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Analytical solutions for the mean-square displacement derived from transport theory
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In this paper, exact analytical solutions are derived for the second-order moment and the mean-square
displacement based on the transport theory fluence that is caused by an arbitrary anisotropic point source, which
is located at the origin of a three-dimensional coordinate system. In particular, the derivations are carried out as a
function of the number of scattering events. The resulting formulas in the steady-state and time domain depend,
apart from the scattering coefficient and partly the absorption coefficient, only on the anisotropy factor of the
considered rotationally invariant scattering phase function. We additionally present the second-order moment
and the mean-square displacement for the fluence of fluorescence light in the steady-state domain.
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I. INTRODUCTION

Studies of the mean-square displacement (MSD) are preva-
lent in many different scientific areas, such as in heat
conduction [1], in ballistic and diffusive Brownian motion [2],
in light transport in clouds [3] or in glaciers [4], in transport
in disordered media [5], in animal movement [6], in quantum
walks [7], in superdiffusion and subdiffusion [8], and in fur-
ther stochastic problems in physics, chemistry, and electrical
engineering [9].

The MSD of particles in an infinitely extended random
medium has been studied for more than 100 years. For
example, Einstein derived his famous formula in the time
domain investigating Brownian motion [10]. He applied the
diffusion theory and found that 〈r2(t )〉 is proportional to t ,
which is valid only for long time values as he already noted.
Shortly afterwards, Langevin obtained a solution based on
Newton’s second law, assuming a random (isotropic) force.
This formula exhibited the same long time behavior, but was
applicable also for early time values [11]. Later, a solution
of the telegrapher’s equation, an approximation of the more
fundamental transport equation, was derived, which delivered
the same solution as was obtained by Langevin [12]. Further,
random walk models were applied to obtain the formula for
the MSD for anisotropic “turn angles” [13]. Investigations
of the MSD in the steady-state domain were performed es-
pecially in optics, where 〈r2〉 is finite due to the fact that
photons have a nonzero probability of being absorbed when
propagating through random media. Formulas were derived,
both, based on the radiative transport theory [14,15] and on
the diffusion theory [16], which is a low-order approximation
to the radiative transport equation (RTE).

In this study, we derive the second-order moment and the
MSD for the fluence [17] based on the exact transport theory
in the steady state and time domain that undergoes an arbitrary
number of scattering events. In this context, the radiance is
expanded in terms of successive scattering orders, which re-
sults, in view of the second-order moment, in a second-order

linear difference equation. The corresponding moments in
time domain are obtained under consideration of the Laplace
transform. The resulting formulas are valid for all anisotropic
point sources and an arbitrary rotationally invariant scattering
phase function. We note that the derived equations are exact
within the RTE, e.g., for arbitrary time values or any desired
scattering-to-absorption ratio. Thus, they provide a detailed
information on the characteristics of photon transport for any
regime of propagation. The derived expressions are verified
and illustrated by comparisons with the Monte Carlo (MC)
method.

II. SECOND-ORDER MOMENT AND MSD
FOR THE TRANSPORT THEORY FLUENCE

The starting point of the derivations is the three-
dimensional RTE for an anisotropic point source that is
given by

� · ∇I (x,�) + μt I (x,�)

= μs

∫
S2

f (� · �′)I (x,�′) d�′ + δ(x)Q(�), (1)

where (x,�) ∈ R3 × S2, I is the radiance, �(x) :=∫
S2 I (x,�) d� denotes the fluence, f is the scattering phase

function that is normalized according to
∫

f (� · �′) d�′ = 1,
μt = μa + μs is the total attenuation coefficient, μa the
absorption coefficient, and μs the scattering coefficient.
Concerning the source term, we have the normalization∫

Q(�) d� = 1. In the following, we derive an expression
for the second-order moment of the fluence in dependence
of the number of scattering events. For this task, the
radiance of Eq. (1) is formally expanded in terms of
successive scattering orders according to the Neumann series
[18,19]

I (x,�) =
∞∑

n=0

In(x,�),
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with (In)n�0 being a sequence of functions whose terms are governed by the following recursively defined transport
equation [19,20]:

� · ∇In(x,�) + μt In(x,�) = μs

∫
S2

f (� · �′)In−1(x,�′) d�′, n = 1, 2, . . . , (2)

where the initial term I0 is given as solution of

� · ∇I0(x,�) + μt I0(x,�) = δ(x)Q(�) �⇒ I0(x,�) = e−μt r

r2
Q(�)δ(x̂ − �),

with r = ‖x‖ and x̂ = x/r. The fluence in terms of scattering orders is �(x) = ∑∞
n=0 �n(x). The second-order moment 〈x2〉 of

a function ϕ : R3 → R is formally defined as

〈x2〉 =
∫
R3

r2ϕ(x) dx = −�k

∫
R3

ϕ(x) exp(−ik · x) dx

∣∣∣∣
k=0

= −�kϕ̂(0),

with ϕ̂(k) = ∫
R3 ϕ(x) exp(−ik · x) dx being the corresponding Fourier transform (FT). Below, we neglect the index k and write

� instead of �k . To derive the second-order moment for the fluence after n ∈ N0 scattering events, we start with Eq. (2) in
Fourier space that is given by

μt În(k,�) + ik · �În(k,�) = μs

∫
S2

f (� · �′ )̂In−1(k,�′) d�′. (3)

Applying the Laplace operator on both sides of Eq. (3) under consideration of the product rule �[(ik · �)̂In(k,�)] = (ik ·
�)�În(k,�) + 2i � · ∇ În(k,�) and setting k = 0 gives

μt�În(0,�) + 2i� · ∇ În(0,�) = μs

∫
S2

f (� · �′)�În−1(0,�′) d�′.

Integrating this equation over the unit sphere S2 results in

μt��̂n(0) + 2i div Ĵn(0) = μs��̂n−1(0), (4)

where Ĵ(·) := ∫
S2 �Î (·,�) d� denotes the flux vector. To eliminate the quantity div Ĵn(0) a second relation is needed. The

application of the Nabla operator on both sides of Eq. (3) gives

(μt + ik · �)∇ În(k,�) + i�În(k,�) = μs

∫
S2

f (� · �′)∇ În−1(k,�′) d�′.

Setting k = 0 and multiplying both sides with the unit vector � leads to

μt � · ∇ În(0,�) + iÎn(0,�) = μs

∫
S2

� f (� · �′)∇ În−1(0,�′) d�′.

Integrating this equation over the unit sphere S2 results in the
continuity equation

μt div Ĵn(0) + i�̂n(0) = μsgdiv Ĵn−1(0), (5)

where we used
∫
S2 � f (� · �′) d� = g�′ with |g| � 1 being

the anisotropy factor of the phase function. To proceed fur-
ther, we introduce Xn := −��̂n(0) = ∫

R3 x2�n(x) dx, Yn :=
div Ĵn(0), and Mn := �̂n(0) = ∫

R3 �n(x) dx, where Xn is the
desired second-order moment. Equations (4) and (5) can then
be written in form of the following system of linear difference
equations:

μt Xn − μsXn−1 = 2iYn, (6)

μtYn − μsgYn−1 = −iMn. (7)

This system is reducible to a single second-order equa-
tion by eliminating Yn. From Eq. (6) we get Yn = (μt Xn −
μsXn−1)/(2i) and hence Yn−1 = (μt Xn−1 − μsXn−2)/(2i). In-

serting these quantities into Eq. (7) results in

μ2
t Xn − μsμt (1+g)Xn−1+μ2

s gXn−2 = 2Mn, n = 0, 1, . . . ,

(8)

under consideration of X−2 = X−1 = 0. The zero-order mo-
ment Mn can be found from Eq. (3). By setting k = 0, we
have

μt În(0,�) = μs

∫
S2

f (� · �′ )̂In−1(0,�′) d�′.

Integration over the unit sphere S2 results in the recurrence
relation μt Mn = μsMn−1 subject to the initial value

M0 =
∫
R3

�0(x) dx =
∫
R3

e−μt r

r2
Q(x̂) dx = 1

μt
. (9)

As a result, we find successively M1 = μs/μ
2
t , M2 = μ2

s /μ
3
t ,

. . ., and Mn = μn
s /μ

n+1
t for the zero-order moment. Further-

more, we need two initial conditions for solving Eq. (8).
Setting n = 0 and n = 1 leads to the conditions μ2

t X0 =
2/μt and μ2

t X1 − μsμt (1 + g)X0 = 2μs/μ
2
t yielding X0 =
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2/μ3
t and X1 = 2μs(2 + g)/μ4

t . Equation (8) can be solved
similarly to an ordinary differential equation. To find the
corresponding homogenous solution, we perform the ansatz
X (h)

n := λn. Inserting this into Eq. (8) gives the characteris-
tic equation μ2

t λ
2 − μsμt (1 + g)λ + μ2

s g = 0 with the roots
λ1 = μs/μt and λ2 = μsg/μt . The particular part can be ob-
tained via a similarity ansatz. In this context, we have to note
that the right-hand side of Eq. (8) contains a part of the ho-
mogeneous solution, namely Mn = μn

s /μ
n+1
t = λn

1/μt . Thus,
instead of X (p)

n = Kλn
1, we have to use the modified ansatz

X (p)
n = Knλn

1. Inserting this into Eq. (8) leads to the coefficient
K = 2/[μ3

t (1 − g)]. The complete solution of Eq. (8) in terms
of the homogenous and particular part is given by

Xn = C1λ
n
1 + C2λ

2
2 + 2

μ3
t

n

1 − g

(
μs

μt

)n

,

n ∈ N0, C1,C2 ∈ R. (10)

We note that this expression is formally not defined for g = 1.
However, this special case can be obtained from the final
solution in the form of a limit, see below. The unknown
coefficients are fixed by the initial values X0 and X1, which
leads to the following conditions:

C1 + C2 = 2

μ3
t

and λ1C1 + λ2C2 = 2μs

μ4
t

[
1 − g2

1 − g

]
.

(11)

The corresponding values are obtained as

C1 = 2

μ3
t

[
1 − g2

(1 − g)2

]
and C2 = 2

μ3
t

g2

(1 − g)2
. (12)

The desired solution of Eq. (8) (the second-order moment to
the transport theory fluence) can then be written as

Xn = 2

μ3
t

[
1 + n

1 − g
− g2 1 − gn

(1 − g)2

](
μs

μt

)n

,

n ∈ N0, −1 � g < 1. (13)

As mentioned above, the case g = 1 can be evaluated via
�’Hospital’s rule applied to the limit

lim
g→1

[
1 + n

1 − g
− g2 1 − gn

(1 − g)2

]
= lim

g→1

(1 − g)2 + (1 − g)n − g2(1 − gn)

(1 − g)2

�′H= lim
g→1

2(g − 1) − n − 2g + (n + 2)gn+1

2(g − 1)

�′H= lim
g→1

(n + 2)(n + 1)gn

2
= (n + 1)(n + 2)

2
,

which results in Xn = (n + 1)(n + 2)μn
s /μ

n+3
t . In addition,

summing over all scattering orders results in

∞∑
n=0

Xn = 2

μ2
a(μa + μ′

s)
< ∞, if μa > 0, (14)

where μ′
s = (1 − g)μs. We now can define the MSD belong-

ing to the nth scattering event in the form of a normalized
second-order moment according to

〈r2〉n : = Xn

Mn
=

{
2
μ2

t

[
1 + n

1−g − g2 1−gn

(1−g)2

]
, g ∈ [−1, 1),

(n+1)(n+2)
μ2

t
, g = 1.

(15)

Equation (15) has already been derived, only for a nonabsorb-
ing medium, by following an extrapolation procedure [14].
However, it must be stressed that in Ref. [14] a rigorous
mathematical proof of this relation was not presented. In
addition, we can give the corresponding second-order dif-
ference equation belonging to the MSD. By dividing both
sides of Eq. (8) by the zero-order moment Mn results in the
equation

〈r2〉n − (1 + g)〈r2〉n−1 + g〈r2〉n−2 = 2/μ2
t , n = 0, 1, . . . ,

with 〈r2〉−2 = 〈r2〉−1 = 0. In this case, we have 〈r2〉(h)
n ∈

span{1, gn} for g ∈ [−1, 1) and 〈r2〉(h)
n ∈ span{1, n} when g =

1. This difference equation can be solved similarly as Eq. (8)
leading to the MSD (15). The MSD after an infinite number
of scattering events is given by the ratio

〈r2〉 =
∑∞

n=0 Xn∑∞
n=0 Mn

= 2

μa(μa + μ′
s)

for μa > 0. (16)

We note that Eq. (16) was already derived earlier based on
transport theory for the special case of an iso-delta scat-
tering phase function [15]. Further, we note that the MSD
(16) also follows from the diffusion approximation [16]. In
addition to the steady-state domain, we also want to pro-
vide the corresponding results in the time domain caused
by the point source δ(x)Q(�)δ(t ). To find the second-order
moment and the MSD, we extended the results derived
above to the temporal frequency domain [21] by replac-
ing the real-valued absorption μa by the complex-valued
quantity μa + s/c, with c being the speed of light and s ∈
C denotes the Laplace transform variable occurring within
the integral transform L{ f (t )}(s) = f̂ (s) = ∫ ∞

0 f (t )e−st dt .
The extension of Eq. (1) to the temporal frequency domain
becomes

� · ∇ Î (x,�, s) + (μt + s/c )̂I (x,�, s)

= μs

∫
S2

f (� · �′ )̂I (x,�′, s) d�′ + δ(x)Q(�). (17)

The second-order moment X̂n(s) belonging to the fluence
�̂n(x, s) in Laplace space can be directly obtained from the
previous section because the results in the steady-state domain
are also valid for a complex-valued absorption. Therefore, we
have the representation

X̂n(s) =
{

2μn
s

(μt +s/c)n+3

[
1 + n

1−g − g2 1−gn

(1−g)2

]
, g ∈ [−1, 1),

(n + 1)(n + 2) μn
s

(μt +s/c)n+3 , g = 1.

(18)
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To invert the Laplace transform we note on the relation L−1{n!/(s + a)n+1}(t ) = t ne−at [22], yielding in the time
domain

Xn(t ) =
{

2cμn
s

(n+2)!

[
1 + n

1−g − g2 1−gn

(1−g)2

]
(ct )n+2e−μt ct , g ∈ [−1, 1),

cμn
s

(ct )n+2

n! e−μt ct , g = 1.
(19)

The summation with respect to the scattering order gives

∞∑
n=0

Xn(t ) =
{

2c μ′
sct−1+e−μ′

sct

(μ′
s )2 e−μact , g ∈ [−1, 1),

c(ct )2e−μact , g = 1.

The time-dependent MDS for the nth scattering event is obtained via normalization according to

〈r2(t )〉n := Xn(t )

Mn(t )
=

{ 2(ct )2

(n+1)(n+2)

[
1 + n

1−g − g2 1−gn

(1−g)2

]
, g ∈ [−1, 1),

(ct )2, g = 1,
(20)

where we used Mn(t ) = L−1{μn
s /(μt + s/c)n+1}(t ) = cμn

s (ct )ne−μt ct/n!. The MSD after an infinity number of scattering events
becomes

〈r2(t )〉 =
∑∞

n=0 Xn(t )∑∞
n=0 Mn(t )

=
{

2 μ′
sct−1+e−μ′

sct

(μ′
s )2 , g ∈ [−1, 1),

(ct )2, g = 1.
(21)

In the case of g ∈ [−1, 1), one obtains 〈r2(t )〉 ≈ 2ct/μ′
s as t 
 μ′

sc, which is in accordance with the well-known linear
relationship from the diffusion theory [10]. For small time values t � μ′

sc one obtains 〈r2(t )〉 ≈ (ct )2 as expected for the
ballistic regime. We note that Eq. (21) for g = 0 was already derived by Langevin for the special case of a random force [11],
which corresponds to isotropic scattering in the framework of radiative transport theory.

In view of applications, another important aspect is the consideration of fluorescent phenomena. The associated RTE for
describing the fluorescence photon migration in Fourier space is given by

μteÎe(k,�) + ik · �Îe(k,�) = μse

∫
S2

fe(� · �′ )̂Ie(k,�′) d�′ + μa

4π
�̂(k), (22)

where the subscript e refers to the emission wavelength and �̂

is the transformed fluence at the excitation wavelength caused
by the anisotropic point source of Eq. (1). The correspond-
ing second-order moment and the MSD can be derived in a
similar way as shown above. The application of the Laplace
operator on both sides of Eq. (22) leads for k = 0 and after
the integration over the unit sphere to

μae��̂e(0) + 2i div Ĵe(0) = μa��̂(0). (23)

In accordance with the derivations outlined above, we can
deduce the following continuity equation at the emission
wavelength:

μ′
te div Ĵe(0) + i�̂e(0) = μa

4π

∫
S2

� · ∇�̂(0) d� = 0,

where μ′
te = μae + (1 − ge)μse and ge ∈ [−1, 1] being the

anisotropy factor of the normalized phase function fe. From
Eq. (22), we find �̂e(0) = μa�̂(0)/μae = 1/μae. In addi-
tion, the second-order moment X = −��̂(0) = 2/(μ2

aμ
′
t ) is

known from Eq. (14). Defining Xe := −��̂e(0) and inserting
div Ĵe(0) = −i/(μaeμ

′
te) into Eq. (23) results in

Xe = 2

μaμae[μa + μs(1 − g)]
+ 2

μ2
ae[μae + μse(1 − ge)]

.

(24)

The corresponding MSD at the excitation wavelength follows
via normalization under the use of Me := 1/μae, yielding

〈r2〉e := Xe

Me
= 2

μa[μa+μs(1 − g)]
+ 2

μae[μae+μse(1 − ge)]
.

This result was proved for the restricted case of the iso-delta
scattering phase function [15]. In addition, the second-order
moment (24) can be extended to the temporal frequency do-
main to reconstruct the time-resolved MSD.

III. ILLUSTRATION AND VERIFICATION

In this section, the derived formulas for the second-order
moment and the MSD are verified and illustrated by compar-
isons with a home-made Monte Carlo code [15]. The Monte
Carlo method simulates the photons’ paths through the scat-
tering and absorbing medium and delivers in the limit of an
infinitely large number of simulated photons exact solutions
of the radiative transport theory. We start with the MSD in
the steady-state domain that is given by Eq. (15). Figure 1
displays the analytical solution (solid line) and the data from
the MC method (open circles) as a function of the scattering
order. The optical properties are set to μa = 0.1 mm−1 and
μ′

s = 0.4 mm−1. In view of the scattering phase function we
consider the Henyey-Greenstein function with g = 0.2.

For the next comparison, we take into account the second-
order moment (19) in the time domain. The absorption
coefficient and the reduced scattering coefficient are, respec-
tively, given by μa = 0.01 mm−1 and μ′

s = 0.9 mm−1. The
anisotropy factor of the Henyey-Greenstein phase function is
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FIG. 1. MSD 〈r2〉n of the steady-state fluence �n(x) as function
of the scattering order.

set to g = 0.8. Figure 2 illustrates the analytical solution (solid
lines) and the data predicted by the MC method (open circles)
for two different scattering orders. Both solution approaches
deliver within the statistical uncertainty of the MC method the
same results.

Next, we use the same optical properties as for the last
comparison to verify the time-dependent MSD (20). Figure 3
depicts the analytical solution (solid lines) and the MC data
(open circles) for two different scattering orders. In accor-
dance with the previous comparison, we obtain within the
stochastic nature of the MC simulation an excellent agree-
ment.

IV. DISCUSSION

In this article, we derived the exact second-order moment
and the MSD for the transport theory fluence in the steady
state and time domain as a function of the number of scattering
events. In this context, we reduced the problem to a linear
second-order difference equation that can be solved similarly
to an ordinary differential equation. The resulting formulas,
which are general in view of the anisotropic point source
and the rotationally invariant scattering phase function, were
compared with Monte Carlo simulations, showing within the
stochastic nature of the Monte Carlo method a good agree-
ment.

FIG. 2. Second-order moment Xn(t ) of the time-dependent flu-
ence �n(x, t ) for two different scattering orders.

FIG. 3. MSD 〈r2(t )〉n of the time-dependent fluence �n(x, t ) for
two different scattering orders.

The formulas for the MSD averaged over all scattering
interactions were derived already in the literature, both in
the steady state and time domain. However, as discussed
above, the derivation was performed only for very restricted
cases. Our derivation based on transport theory considering
the general case of arbitrary rotationally invariant scattering
phase functions including absorption shows that these equa-
tions have a much broader validity. Thus, we showed that the
applicability of the well-known formulas reported by Einstein
and Langevin are much larger compared to the restricted cases
they were derived for. Further, the formula for the MSD ver-
sus the collision number also has important applications. For
example, when light is propagating through random media
which consist of moving particles, then, at each scattering
event, the light frequency is shifted and, as a consequence, the
total frequency shift depends on the number of interactions.
The same argumentation holds true for Raman scattering.
Furthermore, the MSD for fluorescence light depends on the
interaction number, at which the fluorescence photon is gen-
erated. In view of the fluorescence, we additionally derived
the second-order moment and the MSD in the steady-state
domain. It should be noted that the steady-state formula for
the MSD as a function of the number of scattering interac-
tions was presented in the literature only for a restricted case,
whereas the corresponding equation in the time domain could
not be found in the literature. We additionally note that the
MSD in the time domain depends not only on the product μsc,
but also on μs, see Eq. (21). Thus, if the time-resolved MSD
is experimentally accessible, it is possible to derive both the
effective scattering coefficient and the particle velocity in the
considered medium applying the derived formula. Contrarily,
in the often-used limiting value of this equation for long times
it is only possible to derive the combination μs/c of both
quantities, which is proportional to the diffusion coefficient.
In addtion to the physical applications of the MSD, the derived
expressions are also usable and important for the verification
of MC methods [23].
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