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Direct reconstruction of the band structure of a one-dimensional optical lattice with thermal atoms
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We report on a simple method to reconstruct the band structure of a one-dimensional optical lattice using a
thermal cloud with a momentum spread of about two photon recoils. We image the momentum distribution of a
thermal cloud exposed to a standing-wave potential using time-of-flight absorption images and observe unique
features. With the support of numerical calculations, we explain their appearance and show how they can be used
to reconstruct the full band structure directly. While this can serve as a precise lattice depth calibration tool, we
additionally propose a method to estimate the lattice depth in a single-shot manner.
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I. INTRODUCTION

Periodic optical potentials can be created by interfer-
ing pairs of counterpropagating light beams [1]. Since the
demonstration of the interference of Bose-Einstein conden-
sates (BECs) trapped in a periodic potential created by an
optical lattice [2], several applications of atom-lattice systems
have emerged [3–6]. For instance, degenerate atomic gases
loaded in optical lattices have proven to be excellent tools
for the study of condensed matter and many-body physics
phenomena [7]. The ability to control and manipulate the
lattice parameters [8] as well as interactions between atoms
has notably made possible the observation of the superfluid to
Mott insulator phase transition [9], and of topological states
of matter [10]. Coherent diffraction of atomic wave packets
from standing waves has given rise to atom-interferometry
applications [11,12], and was used in the first demonstrations
of bosonic amplification [13–15]. For all such experiments, it
is primordial to have a good understanding of the dynamics
of atoms loaded in a periodic potential and to have a precise
knowledge of the lattice parameters [16].

Akin to electrons in a crystal, the behavior of atoms loaded
in these “artificial crystals” can be well described within the
framework of band theory [17]. The dispersion relation for
atoms is given by the band structure of the lattice, which
depends on the depth and geometry of the lattice potential,
i.e., on the intensity, detuning, and spatial configuration of
the laser beams. The most commonly used method to cal-
ibrate optical lattices is by observing the Rabi oscillations
of the population in the first diffraction order when a sta-
tionary condensate is loaded into a lattice, in the so-called
Kapitza-Dirac regime [18]. Measured oscillation frequencies
can then be compared to those predicted by band theory.
This technique can be extended by giving a velocity to the
atoms in the lattice’s frame of reference, thus controlling the
atoms’ quasimomentum in the lattice frame of reference. It
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has also been shown that by using either phase or amplitude
modulation transitions between different bands can be probed
and characterized [18–20]. In order to get the full dispersion
relation, however, these lattice modulation methods require
scanning additional parameters such as the frequency or the
duration of the modulation.

Here, we report on a simple method to reconstruct the
band structure of an optical lattice, which also serves as a
precise calibration of the potential depth. In our experiment,
we use thermal atomic clouds the momentum distributions of
which span about two photon-recoil momenta. Loading such
an ensemble in a periodic potential leads to a mixture of initial
quasimomenta, q, spanning an entire Brillouin zone. This
allows the probing of excitations between the fundamental
band and higher bands for different values of q, in a single
experimental realization. Using band theory, we numerically
calculate the contribution of each band and use this insight to
reconstruct the lattice band structure from experimental data.

The ability to reconstruct the entire band structure by solely
scanning the duration of the Rabi oscillations between differ-
ent Bloch states makes this method a robust yet simple tool to
calibrate the depth of optical lattices precisely. Furthermore,
we show that our approach can be used to measure the depth
of an optical lattice in a single-shot manner, with reasonable
accuracy.

In Sec. II we describe our experimental apparatus and key
observations. We then present, in Sec. III, an overview of
the band theory necessary to reconstruct the lattice’s band
structure. In Sec. IV we show results of our numerical model
and use them to reconstruct lattice band structures from our
experimental findings. In Sec. V we show how this tool can
be used to extract lattice depths from a single shot.

II. EXPERIMENT

Our experimental system produces either 87Rb BECs or
ultracold thermal gases, using an all-optical scheme. We
load two overlapping far-off-resonance optical dipole traps
(1.06-μm wavelength) with waists of 150 and 50 μm, re-
spectively, from a magneto-optical trap. With laser cooling
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FIG. 1. Absorption images after 23 ms of time of flight
for different lattice exposure times (from top to bottom,
10, 205, and 300 μs). The left column was measured with a pure
condensate, while in the right column the cloud was chosen to be
thermal, and we observe additional features between the zeroth- and
first-order Kapitza-Dirac peaks. Each picture is the average of 20
experimental cycles, and the color map was chosen to enhance faint
structures.

followed by evaporative cooling, we obtain a nearly pure
condensate with 2 × 105 atoms in the F = 1, mF = −1 state.
By terminating the evaporation sequence before the cloud is
condensed we obtain a thermal cloud and set the width of its
momentum distribution to be 2h̄k and centered around zero.
The cloud is then exposed to a one-dimensional (1D) optical
lattice pulse, for durations up to 400 μs, during which the
atoms undergo Kapitza-Dirac diffraction [18]. We create the
lattice standing-wave potential by retroreflecting a Gaussian
beam with a waist of 1.05 mm and a typical detuning of
−50 GHz from the 2S to 2P transition of 87Rb . We vary
the power of the lattice beams to get lattice depths, V0, in the
1–15Er range, where Er = h̄2k2/2m is the single-photon re-
coil energy. The single-photon recoil frequency, fr , is defined
as Er/h and corresponds to 3.77 kHz for the D2 transition of
87Rb . For these parameters, only the first diffraction orders
±2h̄k are significantly populated. Throughout our parameter
range, the spontaneous scattering probability per atom during
a lattice pulse is less than a few percent, allowing us to neglect
the effects of scattering and consider only the optical dipole
potential. For our thermal ensembles, both the mean-field shift
due to interactions [21] and the probability for momentum
changing atomic collisions during a lattice pulse are subper-
cent. We can therefore safely assume that the momentum
manifolds [q, q − 2h̄k, q + 2h̄k] for different values of q do
not interact.

The momentum distribution of the excited atoms is mea-
sured via absorption imaging, after 23 ms of time of flight.
Typical time-of-flight images for a pure condensate at rest
in the lattice’s frame of reference (q = 0) exposed for
10, 205, and 300 μs to a lattice depth of 6.5Er are presented
in Fig. 1. The Kapitza-Dirac diffraction orders ±2h̄k are
known to coherently oscillate with time at a frequency [22,23]

f|2h̄k| = 1

h

√(
6πc2

√
2ω3

0

)
�2

�2
I2
0 + Er

2, (1)

where I0 and � are the laser’s intensity and detuning, and
� and ω0 are the linewidth and frequency of the transition.
Expression (1) is valid in the limit of shallow lattices, i.e.,
when V0 � 4Er . This technique is used extensively to calibrate
the depth of optical lattices, as measurements of f|2h̄k| yield
accurate estimations of the field intensity experienced by the
atoms.

We then repeat the experiment with a thermal cloud and
observe rich features in the resulting momentum distributions,
as seen in Fig. 1. To study the time dynamic of each mo-
mentum state, we integrate the time-of-flight images along the
vertical axis, which yields the momentum distribution of the
cloud as a function of the lattice pulse duration, as shown in
Fig. 2(a). The topmost row in this figure indicates the initial
momentum distribution of the cloud before the lattice pulse
is applied; it is seen to span from about −h̄k to +h̄k. Each
column presents the population dynamics corresponding to a
different momentum class. Figure 2(b) shows three vertical
cross sections of Fig. 2(a), depicting oscillations in the popula-
tions of three different quasimomenta, q = 0, 1.5k, and 2.3k,
which oscillate at different frequencies. A Fourier spectrum
for each momentum class is shown in Fig. 2(c), revealing a
dominant oscillation frequency for each quasimomentum.

In the following sections, we present a theoretical model
to explain these oscillations and show how we can use
them to reconstruct the lattice’s band structure in the first
Brillouin zone.

III. BAND THEORY FOR ATOMS LOADED
IN A PERIODIC POTENTIAL

Right after releasing our cloud from the optical dipole trap,
we abruptly turn on the standing wave for a variable duration,
before turning it off suddenly. In the sudden approximation,
the initial state of the free atoms is simply projected onto
the basis of the eigenvectors of the lattice, when the latter is
turned on. The different components of the new state acquire
different phases while the lattice is on, and the resulting state
is subsequently projected onto the plane-wave basis, when the
lattice is finally turned off. The time evolution of the differ-
ent velocity classes can be derived following the derivations
of [18,24].

According to the Bloch theorem, for a periodic potential,
the eigenstates of the Hamiltonian

Ĥ = p̂2

2m
+ V0 sin2(kx̂), (2)

where V0 = 6πc2�I0/ω
3
0� [23], can be written as

ψq(x) =
∑
j∈Z

C q
j eix(q+2π j/a), (3)

where q is the quasimomentum and a is the lattice spacing.
Using Eqs. (2) and (3), one gets that the Fourier decomposi-
tion factors must obey[(

2 j + q

k

)2
+ V0

2Er

]
C q

j − V0

4Er

(
C q

j−1 + C q
j+1

) = E

Er
C q

j . (4)

We denote by E q
n the eigenvalues associated to band n

and to quasimomentum q. The corresponding Fourier
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FIG. 2. (a) Momentum distribution as a function of the lat-
tice pulse duration for a lattice depth of 6.5Er . Each row is a
normalized integrated density obtained from the integration of ab-
sorption images averaged 20 times. To reveal faint features, the
figure is shown in an exaggerated color bar. The overlaid dashed lines
represent the values of momentum at which we measured the popu-
lation oscillations shown below. The orange (blue) arrow represents
transitions between the fundamental and the second (first) bands for
an atom with initial momentum between 0 and +1h̄k, as explained
in Sec. IV. (b) Population oscillations as a function of pulse duration
for three momenta: 0h̄k (top), 1.5h̄k (middle), and 2.3h̄k (bottom).
Populations are shown in arbitrary units and were shifted up and
down for readability. The fitted frequencies are 22, 14 and 24 kHz,
respectively. (c) Fourier decomposition as a function of momentum.

decomposition factors are denoted by C q
n, j and we

write the Bloch vector associated to band n and

quasimomentum q as

|ψn,q(x)〉 =
∑
j∈Z

C q
n, j |φq+2 jk〉, (5)

where |φq+2 jk〉 represents the plane-wave state with mo-
mentum h̄q + 2 jh̄k. Let us consider atoms with an initial
momentum h̄qi in the standing-wave reference frame. We
denote the initial state by |φqi〉. At time t = ti, we abruptly
turn on the lattice and project the initial state onto the lattice
eigenstates such that

|ψ (ti )〉 =
∞∑

n=0

|ψn,qi〉〈ψn,qi |φqi〉 =
∞∑

n=0

C qi∗
n,0 |ψn,qi〉. (6)

Each eigenstate then proceeds to acquire a phase propor-
tional to its energy, such that at a subsequent time t � ti the
wave function becomes

|ψ (t )〉 =
∞∑

n=0

C qi∗
n,0 |ψn,qi〉e−iE

qi
n (t−ti )/h̄. (7)

Turning off the lattice abruptly at time t = t f then amounts to
projecting back onto the plane-wave basis and one gets that

|ψ (t f )〉 =
∑
j∈Z

{ ∞∑
n=0

C qi∗
n,0 C qi

n, je
−iE

qi
n (t f −ti )/h̄

}
|φqi+2 jk〉. (8)

When a pure BEC is loaded into the lattice, the initial state
is well approximated by |φqi=0〉. In this case, because of their
opposite parity, the odd bands do not take part in the time
evolution [22]. For weak lattices, this results in oscillations in
the population of the first Kapitza-Dirac orders, at a frequency
corresponding to the energy gap between the fundamental and
second excited bands. However, these symmetry considera-
tions do not hold for nonzero initial quasimomenta, and any
pair of bands can dominate the temporal dynamic.

When limiting the analysis to the fundamental and the first
two excited bands, valid for weak lattices, we find that the
probability P qi+2k

qi (t ) for atoms originally in |φqi〉 to be in state
|φqi+2k〉 after an exposure time t reads

P qi+2k
qi

(t ) =
2∑

n=0

∣∣C qi∗
n,0 C qi
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0,1 cos
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1

h̄
(t f − ti ) + ϕ

1,qi
0,1

]

+ 2A1,qi
0,2 cos

[
E qi

0 − E qi
2

h̄
(t f − ti ) + ϕ

1,qi
0,2

]

+ 2A1,qi
1,2 cos

[
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2
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1,qi
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, (9)

where

Aj,qi
n,m = ∣∣C qi∗

n,0 C qi
n, j

∣∣ × ∣∣C qi
m,0C

qi∗
m, j

∣∣, (10)

and ϕ
j,qi

n,m is the phase originating from the arguments of com-
plex prefactors, such that

ϕ j,qi
n,m = arg

[
C qi∗

n,0 C qi
n, j

] − arg
[
C qi

m,0C
qi∗

m, j

]
. (11)

We will see in the next section that, in practice, only one of the
oscillating terms contributes significantly to the time dynamic
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FIG. 3. Numerical calculation of the band decomposition coeffi-
cients when an atom is transferred from qi to qi + 2k, as a function of
the initial quasimomentum qi, for V0 = 5Er . We only plot the three
terms of Eq. (9) as, for weak lattices, the contribution of higher bands
is significantly suppressed. In the case of atoms transferred from qi

to qi − 2k, the curves would simply be flipped around qi = 0.

for weak lattices. This allows us to separate the influence
of each band, thereby fully reconstructing the relevant band
structure. We have numerically verified the validity of the
three-band approximation made in Eq. (9) for lattice depths
up to V0 = 15Er . For deeper lattices, the higher bands con-
tribute significantly and multiple oscillating terms in Eq. (9)
become comparable. By modification of the analysis to extract
multiple frequencies present either by doing a multifrequency
sinusoidal fit [unlike the single frequency sinusoidal fit that
we used in Fig. 2(b)] or by doing a Fourier analysis as shown
in Fig. 2(c), it should be possible to reconstruct the band
structure for deeper lattices.

IV. RECONSTRUCTION OF THE OPTICAL LATTICE’S
BAND STRUCTURE

The interesting time dynamic observed in our experiment
originates from the fact that we initially populate nonzero
quasimomenta and observe the contribution of both the first
and second bands separately. Equation (8) indicates that the
contribution of the nth band to the time evolution of the
population in the plane-wave state |φqi+2 jk〉 is weighted by
the factor C qi∗

n,0 C qi
n, j . The A1,qi

n,m coefficients are a measure of the
strength of the oscillations between bands n and m, and can be
computed by numerically solving Eq. (4). In Fig. 3, we show
their value as a function of the initial quasimomentum, qi, for
a lattice depth V0 = 5Er .

For initial quasimomenta, qi � −0.1k, the time evolution
of atoms getting transferred to qi + 2k is mostly dictated by
the fundamental and the second bands, as shown in Fig. 3.
Conversely, only the first band contributes significantly to the
dynamic of atoms starting with quasimomenta qi � −0.1k
and gaining 2k. The first band does not contribute to the
evolution for qi = 0 due to the symmetry argument previously
discussed. Alternatively, the band contributions for transfer-
ring atoms from qi to qi − 2k have the opposite behavior to
that seen in Fig. 3. In Fig. 2(a), we illustrate with an orange
(blue) arrow how atoms with initial quasimomenta comprised
between 0 and +1k will mainly gain (lose) a momentum
2h̄k. Here, the orange (blue) color of the arrows represents

FIG. 4. Frequency difference, f , in units of the single-photon
recoil frequency, fr , between the fundamental and first excited bands
(blue open markers) as well as the frequency difference between the
fundamental and second excited band (orange closed markers), for
various lattice depths. We programmatically discarded data points
originating from regions with low signal to noise and from re-
gions where the two bands have comparable contributions. Solid and
dashed lines are a fit to numerical band-structure calculations, using
the lattice depth as the sole fit parameter. The fitted lattice depths
are V0 = 2.66 ± 0.03Er (circular markers), 6.56 ± 0.02Er (diamond
markers), and 10.05 ± 0.02Er (square markers).

transition between fundamental and second (first) bands, the
same as shown in Figs. 3 and 4.

These results can be used to understand the experimental
findings shown in Fig. 2. For example, atoms with momenta
between ±2h̄k and ±3h̄k will mainly oscillate between the
fundamental and the second band, whereas atoms with mo-
menta between ±1h̄k and ±2h̄k will mainly make transitions
to the first band. Using this understanding, we map the ob-
served data onto the first Brillouin zone, i.e., qi lying between
±1k. Once we reduce the data to that region, we fit the oscil-
lations in the population of qi with an exponentially decaying
sine function and use the fitted frequencies to reconstruct the
lattice’s band structure, as presented in Fig. 4. We fit the
reconstructed band structure to numerical solutions of Eq. (4)
by doing a single parameter fit in MATLAB to estimate the
lattice depth. The error in the estimated depth is given by
the 95% confidence bounds of the fit. This in turn provides
a more accurate measurement of the lattice depth based on
numerous data points, for the same experimental cost as the
standard method of fitting only the ±2h̄k populations. As
shown in Fig. 4, the intermediate lattice depth is estimated to
be 6.56 ± 0.02Er , whereas the standard method yields a depth
of 6.34 ± 0.05Er .

For lattice depths in the V0 � 4Er regime, the fundamen-
tal band is relatively flat with respect to the excited bands,
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FIG. 5. (a) In a solid gray line (dashed orange line) is shown the
inverse of the RMS difference between a single-picture momentum
distribution (full band-structure data set) and theoretically predicted
momentum distributions (band structures) for different lattice depths,
showing a sharp response around the estimated depth. In the single-
shot case, the lattice exposure time was chosen to be 177 μs. The full
width at half maximum of the single-shot (full band structure) peak
is 0.9Er (0.15Er). (b) Data points show the single-shot lattice depth
estimation as a function of the lattice exposure time. The horizontal
dashed line corresponds to the lattice depth as measured by the full
band-structure method.

meaning that what we measure can be approximated to the
bands themselves. For instance, using numerical calculations,
we estimate that the second excited band differs by less than
3% from what we measure, at V0 = 10Er . One can clearly
observe the expected flattening of the bands as the lattice
depth is increased.

V. SINGLE-SHOT LATTICE DEPTH CALIBRATION

Using Eq. (8) and the uniqueness of the C qi
n, j coefficients

for a given potential depth, one can see that the momentum
distribution after a given time in the lattice uniquely depends
on the lattice depth. Therefore, using a single thermal-cloud
picture after a specific lattice duration, such as those shown in
Fig. 1, one can uniquely determine the lattice depth. We have
developed a program [25] that takes as an input a time-of-
flight picture and the corresponding lattice exposure time and
outputs an estimation of the lattice depth. The program solves
Eq. (8) for the specified lattice exposure time and generates
momentum distributions for various lattice depths. In order

to simulate a finite imaging resolution, we apply a Gaussian
blur on the generated momentum distributions, which are then
compared to the experimental one. The program outputs the
potential depth that minimizes the root-mean-square (RMS)
error between simulated and experimental data as an esti-
mate of the experimental lattice depth. This is exemplified
in Fig. 5(a), for a lattice depth of V0 = 6.5Er and a lattice
exposure time of 177 μs.

For exposure times that are short with respect to the lattice
oscillation period, the difference between momentum distri-
butions originating from different lattice depths is too small
for the estimate to be accurate. For very long exposure times,
the decay of the oscillations diminishes the contrast of the data
and hinders our ability to discern different lattice depths. We
therefore systematically study which exposure times yield the
best results and find that for lattices with depths in the 1–15Er

range exposure times between 100 and 350 μs yield accurate
results, as demonstrated in Fig. 5(b). The uncertainty of the
method stems both from the spread of the estimates shown
in Fig. 5(b), which amounts to 0.2Er for times comprised be-
tween 100 and 350 μs, and from the 95% confidence bounds
of the MATLAB fit in Fig. 5(a). In the case shown in Fig. 5(a),
the measured lattice depth is therefore V0 = 6.50 ± 0.05Er ,
which is in accordance with the value we measured using the
full band-structure calibration.

VI. CONCLUSION

In conclusion, we reported on the presence of unique fea-
tures observed in our absorption images after long times of
flight, which arise due to the wide initial quasimomentum
distribution of our thermal cloud when it is loaded in a 1D
optical lattice. Using a numerical model based on band theory,
we interpreted these features and extracted the band structure
of the lattice. This method proves to be simple as it only
requires scanning the lattice pulse duration and does not re-
quire a Bose-Einstein condensate. The broadly used lattice
calibration technique of measuring oscillation frequencies of
populations at ±2h̄k only yields a single point in the band
diagram of the lattice, whereas performing the same experi-
ment with a mixture of initial quasimomenta yields the entire
band structure of the lattice. Our experiment can therefore be
used as a simple and precise calibration technique for optical
lattices even in cases where their spatial potential is not known
in advance. Furthermore, effects of atomic interactions and
collisions during the lattice exposure, that are often significant
for Bose-Einstein condensates [1,7], can be safely neglected
for our thermal atoms due to their much lower densities.
Finally, through a detailed understanding of the time dynamic
of atoms in an optical lattice, we presented a single-shot
lattice depth calibration method and shared the required image
analysis program.
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