal positive value
satisfying the following equation:

A(1)
N,N = exp

(
− g2

N

2ω2
m

)
L0

N

(
g2

N

ω2
m

)
= 0, (13)

with N being a positive even number. It can be seen from
Eq. (13) that the transition matrix element �1(t )A(1)

N,N from

FIG. 2. (a) The ratio gN/ωm of the minimal positive value gN

satisfying Eq. (13) over the mechanical frequency ωm as a function
of the index N . (b) The coefficients |A(2)

m,q| as functions of the indices
m and q at g/ωm ≈ 0.765. (c)–(e) The first Gaussian wave packets
of two pulse lasers �i(t ) (i = 1, 2), the zero-photon state popula-
tions P|0,m〉 = |〈0, m|ψ (t )〉|2, and the single-photon state populations
P|1,m̃(1)〉 = |〈1, m̃(1)|ψ (t )〉|2 as functions of the time ωmt . Here |ψ (t )〉
is the state of the system at time t in the absence of dissipation. Other
parameters are �0/ωm = 0.03, ωmσ = 300, ωmt1 = 1600, ωmt2 =
1100, g/ωm ≈ 0.765, �1 = −g2/ωm, and �2 = −g2/ωm − 2ωm.

the state |0, N〉 to |1, Ñ (1)〉 is zero. In Fig. 2(a), we show the
dependence of the ratio gN/ωm of the minimal positive value
gN satisfying Eq. (13) over the mechanical frequency ωm on
the index N . The result shows that the coupling strength gN

decreases as the truncation dimension N increases.
When the parameter conditions of Eqs. (12) and (13) are

satisfied, the effective Hamiltonian of HI can be obtained as

H (N )
eff =

N−1∑
m=0

�1(t )A(1)
m,m|1, m̃(1)〉〈0, m| +

N−2∑
m=0

�2(t )

× A(1)
m,m+2|1, m̃(1)〉〈0, m + 2| + H.c., (14)

where H (N )
eff describes the resonant transitions between zero-

photon states |0, m〉 and one-photon states |1, m̃(1)〉 with the
phonon number m � N .

B. Generation of the two-phonon state

We now analyze the generation of the two-phonon state
based on technique of STIRAP. When considering the single-
photon optomechanical coupling strength g/ωm = g2/ωm ≈
0.765, the dimension of the Hilbert space of the mechanical
mode can be truncated up to N = 2, the effective Hamiltonian
can then be expressed as

H (2)
eff = �1(t )[A(1)

0,0|1, 0̃(1)〉〈0, 0| + A(1)
1,1|1, 1̃(1)〉〈0, 1|]

+ �2(t )A(1)
0,2|1, 0̃(1)〉〈0, 2| + H.c. (15)

In Fig. 1(b), we show the resonant transition |0, 0〉 �1(t )←→
|1, 0̃(1)〉 �2(t )←→ |0, 2〉 of the effective Hamiltonian H (2)

eff . When
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the initial state of the system is |0, 0〉, the transition

|0, 1〉 �1(t )←→ |1, 1̃(1)〉 is negligible in the absence of dissipa-
tion.

For the effective Hamiltonian H (2)
eff , the matrix form can be

expressed as

H (2)
eff = M33 ⊕ M22 (16)

with

M33 =
⎛
⎝ 0 �1(t )A(1)

0,0 0
�1(t )A(1)

0,0 0 �2(t )A(1)
0,2

0 �2(t )A(1)
0,2 0

⎞
⎠ (17)

and

M22 =
(

0 �1(t )A(1)
1,1

�1(t )A(1)
1,1 0

)
. (18)

Here the symbol “⊕” denotes the direct sum of the
matrix, and the matrix (16) is defined based on the basis
states |0, 0〉 = (1, 0, 0, 0, 0)T, |1, 0̃(1)〉 = (0, 1, 0, 0, 0)T,
|0, 2〉 = (0, 0, 1, 0, 0)T, |0, 1〉 = (0, 0, 0, 1, 0)T, and
|1, 1̃(1)〉 = (0, 0, 0, 0, 1)T, where “T” denotes the matrix
transpose. Based on the matrices M33 and M22, we can obtain
the eigenvalues of the Hamiltonian H (2)

eff as

ε0 = 0,

ε1 = −
√(

�1(t )A(1)
0,0

)2 + (
�2(t )A(1)

0,2

)2 = −ε2,

ε3 = −�1(t )A(1)
1,1 = −ε4, (19)

and the corresponding eigenstates

|φ0(t )〉 = [
�2(t )A(1)

0,2|0, 0〉 − �1(t )A(1)
0,0|0, 2〉]/ε2,

|φ1(t )〉 = �1(t )A(1)
0,0|0, 0〉 − ε2|1, 0̃(1)〉 + �2(t )A(1)

0,2|0, 2〉√
2ε2

,

|φ2(t )〉 = �1(t )A(1)
0,0|0, 0〉 + ε2|1, 0̃(1)〉 + �2(t )A(1)

0,2|0, 2〉√
2ε2

,

|φ3(t )〉 = [|1, 1̃(1)〉 − |0, 1〉]/
√

2,

|φ4(t )〉 = [|1, 1̃(1)〉 + |0, 1〉]/
√

2. (20)

Here the eigenstate |φ0(t )〉 is the so-called dark state, which
does not include the component of state |1, 0̃(1)〉. This dark
state can also be expressed as |φ0(t )〉 = cos ϑ (t )|0, 0〉 −
sin ϑ (t )|0, 2〉, where the mixing angle ϑ (t ) is introduced by
tan ϑ (t ) = �1(t )A(1)

0,0/[�2(t )A(1)
0,2]. To realize the population

transfer from states |0, 0〉 to |0, 2〉, the two pulse driving
amplitudes �1(t ) and �2(t ) should be properly chosen to
guarantee adiabatic evolution of |φ0(t )〉 [47–49]. Concretely,
at the begining of the STIRAP, the relation �1(t )/�2(t ) → 0
should be satisfied such that ϑ (t ) = 0 and |φ0(t )〉 → |0, 0〉. At
the ending of the STIRAP, the driving amplitudes should sat-
isfy the relation �2(t )/�1(t ) → 0, then we have ϑ (t ) = π/2
and |φ0(t )〉 → |0, 2〉. This indicates that the counterintuitive
ordering of �1(t ) and �2(t ) should be satisfied, i.e., t1 > t2.
In addition, a suitable overlap between the two pulse driving
fields is necessary to guarantee adiabatic evolution [49].

To prove the population transfer between the states |0, 0〉
and |0, 2〉, we plot the first Gaussian wave packets of the

two pulse driving fields �1,2(t ), the zero-photon state pop-
ulations P|0,m〉 = |〈0, m|ψ (t )〉|2, and the single-photon state
populations P|1,m̃(1)〉 = |〈1, m̃(1)|ψ (t )〉|2 as functions of the
time ωmt in Figs. 2(c)–2(e). Here we consider that the initial
state of the system is |0, 0〉, and the two pulse driving fields
�1,2(t ) satisfy the condition of STIRAP. It can be seen that the
population transfer from state |0, 0〉 to |0, 2〉 is realized in
the absence of the dissipation, i.e., when ωmt � 1800, we
have P|0,2〉 ≈ 1 and the populations of the other states are
approximately zero.

In the realistic physical system, we need to consider the
dissipation of the system. In the presence of dissipation,
the dynamics of the system can be described by quantum
master equation [53]. However, in the ultrastrong-coupling
regime [54–56], the dynamics of the system can not be de-
scribed correctly by the standard quantum master equation.
Hence, the dynamics of the system in the ultrastrong-coupling
regime should be described by the dressed or generalized
master equation [57]. Usually, for a nondegenerate (degen-
erate) system, the dressed (generalized) master equation can
be expressed by the eigensystem of the system Hamiltonian
[57]. However, if we know the transformation of the interac-
tion Hamiltonian on the system operator, and the transformed
operators correspond to definite-oscillating frequencies so that
the secular approximation can be made properly, then we can
also obtain the form of the Lindblad operator in the dressed-
state representation.

For the cavity optomechanical system described by
the Hamiltonian Hopt = ωca†a + ωmb†b − ga†a(b† + b), the
dissipation of the mechanical mode in the dressed-state
representation can be obtained because the transformed
operator eiHoptt be−iHoptt = e−iωmt (b − βa†a) + βa†a can be
worked out, and here both b − βa†a and a†a corre-
spond to definite frequency-oscillating terms. However, for
the cavity mode, the transformed operator eiHoptt ae−iHoptt =
e−iωct eiβ2[ωmt−sin(ωmt )](2a†a+1)aeβ[(eiωmt −1)b†−(e−iωmt −1)b] does not
correspond to definite-oscillating frequencies. To analyze the
oscillating frequency, we need to expand the exponential
functions, and then many sidebands are involved. In this
case, it is difficult to write out the Lindblad operator of
the cavity mode because there exist many complicated tran-
sitions. Below, we will make the zero-order approximation
with eiβ2[ωmt−sin(ωmt )](2a†a+1)aeβ[(eiωmt −1)b†−(e−iωmt −1)b] ≈ a, and
then the oscillating frequency corresponding to eiHoptt ae−iHoptt

is ωc. Under this approximation, we can obtain the Lindblad
operator of the cavity mode. For the cavity optomechanical
system, this approximation is acceptable because the fre-
quency (∼1014 Hz) of the cavity mode is much larger than that
(∼107 Hz) of the mechanical mode. In the derivation of the
dressed master equation, we assume that the spectral density
of the mechanical bath is of the Ohmic form. In addition, we
treat the two pulse driving terms as perturbations.

Under the above approximations, the dressed master equa-
tion of the driven optomechanical system in the ultrastrong-
coupling regime can be obtained as [58]

dρ(t )

dt
= i[ρ(t ), Hr] + γm(nth + 1)D[b − βa†a]ρ(t )

+ γmnthD[b† − βa†a]ρ(t ) + κD[a]ρ(t )

+ 4γm(kBTb/ωm)β2D[a†a]ρ(t ), (21)
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where the Hamiltonian Hr is given in Eq. (3), κ (γm)
is the decay rate of the cavity (mechanical) mode. nth =
[exp(h̄ωm/kBTb) − 1]−1 is the thermal phonon occupation
number at temperature Tb, with kB being the Boltzmann con-
stant. The Lindblad superoperators are defined by D[o]ρ(t ) =
[2oρ(t )o† − ρ(t )o†o − o†oρ(t )]/2. By numerically solving
Eq. (21) [59,60], we can obtain the density operator ρ(t ) of
the system at time t , and then the zero-photon state popu-
lations P|0,m〉(t ) = Tr[|0, m〉〈0, m|ρ(t )] and the single-photon
state populations P|1,m̃(1)〉(t ) = Tr[|1, m̃(1)〉〈1, m̃(1)|ρ(t )] can
be calculated.

To be consistent, any physical operator in principle needs
to be dressed in the ultrastrong-coupling regime. According
to the rules, the annihilation operator b of the mechanical
mode should be replaced by the dressed operator b − βa†a
in the ultrastrong-coupling regime. However, the situation
in the present scheme will become simpler based on the
following reason. In this scheme, the STIRAP approach is
based on the three-level system: the two lower states |0, 0〉
and |0, 2〉, the upper state |1, 0̃(1)〉. Since the upper state will
not be populated in a perfect STIRAP scheme, the system
will mainly be in the two lower states |0, 0〉 and |0, 2〉.
In realistic simulations, it can be seen from Fig. 2(e) that
the population of the single-photon states is smaller than
0.01 during the most duration of the STIRAP, and the peak
value of the single-photon-state population is smaller than
0.1, i.e., 〈a†a〉 � 1. This implies that the cavity-field state
can be approximated as the vacuum state. In this case, the
optomechanical resonator is reduced to a harmonic oscillator
described by the operators b and b†. Therefore, it is reasonable
to approximately calculate the statistics of the mechanical
mode with the operators b and b†.

To study the dynamical evolution of the state populations
of the system in the presence of dissipation, we plot the state
populations P|0,m〉(t ) and P|1,m̃(1)〉(t ) (m = 0, 1, 2) as functions
of the time ωmt at the optomechanical coupling strength
g/ωm ≈ 0.765, as shown in Figs. 3(b)–3(d). Similarly, we
consider an initial state |0, 0〉 of the system, i.e., P|0,0〉(0) = 1.
In Fig. 3(a), we plot the two pulse driving fields �1,2(t ) as
a function of the time ωmt . Here we choose the time inter-
val between the consecutive pulses γmT � 1 such that the
system goes back to the initial state |0, 0〉 before the arrival
of the next Gaussian wave packet. In addition, to ensure that
the phonons are not dissipated before the completion of the
population transfer from the states |0, 0〉 to |0, 2〉, the dissipa-
tion of the mechanical mode needs to meet γm/ωm < 1/1800
for our used parameters. Meanwhile, the dissipation of the
cavity mode should be larger than that of the mechanical
mode (κ > γm), so that the population of one-photon state
is approximately zero. Hence, we employ the experimentally
achievable parameters κ/ωm = 0.002 and γm/ωm = 0.0004
to satisfy these conditions in the numerical simulations. It
can be seen from Figs. 3(b)–3(d) that due to the presence of
dissipation, the maximal value of the state population P|0,2〉(t )
at time t = ts + kT is smaller than 1. In addition, due to the
decay of the mechanical mode, each phonon in state |0, 2〉
is emitted in an intrinsic temporal structure corresponding to
the spontaneous emission of the Fock state [20–24,32], the
system then goes back to the initial state |0, 0〉. The state |0, 2〉
is again generated for the next Gaussian pulse, which means

FIG. 3. (a) Two Gaussian pulse driving fields �i(t ) (i = 1, 2) as
a function of the time ωmt . (b)–(d) The state populations P|0,m〉(t ) and
P|1,m̃(1)〉(t ) (m = 0, 1, 2) as functions of the time ωmt in the presence
of dissipation. Other parameters are �0/ωm = 0.03, ωmσ = 300,
ωmt1 = 1600, ωmt2 = 1100, ωmT = 15 000, g/ωm ≈ 0.765, κ/ωm =
0.002, γm/ωm = 0.0004, Tb = nth = 0, �1 = −g2/ωm, and �2 =
−g2/ωm − 2ωm.

that the dynamical super-Rabi oscillation |0, 0〉 ↔ |0, 2〉 can
be realized under the action of two Gaussian pulse driving
fields.

IV. DYNAMICAL EMISSION OF PHONON PAIRS

In this section, we study the dynamical emission of phonon
pairs and the statistical properties of the dynamical phonon-
pair emission. Concretely, we employ the quantum Monte
Carlo approach in the ultrastrong-coupling regime [59–61] to
simulate individual trajectory of the system. In Figs. 4(a)–
4(c), we show a quantum trajectory of the state populations
P|0,m〉(t ) and P|1,m̃(1)〉(t ) (m = 0, 1, 2) at the ratio g/ωm ≈
0.765. Based on the technique of STIRAP, the value of the
population P|0,2〉(t ) in the state |0, 2〉 at time t = ts is approx-
imately equal to 1. Due to the trigger of the dissipation of
the mechanical mode, the first phonon is emitted (indicated
by the first red triangle at the bottom of the figure) and the
wave function collapses to the one-phonon state |0, 1〉 with
almost unit probability, as shown in Fig. 4(b). Immediately,
the second phonon is emitted during the mechanical lifetime
(the second red triangle), as shown in Fig. 4(a). This means
that the strongly correlated phonon pairs are emitted in a very
short temporal window and the wave function of the system
collapses to the zero-phonon state |0, 0〉. After the arrival of
the next Gaussian wave packet, the two-phonon state |0, 2〉
(the black triangle) is prepared again for the next emission
of phonon pairs. Hence, under the action of two Gaussian
pulse driving fields, the dynamical emission of phonon pairs
can be realized by choosing the appropriate time interval
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FIG. 4. (a)–(c) Quantum trajectory of the state populations
P|0,m〉(t ) and P|1,m̃(1)〉(t ) (m = 0, 1, 2). (d) Quantum trajectory
of the average phonon number 〈b†b〉(t ). Other parameters are
�0/ωm = 0.03, ωmσ = 300, ωmt1 = 1600, ωmt2 = 1100, ωmT =
15 000, g/ωm ≈ 0.765, κ/ωm = 0.002, γm/ωm = 0.0004, Tb = nth =
0, �1 = −g2/ωm, and �2 = −g2/ωm − 2ωm.

T . Figure 4(d) shows a quantum trajectory of the average
phonon number 〈b†b〉(t ) at the ratio g/ωm ≈ 0.765. Here we
can see that the dynamical cascade-phonon-emission process
|0, 2〉 → |0, 1〉 → |0, 0〉 occurs in a very short time window.

For the pulse driving fields, we cannot study the steady-
state correlation function of the system. Hence, in order to
investigate the quantum statistics of the dynamical phonon-
pair emission, we numerically calculate the standard and
generalized equal-time second-order correlation functions of
the mechanical mode [20,23]:

g(2)
1 (t, t ) = 〈b†(t )b†(t )b(t )b(t )〉

〈b†b(t )〉2
, (22a)

g(2)
2 (t, t ) = 〈b†2(t )b†2(t )b2(t )b2(t )〉

〈b†2b2(t )〉2
. (22b)

In Fig. 5(a), we display one period of the equal-time second-
order correlation functions g(2)

N (t, t ) (N = 1, 2) as a function
of the time ωmt . It can be seen that the value of the standard
correlation function g(2)

1 (t, t ) at time t = ts1 is maximum and
g(2)

1 (ts1, ts1) > 1, which means that super-Poisson distribution
of single phonon occurs at time t = ts1. Furthermore, we
can see that the value of the generalized correlation function
g(2)

2 (t, t ) at time t = ts2 is minimum and g(2)
2 (ts2, ts2) < 1 cor-

responding to sub-Poisson distribution of phonon pairs.
To further characterize the statistical properties of the

dynamical phonon-pair emission, we also numerically
calculate the standard and generalized time-delay
second-order correlation functions of the mechanical

FIG. 5. (a) One period of the equal-time second-order correlation
functions g(2)

N (t, t ) as a function of the time ωmt with N = 1 (the
red line) and N = 2 (the blue line) at Tb = nth = 0. The ts1 and ts2

correspond to the maximum value of g(2)
1 (t, t ) and the minimum

value of g(2)
2 (t, t ), respectively. (b) The time-delay second-order

correlation functions g(2)
N (tsN , tsN + τ ) (ts1 and ts2 are indicated in

the upper panel) with N = 1 (the red line) and N = 2 (the blue
line) at Tb = nth = 0. (c) One period of the generalized equal-
time second-order correlation function g(2)

2 (t, t ) as a function of the
time ωmt at various values nth = (0.1, 0.3, 0.4, 0.7). Other param-
eters are �0/ωm = 0.03, ωmσ = 300, ωmt1 = 1600, ωmt2 = 1100,
ωmT = 15 000, g/ωm ≈ 0.765, κ/ωm = 0.002, γm/ωm = 0.0004,
�1 = −g2/ωm, and �2 = −g2/ωm − 2ωm.

mode:

g(2)
1 (ts1, ts1 + τ ) = G(2)

1 (ts2, ts2 + τ )

〈b†b(ts1)〉〈b†b(ts1 + τ )〉 , (23a)

g(2)
2 (ts2, ts2 + τ ) = G(2)

2 (ts2, ts2 + τ )

〈b†2b2(ts2)〉〈b†2b2(ts2 + τ )〉 . (23b)

where G(2)
1 (ts1, ts1 + τ ) = 〈b†(ts1)b†(ts1 + τ )b(ts1 + τ )b(ts1)〉

and G(2)
2 (ts2, ts2 + τ ) = 〈b†2(ts2)b†2(ts2+τ )b2(ts2 + τ )b2(ts2)〉.

Figure 5(b) shows the time-delay second-order correlation
functions g(2)

N (tsN , tsN + τ ) for N = 1, 2, where τ is the time
delay. Here ts1 and ts2 correspond to, respectively, the times
of the maximum value in g(2)

1 (t, t ) and the minimum value
in g(2)

2 (t, t ) in Fig. 5(a). As shown in Fig. 5(b), the nu-
merical result shows that g(2)

1 (ts1, ts1) > g(2)
1 (ts1, ts1 + τ ) and

g(2)
2 (ts2, ts2) < g(2)

2 (ts2, ts2 + τ ) are satisfied. This means that
the two phonons contained in each phonon pair are bunched,
but the relation between phonon pairs and phonon pairs is
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antibunched, that is, the system behaves as an antibunched
phonon-pair emitter.

The above discussions focus on the case of zero tempera-
ture, i.e., Tb = 0 K and nth = 0. Below, we will analyze the
influence of the thermal phonon occupation number nth on
the correlation function. In Fig. 5(c), we show the gener-
alized equal-time second-order correlation function g(2)

2 (t, t )
as a function of the time ωmt at various values nth =
(0.1, 0.3, 0.4, 0.7) for the ratio g/ωm ≈ 0.765. Here we con-
sider that the initial state of the system is |0, 0〉. It can be seen
that the minimum value of the correlation function gradually
increases as the thermal phonon number increases. In particu-
lar, the value of the correlation function g(2)

2 (t, t ) is larger than
1 in the entire parameter space when nth � 0.4, corresponding
to the super-Poisson distribution of phonon pairs. This means
that the dynamical phonon-pair emission is destroyed. The
reason is that there is a competition between the thermal
excitation and the spontaneous radiation of the phonons, and
the thermal noise is a vital factor for the destruction of the
dynamical emission of phonon pairs in this system.

V. DISCUSSION AND CONCLUSION

We present some discussions on the experimental param-
eters in this theoretical scheme. To implement the present
physical scheme, the key point is to realize the ultrastrong
optomechanical coupling strength. Currently, the strong
optomechanical coupling strength (i.e., g/2π = 1.6 MHz)
has been realized in a superconducting circiut [62]. In
particular, it has been estimated in Ref. [62] that a cou-
pling strength up to g/2π = 100 MHz is in principle
accessible with an optimized device. In our simulations,
we use the following parameters: g/ωm ≈ 0.765, κ/ωm =
0.002, γm/ωm = 0.0004, and �0/ωm = 0.03 (e.g., ωm/2π =
100 MHz, g/2π = 76.5 MHz, κ/2π = 0.2 MHz, γm/2π =
0.04 MHz, and �0/2π = 3 MHz). We want to point out that
these parameters are experimentally accessible in a supercon-
ducting circuit, but there still exist some challenges for current
experimental technology.

In conclusion, we have proposed an efficient scheme to
realize the dynamical phonon-pair emission in a cavity op-

tomechanical system, where the optical cavity is driven by
two Gaussian pulse driving fields. In the absence of the dis-
sipation of the system, the population transfer from |0, 0〉 to
|0, 2〉 can be realized based on the technique of STIRAP. By
studying the quantum trajectories of the state populations and
the average phonon number in the system, we found that the
dynamical emission of phonon pairs can be observed under
appropriate parameter conditions. Particularly, by numerically
calculating the standard and generalized second-order corre-
lation functions of the mechanical mode, we found that the
cavity optomechanical system can behave as an antibunched
phonon-pair emitter when the time interval between the con-
secutive pulses γmT � 1. Compared to the previous works
of n-phonon bundle emission [23,25], our work has the fol-
lowing features and advantages. (i) The physical mechanism
for creating the two-phonon state is based on the technique
of STIRAP, which has not been used in the n-phonon bundle
emission task. (ii) The dynamical phonon-pair emission is
tunable on demand with the time interval between the con-
secutive pulses of pump lasers so that the device behaves as
a two-phonon gun, with important applications for on-chip
quantum communication. In addition, the phonon-pair emis-
sion is realized in a deterministic way. (iii) In this scheme, the
probability of the two-phonon state before the phonon emis-
sion is much larger than that of the zero- and single-phonon
states, then the purity of the dynamical phonon-pair emission
will be high. We also note that the present proposal can be
extended to achieve an antibunched n-phonon emitter, which
has potential applications in quantum information processing
and quantum metrology.
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