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Inhibition of the phase conjugation of orbital angular momentum superpositions
in cylindrical vector beams during stimulated Brillouin scattering
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Phase conjugation with stimulated Brillouin scattering can be used to correct wave-front aberrations in high-
power laser systems. Here, we consider such a process with cylindrical vector lasers beams. By using a vectorial
approach and a modal decomposition, we obtain a differential matrix equation that enables the calculation of the
structure of Stokes vector eigenmodes and their Brillouin gain. The emphasis is put on the mode with the largest
gain, which contributes the most to the Stokes beam. We show that the phase conjugation of orbital angular
momentum in cylindrical vector beams is prevented from happening almost everywhere on the higher-order
Poincaré sphere. This phenomenon is traced to the tendency of the Stokes beam to acquire a polarization structure
similar to the incident pump beam, which constrains the possible combinations of topological charges of the two
orbital angular momentum modes making up the Stokes cylindrical vector beams. However, near the poles of
the higher-order Poincaré sphere, the Stokes mode with the largest gain acquires an additional helical phase
factor that produces the conjugated topological charge for the stronger circularly polarized component without
affecting the polarization structure. Experimental results are found to agree with our theoretical predictions.
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I. INTRODUCTION

Phase conjugation (PC) in optics is a process whereby
an optical wave, after interacting with a nonlinear medium,
acquires a structure that is the complex conjugate of the inci-
dent wave; namely the amplitude and the polarization state
of the incident wave are replaced by their respective com-
plex conjugate after reflection [1]. PC can be achieved with
various methods such as four-wave mixing [2], stimulated
parametric down conversion [3], and stimulated Brillouin
scattering (SBS) [4,5]. The latter, discovered by Zel’dovich
[6], has found application in high-power laser systems for the
correction of aberrated wave fronts originating from thermal
effects taking place inside the active material [7]. In this
case, the SBS cell is used as a laser mirror which redirects
a phase-conjugate beam into the active material, wherein the
wave-front distortions are compensated after the second pass.
Now, this PC process is an imperfect one because the po-
larization state of the reflected wave is usually the same as
that of the incoming wave for homogeneously polarized laser
beams [4,5]. Hence, reflection with a SBS mirror is generally
considered a scalar PC process, in contrast to vectorial PC
[8–10], which conjugates the polarization state as well.

Now the question arises as to what happens when SBS
takes place with a beam of light having both spatially inho-
mogeneous polarization and phase distributions. Such beams
are called vector beams, a rapidly expanding research topic
that has fueled numerous applications [11–13]. Of particular
interest are rotation-invariant solutions, called cylindrical vec-
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tor beams (CVBs), such as

�u= sin (θ/2) exp (iα)(LG)−1
0 (�r)êL + cos (θ/2)(LG)1

0(�r)êR,

(1)

where (LG)m=±1
p=0 are Laguerre-Gauss modes of radial and az-

imuthal indices p = 0 and m = ±1 with helical wave fronts of
the form exp(±iϕ); êR = 1√

2
(�ex − i�ey) and êL = 1√

2
(�ex + i�ey)

are circular polarization states of opposite handedness.1 CVBs
with high energy have received attention, notably to achieve
large values of longitudinal electromagnetic fields for charge
acceleration [14,15]. Such a beam can also be efficiently am-
plified by SBS [16].

CVB states can be mapped onto a sphere of unit ra-
dius, with polar and azimuthal coordinates θ and α, called
the higher-order Poincaré sphere (HOPS) [17]. Examples
of the structure of a CVB state of Eq. (1) at various locations
of the HOPS are shown in Fig. 1. At the north pole of the
HOPS, θ = 0◦, the polarization is right circular; the eccentric-
ity of the elliptic polarization increases as θ increases along a
line of longitude of the HOPS to reach rectilinear polarization
at the equator (θ = 90◦), and it becomes left-handed at higher
θ values to reach left-circular polarization at the south pole
(θ = 180◦).

Now, the usual prescription used in scalar PC, whereby the
complex conjugate of the phase is taken while the polarization

1We use the same system of coordinates for both the incident
and reflected waves, e.g., an incident exp(imϕ)êR state remains
exp(imϕ)êR after reflection from a classical mirror even though the
reversal of the k vector changes a right-circular into a left-circular
state. We also use the convention exp(−iωt).
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FIG. 1. Diagram of the CVB described by Eq. (1) on the HOPS.
The phase distribution is indicated by the position of the arrow on
each ellipse of polarization at a given time as a function of ϕ.

remains unchanged, is unapplicable for CVBs because the
phase of such beams is affected by both the helical structure of
the wave front and by the changing polarization state along ϕ.
For instance, if the weight of each circularly polarized com-
ponent of the pump beam remains the same after reflection
from a SBS mirror, while the sign of the topological charge is
reversed, then the CVB loses its rotational symmetry and the
polarization ellipse rotates in the opposite direction with ϕ, as
shown in Fig. 2. Indeed, one can show that the phase of a CVB
has contributions from both the helical wave fronts and from
the geometrical phase arising from the changing polarization
state with the azimuthal position ϕ (see the Supplemental Ma-
terial [18]). Therefore, the phase and the polarization states in

FIG. 2. Polarization distribution of (a) pump and (b) hypothet-
ical Stokes beams, assuming that the topological charges change
sign while each circular polarization state remains unchanged at the
reflection, �u[1]

s = sin(θ/2) exp(iϕ)êL + cos(θ/2) exp(−iϕ)êR. This
scenario, where the Stokes CVB changes its polarization structure
in SBS reflection, breaks the rotational symmetry and is not favored
according to our modeling and experimental results.

a CVB are entangled quantities and the pure scalar approach
to describe SBS with such a beam is inadequate.

Vectorial SBS theories do exist. They often have different
meanings or purposes. For instance, there is vectorial PC
with SBS [8,9], wherein a beam having both wave-front and
polarization distortions is split into two separate orthogo-
nally polarized beams that are then focused into a SBS cell
where the two beams overlap. The nonlinear interaction inside
the overlapping region allows the phase of the two beams
to be locked [19]. The combination of the SBS reflected
beams then allows one to achieve vector PC, where both
the wave-front and polarization states are conjugated. Such
experiment can be understood with the scalar theory. Second,
one may analyze the polarization properties of a SBS beam
as a function of the polarization state of the pump beam and
the optical properties of the SBS medium. The behavior of
SBS of inhomogeneously polarized beams in free space was
studied at the early stages of the discovery of this process:
the polarization inhomogeneity was produced randomly by
using birefringent materials of poor optical quality [20] or by
etching such birefringent materials to produce differences in
the optical path in the transverse direction [21]. But the results
obtained cannot readily be transposed to vector beams, which
have a well-defined, deterministic structure in the polarization
distribution. The polarization properties of SBS were also
studied for birefringent single mode fibers [22,23]. However,
since single mode fibers support only one transverse mode,
this modeling needs to be adapted to correctly address the
description of SBS of CVBs and how the modes with different
topological charges are modified (or not) by the nonlinear SBS
interaction.

Here, the problem of the phase conjugation of CVBs,
by virtue of being a superposition of orthogonally polar-
ized orbital angular momentum (OAM) modes, calls for a
modal analysis. Moore and Boyd [24] did use a spatial
mode decomposition approach, but they did so only in the
scalar framework with homogeneously polarized Hermite-
Gauss modes. We report a vectorial analysis that includes a
modal decomposition for the description SBS of CVBs. Our
analysis considers both the inhomogeneous polarization and
the superposition of states of different topological charges
by implementing a modal decomposition within a vectorial
description of SBS. We also show experimental results that
support our theoretical findings.

This paper is structured as follows. In Sec. II, we present
a theory of the SBS process that takes into account the vecto-
rial structure and the modal content of the pump and Stokes
beams. One key point is the fact that the pump and Stokes
beams need not have the same local polarization state, in
contrast to the scalar theory. This affects the gain of the
Stokes wave via the reduced contrast of the density modu-
lation arising from the interference pattern of the pump and
Stokes waves of different polarization states. We use a modal
decomposition of the two beams, with our attention turned to
the azimuthal dependence of the electric field vector of the
CVB. In the undepleted pump approximation, we show that
the SBS interaction only couples OAM beams of topological
charges n and n-2 for the left and right circular polarization
states respectively, via a first-order matrix differential equa-
tion. The eigenvectors of this matrix equation determine the
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mode structure. The mode with the largest eigenvalue has
the highest gain and thus bears particular significance in the
prediction of the experimentally observed beam structure. We
show that the conjugation of the OAM, i.e., the sign reversal
of topological charge m in Eq. (1), of CVBs is prevented from
taking place in most regions of the HOPS. However, near the
poles of the HOPS, where the CVB approaches the structure
of a scalar beam, the Stokes beam is found to acquire a global
helical phase factor of exp(−2iϕ), that does produce the con-
jugated topological charge for the stronger component and
a topological charge of m = −3 for the smaller component
of Eq. (1). The effect of a slight departure from a perfectly
axisymmetric beam is also analyzed. It is shown to lift the
gain degeneracy generally observed for a pump beam with a
pure vortex mode for topological charges m = −1, 0, and 1 of
the Stokes beam, in favor of the conjugated OAM.

In Sec. III, experimental results are shown for a CVB,
represented by Eq. (1), interacting with a Brillouin medium.
Using wave plates and a vortex plate, CVBs are created at
various locations of the HOPS. The topological charge of
each circularly polarized component of the Stokes beam is
separately analyzed using a circular polarizer and a shearing
interferometer. The Stokes beam is found to have the same
topological charge as the pump beam for each circular po-
larization away from the pole; however, as θ approaches 0◦,
the topological charges of left and right circular polarizations
gradually shift from (mleft = −1, mright = 1) to (mleft = 2,
mright = 0) to (mleft = −3, mright = −1), at which point most
of the power is in the right-circular mode and phase conju-
gation of the OAM takes place. Our results agree with our
theoretical model. We wrap up this paper in Sec. IV with a
discussion and a conclusion.

II. THEORY

The theory of SBS with scalar beams is well known [4,5].
We outline it and adapt it to the vectorial nature of our beam.
Then we make a modal decomposition following a procedure
outlined by Moore and Boyd [24]. One starts with the wave
equation for the electric field:

∇2 �E − κ

c2

∂2 �E
∂t2

= 1

ε0c2

∂2 �PNL

∂t2
, (2)

where κ is the dielectric constant and �PNL is a third-order non-
linear polarization term driving the SBS process. We assume
the field is described by two counterpropagating, monochro-
matic pump and Stokes waves with slowly varying envelopes:

�E = �Ep(�r) exp [−i(kz + ωpt )] + �Es(�r) exp [i(kz − ωst )].

(3)

Their interference pattern inside the Brillouin medium pro-
duces, through electrostriction, a density modulation receding
from the pump. The pump wave can be converted into a
Stokes wave by Bragg reflection from the resulting permit-
tivity modulation, thereby reinforcing the interference pattern,
producing the SBS phenomenon. Inserting Eq. (3) into Eq. (2),

and applying the paraxial approximation, i.e.,

�Ep = (Ep,x Ep,y 0)T
, (4a)

�Es = (Es,x Es,y 0)T
, (4b)

∂2 �Ep (s)

∂z2
� k

∂ �Ep (s)

∂z
,

∂2 �Ep (s)

∂z2
� ∂2 �Ep (s)

∂x2
,

∂2 �Ep (s)

∂z2
� ∂2 �Ep (s)

∂y2
, (4c)

and assuming steady state, we obtain

∇2
⊥ �Ep − 2ik

∂ �Ep

∂z
= − ω2

ε0c2
�PNL
−ikz, (5a)

∇2
⊥ �Es + 2ik

∂ �Es

∂z
= − ω2

ε0c2
�PNL
ikz , (5b)

where ωp ≈ ωs = ω, ∇2
⊥ ≡ ∂2

∂x2 + ∂2

∂y2 and �PNL
±ikz are the por-

tions of the nonlinear polarization phase matched to the pump
(−ikz) and Stokes (+ikz) waves. For scalar beams, interfer-
ence terms E∗

p Es and EpE∗
s are responsible for the intensity

modulation; they produce polarization contributions, phase-
matched to the pump and the Stokes waves respectively, given
by [4]

PNL
−ikz = ε0χ

(3)
SBS(E∗

s Ep)Es, (6a)

PNL
ikz = −ε0χ

(3)
SBS(E∗

p Es)Ep. (6b)

Now, for vector beams, the pump and Stokes waves need
not have the same polarization state. In the extreme case where
�Ep and �Es are orthogonally polarized, the density modulation
arising from electrostriction, responsible for SBS, disap-
pears. The modulation terms must be modified to �E∗

p · �Es and
�E∗

s · �Ep, as exposed in Refs. [22,23]. Eqs. (6) become instead

�PNL
−ikz = ε0χSBS

(3)( �E∗
s · �Ep) �Es, (7a)

�PNL
+ikz = −ε0χSBS

(3)( �E∗
p · �Es) �Ep. (7b)

Next, we follow a procedure outlined by Moore and Boyd
[24], where we use a modal decomposition of the pump and
Stokes fields:

�Ep = (∑
j a j (z)Aj (r, ϕ, z)

∑
j a′

j (z)Aj (r, ϕ, z)
)T

, (8a)

�Es = (∑
j b j (z)Bj (r, ϕ, z)

∑
j b′

j (z)Bj (r, ϕ, z)
)T

, (8b)

where {Aj} and {Bj} form an orthonormal set of eigenmodes
for the pump and Stokes waves, and a j , a′

j , b j , and b′
j are

complex coefficients. Substituting Eqs. (8) into Eqs. (7) and
then into Eqs. (5) and using the fact that the functions {Aj}
and {Bj} are solutions of the homogeneous wave equation, we
find(∑

j A j
∂aα

∂z∑
j A j

∂a′
j

∂z

)
= g

∑
j,l,m

(
(alb∗

jbm + a′
l b

′∗
j bm)AlB∗

j Bm

(alb∗
jb

′
m + a′

l b
′∗
j b′

m)AlB∗
j Bm

)
, (9a)

(∑
j B j

∂bα

∂z∑
j B j

∂b′
α

∂z

)
= g

∑
j,l,m

(
(bla∗

j am + b′
l a

′∗
j am)BlA∗

j Am

(bla∗
j a

′
m + b′

l a
′∗
j a′

m)BlA∗
j Am

)
, (9b)
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where g ≡ −i ω2χSBS
(3)

2kc2 is a gain factor. Then we multiply each
Eq. (9) by one basis function A∗

n or B∗
n, integrate over trans-

verse coordinates and, using orthonormality, we find(
∂an
∂z

∂a′
n

∂z

)
= g

∑
j,l,m

(
alb∗

jbm + a′
l b

′∗
j bm

alb∗
jb

′∗
m + a′

l b
′∗
j b′

m

)
ξp, jlmn (10a)

and (
∂bn
∂z

∂b′
n

∂z

)
= g

∑
j,l,m

(
bl a∗

j am + b′
l a

′∗
j am

bla∗
j a

′
m + b′

l a
′∗
j a′

m

)
ξs, jlmn, (10b)

where

ξp, jlmn(z) =
∫

AlB
∗
j BmA∗

nd2�r (11a)

and

ξs, jlmn(z) =
∫

BlAj
∗AmBn

∗d2�r (11b)

are overlap integrals of the modes over transverse coordinates.
For the calculation of ξp, jlmn and ξs, jlmn, it is convenient to
choose eigenmodes with well-defined topological charges m
such as

Amp(r, ϕ, z) = Cmp(r, z) exp (imϕ), (12a)

and choose the {Bi} identical to the {Ai} modes:

Bmp(r, ϕ, z) = Amp(r, ϕ, z). (12b)

Then, ξp, jlmn = ξs, jlmn ≡ ξ jlmn. Next, we focus our atten-
tion on the transformation of OAM by the SBS process:
indices j, l , m, and n may then be interpreted as topological
charges. In such case, one can see that

ξ jlmn = 0 (13)

unless

j − l − m + n = 0. (14)

Next, the pump beam in Eq. (1) is given, in the {êL, êR}
circular polarization basis, by

�Ep ∼
(

a−1A−1

a′
1A1

)
{êL ,êR}

, (15)

where

a−1 = sin (θ/2) exp (−iα); an = 0, for n = −1,

a′
1 = cos (θ/2); a′

n = 0, for n = 1. (16)

Finally, we assume that the undepleted pump approxima-
tion is valid, which implies that the coefficients an and a′

n are
constant. Inserting Eqs. (15) and (16) into Eq. (10b) and using
Eqs. (13) and (14), we find

∂

∂z

(
bn−2

b′
n

)
= M

(
bn−2

b′
n

)
, (17)

where M is a two-by-two matrix given by

M =
(

sin2
(

θ

2

)
ξ11 sin

(
θ

2

)
cos

(
θ

2

)
exp (−iα)ξ12

sin
(

θ

2

)
cos

(
θ

2

)
exp (iα)ξ21 cos2

(
θ

2

)
ξ22

)
,

(18)

and

ξ11 ≡ ξ−1,n−2,−1,n−2, (19a)

ξ12 ≡ ξ1,n,−1,n−2, (19b)

ξ21 ≡ ξ−1,n−2,1,n, (19c)

ξ22 ≡ ξ1,n,1,n. (19d)

The diagonalization of Eq. (18) allows one to find the
Stokes eigenmodes for each value of n; among them, the one
with the highest gain, i.e., the one with the largest eigenvalue,
is the one that should emerge and is most likely to be observed
experimentally. The main conclusions of this paper are based
on Eqs. (17) and (18). The inspection of matrix M reveals the
following:

(1) The vector modes of the Stokes beam contain one cir-
cular polarization component with a topological charge m = n
and an orthogonal circular polarization component with a
topological charge m = n−2.

(2) Each vector mode �Es = {bn−2 exp[i(n−2)ϕ]
bn exp(inϕ)}T

{êL ,êR} behaves independently in this model,
i.e., there is no crosstalk with other vector beam solutions
with different n values.

(3) The matrix M is Hermitian since ξi j values are real
and ξ12 = ξ21. Thus, the eigenvectors are orthogonal and the
eigenvalues are real. The eigenvector with the larger eigen-
value has higher gain and is more likely to be experimentally
observed.

(4) The presence of ξi j in M makes its eigenvectors in
general different from �Ep ∼ (a−1A−1 a′

1A1)T
{êL ,êR}

with the

coefficients a1 and a′
1 given by Eq. (16). Hence, the polar-

ization states of the Stokes beam need not be identical to the
pump beam, in contrast to scalar beams (see Table S1 of the
Supplemental Material [18]).

The largest eigenvalues of Eq. (18) for different Stokes
modes �Es n,n−2 and different θ values, for α = 0, of the pump
are shown in Table I for A±1 = (LG)m=±1

p=0 beams. One can see

that the Stokes mode �Es −1,1 = [b−1 exp(−iϕ) b1 exp(iϕ)]T

has the largest gain near the equator of the HOPS but the
Stokes vector mode �Es −2,0 and �Es ,−3,−1 become increasingly
competitive as the pump CVB approaches the pole of the
HOPS. At that point, the beam becomes almost scalar and the
fundamental Gaussian mode with azimuthal index m = 0 and
the conjugate mode, m = −1, become as strong as m = 1, in
conformity to previous reports of phase conjugation of scalar
vortex beams [25,26].

However, we shall see in Sec. III that we experimentally
observed a domination of the mode (−3,−1), near the poles
of the HOPS, in contrast with the predictions shown in Table I
(cf. Sec. III). This mode corresponds to the conjugation of the
OAM for the stronger circular component near θ = 0◦. We
hypothesize that this originates from a pump wave that was
not perfectly axisymmetric. This hypothesis was tested in our
model by building a set of orthogonal eigenmodes as

Am,ε = (LG)m + ε sgn(m)(LG)−m (20a)
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TABLE I. Calculated normalized maximum eigenvalue of
eigenequations (17) and (18) for Stokes CVB with topological
charges (n − 2, n) in êL and êR polarization states. Values in bold
designate the mode with highest gain.

θ (deg.) (n−2, n) = (−4,−2) (−3, −1) (−2, 0) (−1, 1) (0, 2)

90 0.51 0.71 0.80 1.00 0.80
82 0.54 0.74 0.82 1.00 0.78
74 0.57 0.78 0.84 1.00 0.77
66 0.60 0.82 0.87 1.00 0.76
58 0.63 0.86 0.89 1.00 0.75
50 0.66 0.89 0.92 1.00 0.75
42 0.69 0.92 0.94 1.00 0.74
34 0.71 0.95 0.96 1.00 0.75
26 0.72 0.97 0.98 1.00 0.75
18 0.74 0.98 0.99 1.00 0.75
10 0.75 1.00 1.00 1.00 0.75
2 0.75 1.00 1.00 1.00 0.75

and

Bm,ε = (LG)m − ε sgn(m)(LG)−m, (20b)

where the parameter ε is a small real number. The parameter
ε introduces an asymmetry in the intensity pattern. Crucially,
Am,ε and A−m,ε no longer have the same intensity distribu-
tion. Moreover, B−m,ε = Am,ε

∗; thus, Am,ε
∗ and B−m,ε have the

same intensity profile. This eliminates the equality of Bril-
louin gain theoretically predicted for LG modes of opposite
m values. The ξ values for ε > 0 can easily be calculated
from those for ε = 0 (cf. the Supplemental Material Sec.
1.2 [18]). The calculation of the eigenvalues of the dominant
eigenvector is shown in Table II for the case ε = 0.15, which
qualitatively matches our experimental results. Whereas the
situation remains unchanged near the equator (no conjugation
of OAM), a shift of the topological charge of the dominant
mode from n = 1 to n = −1 is found, while the weaker state
of opposite circular polarization acquires a topological charge
of n = −3. This result is consistent with previous reports

TABLE II. Calculated normalized maximum eigenvalues for
nonaxisymmetric eigenfunctions of Eq. (20) with ε = 0.15 for
Stokes CVB with topological charges (n−2, n) in êL and êR polariza-
tion states. Values in bold character designate the mode with highest
gain.

θ (deg.) (n−2, n) = (−4,−2) (−3, −1) (−2, 0) (−1, 1) (0, 2)

90 0.48 0.68 0.75 0.92 0.75
82 0.51 0.72 0.77 0.92 0.73
74 0.54 0.76 0.79 0.92 0.72
66 0.57 0.80 0.82 0.92 0.71
58 0.60 0.84 0.84 0.92 0.71
50 0.63 0.88 0.87 0.92 0.71
42 0.66 0.91 0.89 0.92 0.71
34 0.68 0.94 0.92 0.92 0.71
26 0.69 0.97 0.93 0.92 0.71
18 0.71 0.98 0.95 0.92 0.72
10 0.72 1.00 0.95 0.92 0.72
2 0.72 1.00 0.96 0.92 0.72

FIG. 3. Experimental setup showing the preparation of the CVB
with the HWP-QWP q plate focused into a SBS cell with lens L1.
The diagnostic of the Stokes beam is made with the circular polarizer
(CP) and a shear interferometer made of lens L2, the quartz plate (G)
and CCD1 camera. CCD2 camera produces an image of the Stokes
beam intensity.

showing that an aberrated pump beam produced a reflected
Stokes with a better fidelity [6,26,27].

III. EXPERIMENT

A Nd3+-doped Y3Al5O12 single-mode laser delivering
linearly polarized, 3-ns pulses at wavelength λ = 1064 nm
is prepared into an elliptical polarization state using an
adjustable half-wave plate (HWP) followed by a fixed quarter-
wave plate (QWP) with its fast axis in the horizontal direction.
The laser pulses then pass through an inhomogeneous HWP,
also known as a q plate [28], wherein the orientation θλ/2 of
the fast axis with respect to the horizontal axis rotates with
the azimuthal angle as θλ/2 = ϕ/2 to create a CVB described
by Eq. (1) with fixed α = 0◦ and variable θ value depending
on the orientation of the half-wave plate. The laser pulses are
then focused into a SBS cell containing liquid CCl4 with a
converging lens with focal length f = 10 cm. The incident
pulse energy is E = 3.5 mJ; the SBS threshold was previously
measured to be around Eth,SBS = 1 mJ. The reflected Stokes
beam is redirected towards a diagnostic apparatus using a
wedge (W) fused silica window and a dielectric Bragg mirror
(M); the incidence angle on these elements is less than 10 ° in
order to minimize changes of the polarization state, Fig. 3.

The topological charge is separately analyzed for each
circularly polarized component of the CVB. The circular po-
larizer is made of a QWP with a fixed horizontal fast axis
followed by a linear polarizer, whose transmission axis is set
at 45 ° or −45 ° to transmit either right- or left-circular polar-
ization states. A shearing interferometer made of a lens and a
flat-parallel quartz plate (G) produces two copies of the beam
laterally shifted by a small fraction of its diameter in order to
make them mutually interfere. The topological charge of each
circular component of the reflected beam can be identified
from the fringe pattern recorded with a charge-coupled device
(CCD) camera. The presence of two dislocations in the fringe
pattern, symmetrically placed on each side of the beam axis
with the forks oriented in opposite directions, is the signature
of a topological charge m, the value of which is determined
by the number of branches in the fork minus 1, and its sign by
the orientation of the fork pattern [29].

Now, SBS is fundamentally a stochastic process triggered
by random spontaneous Brillouin scattering events [4,5].
Here, for each prepared condition of the pump, Stokes CVBs
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FIG. 4. Shearing interferometry snapshots taken with the CCD
camera of the Stokes beam for incident pump CVBs of different θ

values on the HOPS, analyzed into right- and left-circular compo-
nents. The gradual shift of the OAM as θ approaches zero is clearly
visible.

with different topological charges are sometimes observed
despite their lower gain. This is found to be particularly true
when the gain of the competing modes is of similar magni-
tude, which happened near the poles of the HOPS, cf. Table I.
Hence, for each condition, several snapshots, with sample size
ranging from N = 40 to N = 60, are analyzed to reach statisti-
cally significant conclusions (cf. Sec. 2.2 of the Supplemental
Material [18]). However, for each condition, there is a domi-
nant topological charge that occurs significantly more often.

Typical observations of the dominant topological charge
are shown in Fig. 4. No conjugation of the OAM is found to
take place at or near the equator of the HOPS. However, as the
polar angle on the HOPS, θ , decreases, the topological charge
of each circular component shifts towards lower values. For
instance, for the right circularly polarized component, the
dominant topological charge shifts from m = 1 (no change)
to m = 0 and then to m = −1 (conjugation of OAM) as the
θ value goes from 90◦ towards 0◦, while the topological
charge of the weaker left circular polarization state shifts from

m = −1 (no change) to m = −2 and then to m = −3.2 These
observations suggest that the CVB structure acquires a global
phase factor exp(−2iϕ) at small θ values such as

�Es ,−3,−1 ∝ exp (−2iϕ)

× [sin (θs/2) exp (−iϕ) cos (θs/2) exp (iϕ)]T ,

(21)
which reduces to a simple conjugation of the OAM when θ

approaches zero, in agreement with our theoretical model (cf.
Table II).

2This left-handed component however can only be measured down
to about θ = 25◦ coordinate on the HOPS, below which it becomes
too weak.

FIG. 5. Evolution of the state of the Stokes beam for CVBs of
different polar angles θ on the HOPS. (a) Near the equator, the
polarization distribution and the topological phase of the Stokes
mode with highest gain remain unchanged with respect to the pump.
(b) Towards the poles, the Stokes mode with highest gain acquires a
global phase factor exp(−2iϕ). (c) At the pole, the CVB reduces to
a scalar beam and the situation observed in Fig. (b) reduces to the
conjugation of the topological charge. The azimuthal phase distribu-
tion is indicated by the positioning of the arrow on each ellipse of
polarization, which shows the helicity of the wave front.
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IV. DISCUSSION AND CONCLUSION

In summary, using a theoretical model that considers
both the inhomogeneous polarization distribution and the two
OAM components of CVBs, we demonstrated that the optical
conjugation of the topological charge of these OAM beams
does not take place in SBS, except near the poles of the
higher-order Poincaré sphere, where the beam approaches a
scalar beam and phase conjugation of the OAM may take
place. We traced this phenomenon to the fact that the Stokes
beam has the tendency to acquire a polarization distribution
similar to the pump beam. These results are summarized in
Fig. 5. Near the equator, for oblong elliptical polarization, the
Stokes vector mode with maximum gain is the same vector
mode as the incident pump beam, e.g., Fig. 5(a). As the beam
becomes more scalar, e.g., Fig. 5(b), the Stokes mode with
maximum gain becomes that with topological charges m =
−1 (i.e., the conjugate charge) for the dominant circularly
polarized component and m = −3 for the weaker component.
This corresponds to a precession of the phase with ϕ in oppo-
site directions for the pump and Stokes beams, without change
in the polarization structure. Finally, for a pure scalar beam,
the structure of the Stokes mode reduces to the conjugate
topological charge, e.g., Fig. 5(c). All these transformations
gradually take place as θ changes.

We found that the eigenmodes of the Stokes beam were
made of OAM modes of indices n−2 and n with respectively
left and right circular polarizations. This exp[i(n−2)ϕ]êL and
exp(inϕ)êR combination is, to our knowledge, the only one
that maintains the axisymmetrical structure of the beams,
all other combinations breaking this symmetry such as in
the example shown in Fig. 2. These different modes merely
differ by a helical phase factor that does not affect the po-
larization structure of the beam. Hence, all the Stokes vector
eigenmodes are CVBs. Now, this does not mean that the
polarization ellipse of the Stokes eigenmodes is identical to
that of the pump. As a matter of fact, because the coefficients
ξi j in Eq. (18) are not identical in general, the eigenvectors of
the Stokes and pump beam, and hence the polarization states,

are not identical in general. An example of the calculation of
the eigenvectors of different modes is shown in Sec. 1.4 of the
Supplemental Material [18]. It shows that the second compo-
nent of the vector beam, which is the dominant component in
the pump beam, becomes even more dominant in the Stokes
wave and, hence, the Stokes beam tends to be more scalar than
the pump beam.

Finally, it is important to point out some limitations in
this model. First, it does not include the initiation of the SBS
process by random spontaneous Brillouin scattering events. It
also neglects the pump depletion and the potential interaction
between Stokes modes [24]. It also ignores the radial structure
of the Stokes modes, although our experiments did indicate
that the curvature of the wave front was indeed conjugated
to the pump since the reflected Stokes beam retraced its path
back with approximately the same divergence as the converg-
ing beam. Taking all these effects into account would require
numerical simulations. Hence, this work should be viewed
as a toy model that focuses on understanding why the SBS
process does not conjugate the azimuthal phase structure of
the CVB, except at the limit where such a beam becomes a
pure OAM mode, where phase conjugation may take place.

Given the increasing significance of high-power CVBs for
nonlinear optics [12,13], laser-matter interaction [14,15], and
optical communications [30,31], the ability to correct opti-
cal aberrations incurred by the passage through an active
or a turbulent medium is becoming increasingly important.
SBS phase-conjugate mirrors are appealing to correct aberra-
tions in a double-pass configuration. Understanding that the
response of such a mirror is affected by the entanglement
between polarization and OAM in structured light is key to
the successful use of SBS mirrors with these beams.
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