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Effects of a three-level laser on mechanical squeezing in a doubly resonant
optomechanical cavity coupled to biased noise fluctuations
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We address the behavior of squeezing in two movable mirrors coupled to a pumped correlated emission laser
inside a doubly resonant optomechanical driven cavity in the presence of biased noise fluctuations. Aiming at
generating controllable and robust mechanical squeezing that can be utilized in making the quantum features
of radiation in the cavity accessible for application, we explore mechanical squeezing that can be induced as a
result of the transfer of coherent superposition. We found that a coupled mechanical oscillator mode exhibits
squeezing in the good cavity limit and adiabatic regime. It is also shown that the degree of mechanical squeezing
is robust for large amplitudes of atomic pumping until maximum squeezing is achieved but weakens afterwards.
The squeezing turns out to be powerful mainly for strong atom-field coupling, large atomic injection rates,
and intense biased noise fluctuations. In light of the observed possibility of controlling the realizable degree of
squeezing, we hope and expect that the considered system could be employed in applications such as quantum
metrology.
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I. INTRODUCTION

There has been considerable interest in the study of the
nonclassical behaviors of massive mechanical oscillators in
cavity optomechanics (COM) where the radiation pressure
force that emanates from the light carrying momentum cou-
ples the electromagnetic field and the mechanical oscillator
[1–3]. In this respect, many projects of COM have been
formulated and experimentally demonstrated [1,2,4–6] as in
cooling the mechanical resonators to near their quantum
ground states and entangling the mechanical modes [7–11].
Quantum fluctuations using optomechanical methods have
also been employed in generating the squeezed states of the
optical and mechanical modes [12–15]. It is a well-established
fact that mechanical squeezing, which is one of the key macro-
scopic quantum effects, can be used for many applications
such as improved precision of quantum metrology [16], mea-
surement of weak classical force [2], biological measurements
[17], and quantum-to-classical transitions [18,19].

Several schemes have been proposed to generate mechan-
ical squeezing in resonators based on parametric processes,
feedback, measurements, and quantum-reservoir engineering
[16,20–29]. In an optomechanical cavity where a movable
mirror in its steady state can be regarded as a low-noise Kerr
nonlinear medium [28], experimental realizations of squeez-
ing in optical fields [13,16] and mechanical modes [29] have
been witnessed. Hybrid optomechanical systems that include
atoms have also been proposed to induce mechanical squeez-
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ing. For instance, many works have used two-level atom(s)
to induce squeezing of the mechanical resonator [30,31]. It
is also found to be interesting to include a correlated emis-
sion laser (CEL), which has been studied extensively and
the emitted radiation is found to exhibit strong squeezing
[32–34]. In light of this, even though two-photon coherence
in a three-level laser is shown to induce entanglement be-
tween the optical mode and movable mirror, and between
two movable mirrors of a doubly resonant cavity [35,36],
in the present paper, we seek to address its effects on the
degree of mechanical squeezing. In the same spirit, impinging
biased noise fluctuations, which can be introduced externally
as discussed in Ref. [37] in the form of a squeezed reservoir or
an optical feedback loop [38–41], on the walls of the cavity is
expected to lead to correlated vibrations that have a potential
to enhance atomic coherence due to the phase sensitivity of
the cascade transitions.

Since a scheme that generates robust and controllable me-
chanical squeezing is highly sought for, we intend to explore
the extent to which the manipulation of the characteristics of
CEL and biased noise fluctuations helps in controlling the
degree of squeezing of coupled mechanical oscillators. It is
also of significant interest to make the quantum properties
of the radiation in the cavity accessible to the experimenter,
which can be achieved by coherently coupling the radiation
in the cavity with mechanical oscillators via optical radiation
pressure. With this in mind, we propose a mechanism by
which the generated mechanical squeezing can be altered via
the coherence of the two-mode radiation produced by CEL
and shared with the two movable mirrors. Particularly, the
three-level atoms in the cascade configuration that initially
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FIG. 1. Schematic representation of a pumped two-mode corre-
lated emission laser coupled to two movable mirrors (M1 and M2),
where the doubly resonant cavity is driven by two external lasers
of frequencies ωL1 and ωL2 via port mirror M3. The cavity radiation
fields with frequencies ω1 and ω2 are filtered by a beam splitter (BS).
The generated radiation modes are coupled to the separate movable
mirrors by radiation pressure.

occupy the lower-energy level and pumped with external light
are assumed to be injected into the cavity. The cavity is also
assumed to be driven by two monochromatic lasers of dif-
ferent wavelengths and coupled to biased noise fluctuations.
Notably, introducing biased noise fluctuations turns out to
be vital for witnessing strong mechanical squeezing at low
driving power since the noise in one of the quadratures of
the mechanical modes can be suppressed due to the vibrations
resulting from external bias.

To achieve the intended goal, we find it necessary to con-
struct the interaction Hamiltonian that describes the system.
Once the Hamiltonian is known, the corresponding master
equation is derived confining to a linear analysis and good
cavity limit. Afterwards, with the aid of the derived mas-
ter equation for two-mode fields and mechanical oscillators,
we obtain the quantum Langevin equations in the adiabatic
regime from which the covariance matrix is obtained to carry
out the accompanying analysis. In the process, we find that
the mechanical oscillation of the movable mirrors exhibits a
robust degree of squeezing that can be manipulated and con-
trolled by changing the parameters of the correlated emission
laser and the degree of bias of external noise.

II. DYNAMICAL EQUATIONS

A. Interaction Hamiltonian

The system under consideration comprises pumped cas-
cade three-level atoms injected into a doubly resonant
Fabry-Pérot type cavity, two perfectly reflecting movable mir-
rors M1 and M2, a port mirror M3, and a beam splitter (BS)
as shown in Fig. 1 [34,36]. Injected atoms, which are re-
moved after a time longer than the spontaneous emission time,

are presumed to interact nonresonantly with the two cavity
modes of frequencies ω1 and ω2. To establish a coherent
superposition in the upper and lower atomic states, the atoms
are assumed to be driven by a strong coherent laser field of
amplitude χ and frequency ωp. The doubly resonant cavity on
the other hand is driven by two coherent lasers of frequencies
ωL1 and ωL2 . To include the influence of external noise on the
mechanical oscillation, we assume that the resonant cavity is
coupled to biased noise fluctuations [37].

In this setting, the movable mirrors are expected to un-
dergo mechanical oscillation with a nonclassical property
such as squeezing since the emerging coherent correlation can
be transferred to mechanical oscillations. The corresponding
quantum harmonic oscillators could thus be modeled with
their respective thermal baths at equilibrium with tempera-
tures T1 and T2 having the annihilation (creation) operator of
each vibrational mode b̂ j (b̂†

j) satisfying the relation [b̂ j, b̂†
j] =

1 with j = 1, 2.
For such a system, the Hamiltonian of the system in the

interaction picture can be obtained under the rotating-wave
approximation, dipole approximation, and applying the fact
that σ̂aa + σ̂bb + σ̂cc = 1. In this regard, we use the transfor-
mation eiĤ0t Ĥse−iĤ0t with

Ĥ0 = h̄(�1 + �2)σ̂aa + h̄�2σ̂bb + h̄�1â†
1â1 + h̄�2â†

2â2,

(1)

Ĥs = h̄(ξ1 + ξ2)σ̂aa + h̄ξ2σ̂bb + h̄δω1â†
1â1 + h̄δω2â†

2â2

+ ih̄g1(σ̂abâ1 − â†
1σ̂ba) + ih̄g2(σ̂bcâ2 − â†

2σ̂cb)

+ ih̄
χ

2
(e−iωpt σ̂ac − H.c.) + ih̄

2∑
k=1

(εkâ†
ke−iωLk t − H.c.)

+ h̄
2∑

k=1

[ωmk b̂†
kb̂k + G0k â†

k âk (b̂†
k + b̂k )]. (2)

In addition, the total interaction Hamiltonian in the atom-field
and field-mirror interactions can be expressed as Ĥ = Ĥ (a f )

I +
Ĥ ( f m)

I with [5,34,36]

Ĥa f
I = h̄(ξ1 + ξ2)σ̂aa + h̄ξ2σ̂bb + ih̄

χ

2
(σ̂ac − σ̂ca)

+ ih̄g1(σ̂abâ1 − â†
1σ̂ba) + ih̄g2(σ̂bcâ2 − â†

2σ̂cb), (3)

Ĥ f m
I = h̄

2∑
j=1

[δω j â
†
j â j + i(ε j â

†
j e

iδω j t − ε∗
j â je

−iδω j t )]

+ h̄
2∑

j=1

[ωmj b̂
†
j b̂ j + G0 j â

†
j â j (b̂

†
j + b̂ j )], (4)

where the atomic operators σ̂kk = |k〉〈k| for (k = a, b, c) are
denoted by σ̂ab = |a〉〈b|, σ̂bc = |b〉〈c|, and σ̂ac = |a〉〈c| with
the frequency of the kth atomic states being ωk . In addi-
tion, g1 (g2) is the coupling strength between the transitions
|a〉 → |b〉 (|b〉 → |c〉) and the annihilation (creation) operator
â j (â†

j ) stands for the jth cavity mode. The optomechanical
coupling strength between the mechanical and cavity fields is

053502-2



EFFECTS OF A THREE-LEVEL LASER ON MECHANICAL … PHYSICAL REVIEW A 105, 053502 (2022)

G0 j = ω j

L j

√
h̄

m jωm j
and the amplitudes of the lasers that drive

the doubly resonant cavity are |ε j | =
√

κ j Pj

h̄ωL j
with ωmj , Lj ,

mj , κ j , Pj , and ωL j being the mechanical frequencies, the
length of the cavities, the masses of movable mirrors, the
damping rates of the cavities, the power of lasers driving
the cavity, and the frequencies of the pump lasers, respec-
tively. In the same way, the mechanical quality factors are
defined as Qj = ωmj /γmj with j = 1, 2. It is also denoted
that ξ1 = ωab − �1, ξ2 = ωbc − �2 with ωab = ωa − ωb and
ωbc = ωb − ωc being the frequencies for the |a〉 → |b〉 and
|b〉 → |c〉 transitions. Notably, � j = ω j − δω j indicates the
shifted cavity frequency and δω j = G0 j 〈b̂†

j + b̂ j〉 shows the
frequency shift due to radiation pressure while δ j = � j − ωL j

and the two-photon resonance is ωp = �1 + �2.

B. Master equation

To derive the master equation corresponding to the two-
mode laser in the cavity, we mainly opt to apply the approach
introduced to study CEL [34,36]. Here, we consider the case
when all the atoms are initially made to occupy the lower-
energy level [42]. On the other hand, quantum state transfer
from the two-mode cavity field to the mechanical modes
can be achieved in the adiabatic regime under the condi-
tion that epitomizes mirrors with a high Q factor in which
the mechanical baths are considered as Markovian [43] in
the regime of weak effective optomechanical coupling, that
is, the cavity decay rates are very much larger than the me-
chanical decay rates κ j � γmj [36,44]. The Markovian master
equation for an open quantum harmonic mechanical oscillator
in the microscale can be derived from effective environmental
models of bosonic oscillators at low temperatures [45–49]. In
this respect, by weakening the demand on the the equilibrium
state as a well-defined positive Markovian and translation-
ally invariant, the dynamics describing damping can be
achieved [50].

Following these works, we obtain the master equation for
the cavity modes coupled to a biased noise fluctuation as in
Ref. [36] (the proof can be found in Appendix A), while the
two oscillating mirrors are being coupled to their respective
thermal environments, as

d

dt
ρ̂(t ) = α11(ρ̂â1â†

1 − â†
1ρ̂â1) + α∗

11(â1â†
1ρ̂ − â†

1ρ̂â1)

+ α22(â2ρ̂â†
2 − â†

2â2ρ̂ ) + α∗
22(â2ρ̂â†

2 − ρ̂â†
2â2)

+ α12(ρ̂â†
2â†

1 − â†
1ρ̂â†

2) + α∗
12(â1â2ρ̂ − â2ρ̂â1)

+ α21(â†
1ρ̂â†

2 − â†
2â†

1ρ̂ ) + α∗
21(â2ρ̂â1 − ρ̂â1â2)

+ 1

2

2∑
j=1

k j[(N + 1)(2â j ρ̂â†
j − â†

j â j ρ̂ − ρ̂â†
j â j )

+ N (2â†
j ρ̂â j − â j â

†
j ρ̂ − ρ̂â j â

†
j )]

+
√

k1k2M[2â†
1ρ̂â†

2 + 2â†
2ρ̂â†

1 − â†
1â†

2ρ̂

− â†
2â†

1ρ̂ − ρ̂â†
1â†

2 − ρ̂â†
2â†

1]

+ 1

2

2∑
j=1

γmj [(n j + 1)(2b̂ j ρ̂b̂†
j − b̂†

j b̂ j ρ̂ − ρ̂b̂†
j b̂ j )

+ n j (2b̂†
j ρ̂b̂ j − b̂ j b̂

†
j ρ̂ − ρ̂b̂ j b̂

†
j )]. (5)

The coefficients αi j are given by

α11 = −g2
1ra

F

[
(γbc − iξ2)

Taa

D2
− χ

2

T ∗
ac

D1

]
, (6)

α12 = g1g2ra

F
[
(γbc − iξ2)

Tac

D1
+ χ

2

Tcc

D2

]
, (7)

α22 = g2
2ra

F

[
(γab − iξ1)

Tcc

D2
− χ

2

T ∗
ac

D1

]
, (8)

α21 = −g1g2ra

F
[
(γab − iξ1)

Tac

D1
− χ

2

Taa

D2

]
, (9)

where F = χ4

4 + (γab + iξ1)(γbc − iξ2) and γi j (i �= j) belong
to the dephasing rate. The expressions for Ti j and Di are
provided in Appendix A.

Note that κ j and γmj account for damping of the cavity
modes coupled to biased noise fluctuations and the damping
rates of the mechanical oscillators coupled to thermal baths at
temperatures T1 and T2 and the corresponding thermal phonon
numbers n1 and n2 [51]. In the same spirit, the mean photon
number and the correlation between the two-mode biased
noise fluctuations are accounted for by N and |M|, where
|M|2 = N (N + 1).

III. LINEARIZED SOLUTION

A. Linearization of quantum Langevin equations

To analyze the mechanical squeezing, it appears more suit-
able to apply the quantum Langevin approach in which the
master equation is applied to determine the quantum Langevin
equation for the atom-cavity mode and optomechanical sys-
tem separately. This procedure is justified in the regime where
the atom-field coupling turns out to be much stronger than
the optomechanical coupling. With the aid of the master
equation (5), the field-mirror interaction Hamiltonian (4), and
making use of the general relation 〈 ˙̂Z〉 = Tr( ˙̂ρẐ ), the nonlin-
ear quantum Langevin equations are obtained as [52]

dâ j (t )

dt
= −

(
k j

2
+ α j j + iδω j

)
â j (t ) − α jk â†

k (t )

− iG0 j â j (b̂
†
j + b̂ j ) + ε je

iδ j t + F̂j, (10)

db̂ j (t )

dt
= −

(γmj

2
+ iωmj

)
b̂ j (t ) − iG0 j â

†
j â j + √

γmj f̂ j . (11)

The noise operator F̂j is due to the coupling of biased noise
fluctuation with the cavity modes, whereas f̂ j stands for the
noise operator corresponding to a thermal reservoir coupled
to a mechanical oscillator (see Appendix B for correlations
between noise operators).

The analysis of the quantum dynamics of the whole sys-
tem is not trivial since the nonlinear nature of the radiation
pressure makes it intractable to get the rigorous analytical
solutions of Eqs. (10) and (11). To overcome this difficulty,
we adopt the linearization approach as discussed in Ref. [51].
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In light of this, a reasonable optomechanical interaction can
be achieved when the cavity is intensely driven by strong
power lasers [28]. In addition, the optimal transfer of quantum
properties from the two cavity fields to the mechanical modes
can be achieved in an adiabatic regime [44].

The steady-state mean value of each bosonic operator is
thus taken to be larger when compared to the correspond-
ing quantum fluctuation: |〈â j〉| = |a jss | � |δâ j | and |〈b̂ j〉| =
|b jss | � |δb̂ j | for j = 1, 2. We thus consider the dynamics
of small fluctuations around the steady state of the system
by decomposing each operator into two parts, the sum of its
average operator in the steady state and a small fluctuation
operator with zero mean value 〈δâ j〉 = 〈δb̂ j〉 = 0 as

â j = 〈a〉 jss + δâ j, b̂ j = 〈b〉 jss + δb̂ j, (12)

where the mean operator values 〈a〉 jss and 〈b〉 jss are complex
numbers and can be evaluated by setting the time derivatives
to zero and factorizing the averages in Eqs. (10) and (11).

In using a transformed frame defined by ã j = â je−iδ j t and
Eq. (12), one may see that the equations for both fluctuations
and c-number steady-state values have a coupling between
the two cavity modes (terms proportional to α12 and α21)
that contain highly oscillating factor e−(δ1+δ2 )t . One can still
obtain solutions for 〈ã j〉 in the steady state that amount to
dropping the highly oscillating terms completely or choosing
a condition such that δ2 = −δ1 and retaining the coupling
terms. In the regime of the rotating-wave approximation, one
can verify that

〈ã j〉 = ε j
κ j

2 + α j j − i j
, (13)

〈b̂†
j + b̂ j〉 = −2ωmj G0 j 〈ã†

j ã j〉
γ 2

m j

4 + ω2
mj

, (14)

where  j = ωL j − ω j − G0 j 〈b̂†
j + b̂ j〉 denote the cavity mode

detunings.
Afterwards, upon introducing the slowly varying fluctu-

ation operators δâ(t ) = δã(t ) eiδ j t and δb̂(t ) = δb̃(t ) e−iωm j t

into Eqs. (10) and (11), the dynamics of the linearized quan-
tum Langevin equations for the fluctuation modes can be
written as [51]

d

dt
(δâ j ) = −

(
κ ′

j

2
− i j

)
δâ j − α jk δâ†

k + F̂j

− iG0 j 〈ã j〉(δb̃†
je

i(δ j+ωm j )t + δb̃ je
i(δ j−ωm j )t ), (15)

d

dt
(δb̃ j ) = −γmj

2
δb̃ j − iG0 j 〈ã†

j〉δâ j e−i(δ j−ωm j )t

− iG0 j 〈ã j〉δâ†
j ei(δ j+ωm j )t + √

γmj f̃ j, (16)

with κ ′
j = κ j + 2α j j , f̃ j = f̂ j eiωm j t , and F̃j = F̂j e−iδ j t . It

might not be difficult to verify that the operators δâ j and δb̂ j

satisfy the usual boson commutation relations.
Since no rotating-wave approximation has been made in

the fluctuation equations, the coupling terms (proportional to
α12 and α21) induced by the two-photon coherence are kept.
For optomechanical coupling, when δ j = ωmj , the interaction
describes parametric amplification and can be used to realize
optomechanical squeezing [5], whereas when δ j = −ωmj , the

interaction is relevant in inducing quantum state transfer and
cooling [5,36,44,53].

In this work, since we are interested in transferring the
squeezing of the cavity fields to the mechanical modes, we
take δ j = −ωmj . We also choose ωL j ≈ ω j + G0 j 〈b̂†

j + b̂ j〉 so
that α j j and α jk are real. Upon carrying out an adiabatic
approximation of Eq. (15), we obtain coupled Langevin equa-
tions for mechanical oscillators δb̃ j ,

δ ˙̃b1 = − �1

2
δb̃1 − G12δb̃†

2 − c1F̂ †
1 + c2F̂2 + √

γm1 f̃1, (17)

δ ˙̃b2 = − �2

2
δb̃2 − G21δb̃†

1 + d1F̂1 − d2F̂ †
2 + √

γm2 f̃2, (18)

where �1 = γm1 − �b1 , �2 = γm2 − �b2 with �b1 = 4G1G∗
1κ

′
2

K ,

�b2 = 4G2G∗
2κ

′
1

K in which K = κ ′
1κ

′
2 − 4α12α21 denotes the ef-

fective damping rates for the mechanical modes induced
by the radiation pressures. In the same way, G12 = 4G1G2α

∗
12

K

and G21 = 4G1G2α
∗
21

K are effectively coupled between the two
mechanical modes induced by the laser system, whereas
c1 = 2G1κ

′
2

K , c2 = 4G1α
∗
12

K , d1 = 4G2α
∗
21

K , and d2 = 2G2κ
′
1

K in which
many-photon coupling is denoted by Gj = iG0 j 〈ã j〉.

B. Steady-state covariance matrix

To analyze quantum correlations between the mechani-
cal modes, we use quadrature operators defined as δH̃j =

1√
2
(δb̃†

j + δb̃ j ) and δL̃ j = i√
2
(δb̃†

j − δb̃ j ). The corresponding

Hermitian input noise operators are δH̃ in
j = 1√

2
(F̃ †

b j
+ F̃b j ) and

δL̃in
j = i√

2
(F̃ †

b j
− F̃b j ), where F̃b1 = −c1F̂ †

1 + c2F̂2 + √
γm1 f̃1

and F̃b2 = d1F̂1 − d2F̂ †
2 + √

γm2 f̃2.
Once the expressions for these fluctuation operators are

attained, we can write a matrix equation of the form

Ṙ(t ) = AR(t ) + v(t ), (19)

where R(t ) = (δH̃1, δL̃1, δH̃2, δL̃2)T , v(t ) =
(δĤ in

1 , δL̂in
1 , δĤ in

2 , δL̂in
2 )T ,

A =

⎛
⎜⎜⎝

−�1
2 0 −G12 0

0 −�1
2 0 G12

−G21 0 −�2
2 0

0 G21 0 −�2
2

⎞
⎟⎟⎠,

which epitomizes the coupling between the fluctuations and
vector v(t ) that contains the noise operators of both cavity and
mirrors.

We then attempt to find a stable solution for Eq. (19) so that
it attains unique steady-state-independent initial conditions.
Since the quantum noises F̂j and f̂ j are taken to be zero-
mean Gaussian noises and the dynamics of δH̃j and δL̃ j is
linearized, the steady-state fluctuation becomes a zero-mean
Gaussian state that can be fully characterized by the covari-
ance matrix (CM) of the system. One may note that the system
can reach a stable steady-state condition when real parts of the
eigenvalues of the drift matrix A are all negative. The stability
condition can then be obtained by using the Routh-Hurwitz
criterion [54]. In connection to this, the steady-state CM can
be found by solving the Lyapunov equation [55]

AV + V T A = −D, (20)
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where the elements of CM are defined as Vi j =
〈Ri (∞)Rj (∞)+Rj (∞)Ri (∞)〉

2 and the diffusion matrix (D) with

its entries as Di jδ(t − t ′) = 〈vi (t )v j (t ′ )+v j (t ′ )vi (t )〉
2 . Using the

Routh-Hurwitz criterion, the eigenvalues of matrix A are
negative on condition that �1�2 > 4G12G21, that is, the CM
at steady state satisfies Eq. (20), when

D =

⎛
⎜⎝

B11 0 B13 B14

0 B11 B14 −B13

B13 B14 B33 0
B14 −B13 0 B33

⎞
⎟⎠, (21)

with

B11 = c2
1

[
κ1(2N + 1) − 2α11

2

]
+ γm1

(
2n1 + 1

2

)

− c1c2

[
α12 − α21 − 2

√
κ1κ2(M∗ + M )

2

]

+ c2
2

[
κ2(2N + 1) + 2α22

2

]
, (22)

B13 = c1d1

[
κ1(2N + 1) − 2α11

2

]
+ γm1

(
2n1 + 1

2

)

+ (c1d2 + c2d1)

2

[
α12 − α21 − 2

√
κ1κ2(M∗ + M )

2

]

− c2d2

[
κ2(2N + 1) + 2α22

2

]
, (23)

B14 = i
(c2d1 − c1d2)

2

[
α21 − α12 − 2

√
κ1κ2(M∗ − M )

2

]
,

(24)

B33 = d2
1

[
κ1(2N + 1) − 2α11

2

]
+ γm2

(
2n2 + 1

2

)

− d1d2

[
α12 − α21 − 2

√
κ1κ2(M∗ + M )

2

]

+ d2
2

[
κ2(2N + 1) + 2α22

2

]
. (25)

IV. MECHANICAL SQUEEZING

The squeezing properties of two-mode mechanical quan-
tum fluctuations can be defined by

δC+ = 1√
2

(δb̃1+ + δb̃2+ ), (26)

δC− = 1√
2

(δb̃1− + δb̃2− ), (27)

where δb̃1+ = (δb̃1 + δb̃†
1), δb̃1− = i(δb̃†

1 − δb̃1), δb̃2+ =
(δb̃2 + δb̃†

2), and δb̃2− = i(δb̃†
2 − δb̃2). The operators δC+

and δC− are Hermitian and satisfy the commutation relation
[δC+, δC−] = 2i. It might be worth noting that a two-mode
Gaussian state is said to be in a squeezed state if the variances
of the quadrature fluctuation operators are (δC+)2 < 1
and (δC−)2 > 1 or (δC−)2 < 1 and (δC+)2 > 1 such
that (δC+)(δC−) � 1 [52]. With this background, the
quadrature variances of the operators δC+ and δC− can be

expressed as

(δC±)2 = 〈δC2
±〉 − 〈δC±〉2. (28)

With the aid of the predefined quantum fluctuation operators
δH̃j , δL̃ j , and Eqs. (26)–(28), we see that the variances of the
quadrature fluctuation operators at steady state take the form

(δC+)2 = 〈δH̃1δH̃1〉 + 〈δH̃1δH̃2〉 + 〈δH̃2δH̃1〉 + 〈δH̃2δH̃2〉,
(29)

(δC−)2 = 〈δL̃1δL̃1〉 + 〈δL̃1δL̃2〉 + 〈δL̃2δL̃1〉 + 〈δL̃2δL̃2〉.
(30)

Applying the elements of the CM from the solution of the
Lyapunov equation for the expectation values in Eqs. (29) and
(30), we obtain the variances of the plus and minus quadra-
tures of mechanical quantum fluctuation operators.

In general, it is perceived that squeezing becomes mini-
mum when the variance of the mechanical quadrature operator
is equal to one and maximum when it is zero, and anything in
between is considered as a degree of squeezing in the sense
that how much it is close to zero. Noting that the mechanical
oscillators in our system were not directly coupled initially,
the two-mode squeezed radiation emitted from cascade atoms
[32,33] is found to be transferred to the quantum harmonically
oscillating mirrors due to the emerging optical radiation pres-
sures, which leads to the enhanced squeezing of the modes of
mechanical oscillations. In particular, the effect of the ampli-
tude of the atomic pumping laser (χ ), the atom-field coupling
strength, the rate of atomic injection, atomic decay rates,
and biased noise fluctuation on the mechanical squeezing is
investigated.

To demonstrate the steady-state squeezing behavior of two
mirrors in a doubly resonant cavity when all atoms injected
into cavity are initially at the lower-energy level |ψ (0)〉 = |c〉,
we choose the parameters of two mirrors and two cavity
radiations based on recent experiments for an optomechani-
cal system [56,57]: The atom-cavity coupling constants g1 =
g2 = g = 5.0π MHz, mechanical damping constants γm1 =
γm2 = 2π × 60 Hz, angular frequency of the mechanical os-
cillators ωm1 = ωm2 = 6π MHz, masses of the mechanical
oscillator m1 = m2 = 5 ng, the initial length of the cavi-
ties L1 = 1.064 mm, L2 = 0.810 mm, the powers of light
driving the cavity P1 = P2 = 5.5127 μW, and the thermal
bath temperatures to the mechanical oscillators T1 = T2 =
5.80 mK. We also take other theoretical parameters, for in-
stance, the cavity damping constants κ1 = 1.97 kHz, κ2 =
2.59 kHz, angular frequency of the atomic levels ωa =
63.271 GHz, ωb = 43.271 GHz, ωc = 25.555 GHz, the rates
of injection ra = 0.35 MHz, atomic emission rates (de-
phasing and spontaneous) γa = γb = γc = γab = γbc = γac =
γ = 11.50 MHz, and the biased noise fluctuation photon num-
ber N = 1.

As one can see from Figs. 2–5, the quantum fluctuations of
the two coupled movable mirrors are squeezed at the steady
state for a wide range of χ due to the transferred quantum
state from the cavity fields. It can also be seen that the degree
of squeezing in the coupled oscillating mirrors increases with
an increase in χ to the extent where the degree of squeezing
becomes maximum. One can particularly notice in Fig. 2
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FIG. 2. Plots of the steady-state quadrature variance of the
two-mode mechanical oscillators (δC+)2 against χ

γ
at the given

parameters for different atom-field coupling strengths g1 = g2 = g =
5.0π MHz (blue dotted curve), g = 4.0π MHz (brown dashed curve),
g = 3.0π MHz (black solid curve), and g = 0 (red dashed-dotted
curve).

that the degree of mechanical squeezing is enhanced with
increased atom-field coupling strength. It is also revealed (see
data in Table I) that there is a threshold coupling between the
atoms and the fields above which the mechanical squeezing
would not be manifested. On the other hand, the mechanical
squeezing can survive even at greater atom-field coupling
strength in the case where the power of the laser driving the
cavity is increased. Markedly, appropriate coupling between
the atoms and cavity needs to be used to witness a meaningful
degree of mechanical squeezing. One can also see from Fig. 3
that the degree of mechanical squeezing increases with the
rate at which the atoms are injected into the cavity. The out-
come that indicates the effect of the rate at which the atoms are
injected into the cavity in enhancing the degree of mechanical
squeezing of coupled mirrors may provide better control over
mechanical squeezing in relation to the number of atoms in
the cavity during interactions.

We also explore the effect of biased noise fluctuations on
the degree of mechanical squeezing. From this study, it is pos-
sible to observe that the presence of biased noise fluctuation
is crucial for the mechanical squeezing to exist under certain
conditions since its effect looks much better transferred to the
mechanical oscillators. With this understanding, one may see
from Fig. 4 that the degree of mechanical squeezing increases
with the strength of biased noise fluctuations. A very weak

TABLE I. Numerical value of the degree of mechanical squeez-
ing from Fig. 2 for different values of atom-field coupling strength.

Atom-field coupling Squeezing Occurs
strength (MHz) (below shot noise) at ( χ

γ
)

g = 5π 78.10% 4.13
g = 4π 74.68% 4.13
g = 3π 72.06% 4.13
g = 0 68.75% [0.01, 10]

FIG. 3. Plots of the steady-state quadrature variance of the
two-mode mechanical oscillators (δC+)2 against χ

γ
at the given

parameters for different rates of atomic injection ra = 0.35 MHz
(blue dashed curve), ra = 0.25 MHz (black solid curve), and ra =
0.15 MHz (red dashed-dotted curve).

degree of two-mode mechanical squeezing is found to exist
even in the absence of biased noise fluctuations (N = 0) when
the power of lasers driving the cavity is high (551 mW) and
the atom-field coupling strength gets weak (2π MHz). This
entails that the squeezing of mechanical oscillation can also
be controlled via external biased fluctuation input. To see the
situation more closely, we also studied the dependence of
the degree of mechanical squeezing on the atomic damping
rate. As shown in Fig. 5, the degree of mechanical squeezing
increases almost in the same manner for different atomic
damping rates up to the point where the degree of squeezing
becomes maximum. This result may reveal the effect of the
atomic decay rates in increasing the degree of squeezing of
coupled oscillating mirrors with regards to how rapidly the
atoms are removed from the lower-energy level.

FIG. 4. Plots of the steady-state quadrature variance of the
two-mode mechanical oscillators (δC+)2 against χ

γ
at the given

parameters for different biased noise photon numbers N = 1.00 (blue
dashed curve), N = 0.75 (black solid curve), and N = 0.50 (red
dashed-dotted curve).
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FIG. 5. Plots of the steady-state quadrature variance of the
two-mode mechanical oscillators (δC+)2 against χ

γ
at the given

parameters for different atomic decay rates (assuming that the spon-
taneous and stimulated emission rates are the same) γ = 11.50 MHz
(blue dotted curve), γ = 13.00 MHz (black dashed curve), and γ =
14.50 MHz (red solid curve).

V. CONCLUSION

We studied the degree of squeezing in mechanical oscilla-
tors coupled to two-mode CEL via optical radiation pressures
in a doubly resonant optomechanical cavity where the external
biased noise fluctuations are coupled to the two-mode radia-
tion. We analyzed the squeezing of the movable mirrors by
using the intermode correlation induced by the two-photon
coherence in CEL under the good cavity limit and an adiabatic
regime for some realistic parameters. Mechanical squeezing
persists in a wide range of amplitudes of the atomic pump-
ing laser. Particularly, an enhanced degree of mechanical
squeezing is realized for strong atom-field coupling, a large
atomic injection rate, and intense biased noise fluctuations.
Due to externally induced correlated vibrations, it turns out
that mechanical squeezing exists as long as there are biased
noise fluctuations. The degree of mechanical squeezing is also
found to increase almost equally for different atomic emission
rates until a maximum degree of squeezing is reached.

With the observed flexibility and diversity in controlling
the degree by which the squeezing in the cavity radiation
can be transferred to the modes of mechanical oscillators, we
hope that this scheme can be useful in making the quantum
properties in the cavity available for application. So if the
technique of transferring coherence superposition from CEL
to the oscillation of the mirrors could be properly established,
as we intend to do in forthcoming work, it could have a poten-
tial to overcome the hurdle of making the quantum properties
generated in the cavity mechanism accessible. We then come
to understanding that this work could lead to further scrutiny
in inducing other nonclassical correlations between mechan-
ical oscillators such as entanglement, quantum discord, and
steering. It could also serve in designing a scheme that can
mechanically mimic the underlying quantum features of the
radiation, which might be useful in enhancing the deeper
understanding of quantum phenomena.

APPENDIX A: DERIVATION OF THE MASTER EQUATION

To derive the master equation for two-mode fields, we
suppose that ρAR(t, t j ) is the density operator for the cavity
modes at time t , whereas the atom injected at a rate ra in an
earlier time t j and leaves the cavity after time τ , and hence
t − τ � t j � t . The density operator for the atoms in the
cavity plus the two-mode cavity field at time t can be written
as ρAR(t ) ≡ ra

∑
j ρAR(t, t j )t j , where rat j represents the

number of atoms injected into cavity in a small time interval
t j . At the continuum limit, with the aid of the Leibnitz rule
along with the assumption that the atomic and cavity mode
states are uncorrelated at the time the atoms are injected into
the cavity and when they are removed, one can write

ρ̇AR(t ) = ra[ρA(0) − ρA(t, t − τ )]ρ(t ) − i

h̄

[
Ĥa f

I , ρAR(t )
]
.

(A1)

Then, upon carrying out trace operations, we obtain

d

dt
ρ̂(t ) = g1(â1ρba − ρbaâ1 − â†

1ρab + ρabâ†
1)

+ g2(â2ρcb − ρcbâ2 − â†
2ρbc + ρbcâ†

2), (A2)

where the density operator elements ρmn = 〈m|ρ̂AR|n〉 with
(m, n = a, b, c), and their complex conjugates for m �= n that
appear in Eq. (A2) can be acquired by multiplying Eq. (A1)
from the left by 〈m| and the right by |n〉. In addition, assuming
that the atom decays to energy levels other than lasing levels
when it leaves the cavity, we have

ρ̇mn =raρ
(0)
mnρ(t ) − i

h̄
[〈m|[Ĥa f

I , ρ̂AR(t )|n〉] − γmnρ̂mn, (A3)

where the last terms account for the spontaneous emission and
dephasing process. Making use of Eqs. (3) and (A3), we can
then obtain

ρ̇ab = − (γab + iξ1)ρab − g1(ρaaâ1 − â1ρbb)

+ g2ρacâ†
2 + χ

2
ρcb, (A4)

ρ̇bc = −(γbc + iξ2)ρbc − g2(ρbbâ2 − â2ρcc)

− g1â†
1ρac − χ

2
ρba, (A5)

where γab and γbc are dephasing rates for the corresponding
transitions. One may note that other elements of the density
operator can be generated in the same way.

In the present work, we seek to consider the case when
all the atoms are initially made to occupy the lower-energy
level and then pumped by a laser of amplitude χ [32,33].
Afterwards, confining to a linear analysis, an adiabatic regime,
and a good cavity limit, one readily obtains

ρaa = χ

2γa
(ρca + ρac), ρbb = 0,

ρcc = ra

γc
ρ − χ

2γc
(ρca + ρac), (A6)

ρac = χ

2[γac + i(ξ1 + ξ2)]
(ρcc − ρaa),

where γ j is the jth atomic level spontaneous emission decay
rate and γac is the two-photon dephasing rate. Note that the
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good cavity limit is a condition where the cavity damping rate
is much smaller than the spontaneous emission and dephasing
rates of the two photons in atomic coherence. With this aid,
the cavity variables vary more slowly than the atomic ones
where the atomic variables reach the steady state earlier than
the cavity ones, so we can set the time derivatives of the
aforementioned conditioned density operators to zero, thus
being able to solve the system of equations analytically.

Upon using ρac in Eq. (A6) along with its complex conju-
gate, one can then write ρaa, ρcc, and ρac as

ρaa = raρ

D2
Taa, ρcc = raρ

D2
Tcc, ρac = raρ

D1
Tac, (A7)

where

Tcc = 1

2
[2γaD1 + χ2γac], D1 = γ 2

ac + (ξ1 + ξ2)2,

Taa = 1

2
χ2γac, Tac = χ

2D2
[γac − i(ξ1 + ξ2)]

(
Tcc − Taa

)
,

D2 = χ2γac

(
γa + γc

)
2

+ γaγc
[
γ 2

ac + (ξ1 + ξ2)2
]
.

Now, applying the adiabatic approximation to Eqs. (A4)
and (A5), substituting the resulting complex conjugate as re-
quired, and using Eq. (A7) with its conjugates, one can verify
that

g1ρ̂ab = α11ρ̂â1 + α12ρ̂â†
2, (A8)

g2ρ̂bc = α22â2ρ̂ + α21â†
1ρ̂. (A9)

In this context, upon substituting Eqs. (A8) and (A9) along
with their complex conjugates into Eq. (A2), we obtain the
master equation for the cavity modes coupled to biased noise
fluctuations.

APPENDIX B: NOISE CORRELATIONS

For any operators Â and B̂ and their corresponding noise
operators F̂A and F̂B, it follows from Einstein’s relation that

2〈DÂB̂〉 = d

dt
〈ÂB̂〉 − 〈( ˙̂A − F̂A)B̂〉 − 〈Â( ˙̂B − F̂B)〉, (B1)

where 〈DÂB̂〉 is the diffusion coefficient (with Â and B̂ =
â j, b̂ j) for j = 1, 2 [51]. Using this relation, the equations for
second-order moments of the cavity mode operators â j , and

〈F̂Â(t )F̂B̂(t ′)〉 = 2〈DÂB̂〉δ(t − t ′), (B2)

the nonzero correlation properties of the cavity mode noise
operators are found to be

〈F̂ †
1 (t )F̂1(t ′)〉 = [κ1N − 2 Re(α11)]δ(t − t ′), (B3)

〈F̂1(t )F̂ †
1 (t ′)〉 = κ1(N + 1)δ(t − t ′), (B4)

〈
F̂ †

2 (t )F̂2(t ′)
〉 = κ2N δ(t − t ′), (B5)

〈F̂2(t )F̂ †
2 (t ′)〉 = [κ2(N + 1) + 2 Re(α22)]δ(t − t ′), (B6)

〈F̂1(t )F̂2(t ′)〉 = −√
κ1κ2Mδ(t − t ′), (B7)

〈F̂ †
1 (t )F̂ †

2 (t ′)〉 = (α∗
12 − α∗

21 − √
κ1κ2M∗)δ(t − t ′), (B8)

〈F̂2(t )F̂1(t ′)〉 = (α12 − α21 − √
κ1κ2M )δ(t − t ′), (B9)

〈F̂ †
2 (t )F̂ †

1 (t ′)〉 = (α∗
21 − α∗

12 − √
κ1κ2M∗)δ(t − t ′). (B10)

In the same manner, the nonvanishing correlations between
the mechanical noise operators with the aid of Eqs. (4) and
(5) can be written in the form

〈 f̂ †
j (t ) f̂ j (t

′)〉 = n jδ(t − t ′), (B11)

〈 f̂ j (t ) f̂ †
j (t ′)〉 = (n j + 1)δ(t − t ′), (B12)

where n−1
j = e

h̄ωm j
kBTj − 1 is the mean thermal occupation num-

ber, kB is the Boltzmann constant, and Tj is the temperature of
the jth reservoir of the mechanical oscillator.
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