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Itinerant ferromagnetism of a dipolar Fermi gas with Raman-induced spin-orbit coupling
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We elucidate the itinerant ferromagnetism of a dipolar Fermi gas with a Raman-induced spin-orbit coupling by
investigating the exotic phase diagrams. It is revealed that the dipolar interaction along with spin-orbit coupling
can corroborate the formation of ferromagnetism and that the Raman coupling adversely eliminates the tendency
to this ferromagnetism transition, which greatly transcends the general understanding of this subject with contact
interaction only. We explore the ground states through the density and spin-flip distribution in momentum space.
We calculate the transition temperatures well within the reach of an experimental system when altering the
dipolar and spin-orbit-coupling strength, which paves a way to the further experimental realization.
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I. INTRODUCTION

Itinerant ferromagnetism has been a subject of conspic-
uous interest in the history of physics. Early in the last
century when dealing with the itinerant electron gas within
the Hartree-Fock approximation, Bloch pointed out that a fer-
romagnetic state could occur below a critical density at which
the long-range Coulomb potential began to prevail over the
kinetic energy. Thereafter Stoner studied the ferromagnetic
properties in transition metals and gave a theoretical expla-
nation [1,2] in which he replaced the Coulomb interaction
with a screening repulsive contact potential. Subsequently in
d-electron metals, the tight-binding method was commonly
used, including the single-band Hubbard model [3,4]. Unlike
in a solid state system, a more rapidly developing quantum
gas which is best known for its high tunability in both inner
interactions and external magnetic or optical fields can pro-
vide a different experimental platform for and at the same time
theoretically stimulate this intricate problem.

Experimental breakthrough came when. Jo et al. reported
the investigation of the ferromagnetism transition in the
6Li system [5]. Following that, however, was some theo-
retical dispute arguing that the experimental result was not
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convincing enough because no magnetic domains were cap-
tured, and instead of the ferromagnetic state fermions might
choose to be as interaction increased, a short-range correlation
state could also be a candidate to reduce the interaction energy
[6–8]. So further experimental explorations were carried out
to verify the occurrence of the ferromagnetic state [9,10].
Meanwhile, many theoretical works made contributions to
this subject. Beyond the mean-field approach, a second-order
perturbation calculation [11] was done, which obtained a crit-
ical phase transition point at kF as ≈ 1.054, where kF was
the Fermi wave vector and as was the s-wave scattering
length. Other nonperturbative theoretical methods [12–14] as
well as quantum Monte Carlo simulations [15–18] were also
performed. In fact, when we are studying the ferromagnetic
instability of an ultracold Fermi gas, formation of molecules
generated by three-body recombination [19,20] and the com-
peting BCS pairing instability [21,22] shall be inevitably
considered when this system undergoes a BEC-BCS crossover
by tuning as through the Feshbach resonance. From another
perspective, the occurrence of a ferromagnetic state can be
seen as a spin-imbalanced circumstance [23] in which a Fermi
polaron is an interesting issue [24–26]. It is also found in
several works that the mass imbalance in Fermi mixtures of
which the usual two-component Fermi gas may be viewed
as an equal-mass limit can stabilize the ferromagnetism
[24,27,28]. Other focuses on itinerant ferromagnetism are the
explorations of dynamical properties in Fermi gas [29–34] as
well as the nonequilibrium non-Hermitian effect [35].
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However, most of the previous works on quantum gas
were concentrating on an isotropic contact interaction as
well as some finite-ranged and even higher partial-wave in-
teractions [14,36–39]. Itinerant ferromagnetism induced by
long-range and anisotropic dipole-dipole interaction (DDI)
has been less investigated; in contrast, many unconventional
quantum phases such as supersolidity [40] and charge and
spin density waves [41,42] have been predicted in polar
molecules 40K87Rb [43–46] and 23Na40K [47] and magnetic
dipolar 161Dy [48]. Apart from giving rise to the exhibition
of exotic quantum phases, dipolar interaction also changed
the shape of a spherical Fermi surface into a distorted one
[49–53] and caused a structural second-order ferromagnetism
transition [51,52]. In addition to the internal interaction, a
common way of manipulating ultracold atoms is by employ-
ing the external field to induce other interacting mechanics
such as spin-orbit coupling (SOC). As far as we know, SOC in
condensed-matter physics whose origination is the movement
of an electron in an intrinsic electric field in a crystal is cru-
cially responsible for numerous issues including topological
insulators and Majorana fermions. In cold-atom physics, SOC
arises from a synthetic gauge field created by the interaction
between atoms and the Raman laser field which can generate a
kind of so-called Raman-induced SOC [54,55]. Recently, one-
and two-dimensional SOC have been successfully achieved
in Bose and Fermi gases [56–60] as well as in the dipolar
fermion system [61]. Although experimental breakthroughs
in quantum gas with SOC have been made in recent years,
this topic of the itinerant magnetism in such systems has
been rarely unraveled except for in a few works including
the demonstration of an interesting chiral ferromagnetism
with two-dimensional Rashba SOC and contact interaction
[62–66]. In the previous work in a dipolar gas, an entrench-
ment of the itinerant ferromagnetism is revealed with the
consideration of a one-dimensional (1D) SOC which simply
entwines the z-direction momentum and spin [52]. Actually,
this 1D SOC is only part of the Raman-induced SOC which
contains a more cumbersome term of Raman coupling. What
will contribute to the phase diagrams if a complete Raman
SOC is considered is undoubtedly important to be clarified
and that is what has been mainly covered in this present work.

II. MODEL

In this work, a Raman-induced SOC is considered which is
simply depicted in Fig. 1(a). As shown in Fig. 1(a), a magnetic
field in the z direction creates a hyperfine splitting for the spin-
orbit coupling and a couple of x-direction Raman lasers that
are polarized in the y and z directions interact with cold atoms,
leading to an effective spin-orbit-coupled Hamiltonian [55]:

HSOC = h̄2kxk0

m
σz + δ

2
σz + �

2
σx, (1)

where k0 is the wave vector of the laser, δ is the Raman detun-
ing parameter, � is the Raman coupling, kx is the x-direction
momentum of the atom, and σx and σz are Pauli matrices.
This effective Hamiltonian has a single-particle dispersion
relation depicted in Fig. 1(b). As Raman coupling increases,
the lowest double-well band evolves into a single-well shape,
which, as pointed out by Ref. [67], can explain the phase

FIG. 1. (a) Schematic representation of dipolar Fermi gas with a
Raman-induced spin-orbit coupling. The magnetic field B is in the
z direction and a pair of Raman lasers linearly polarized in the y
and z directions propagate through such an ensemble. (b) Dispersion
spectrum for a Raman-induced spin-orbit-coupled system without
detuning. The black solid, red dash-dotted, and blue dashed lines cor-
respond to � = 0, � = 2Er , and � = 4Er , where Er = h̄2k2

0/(2m)
is the recoil energy and k0 is the wave vector of Raman lasers.
(c) Zero-temperature phase diagram as a function of Raman coupling
strength λω and dipolar interaction λd , with SOC parameter λsoc = 1
and contact interaction λs = 0. The phase diagram consists of four
regions including the normal state (NS), the partially magnetic state
(PMS), the fully magnetic state (FMS), and an unstable region. The
dashed lines correspond to the phase boundaries shifted by a finite
contact interaction λs = 0.5. Panel (d) is the same as panel (c), but
for λsoc = 1.5.

transitions among the stripe phase, the plane-wave phase, and
the nonmagnetic phase in Bose gas.

The Hamiltonian for the dipolar Fermi gas consists of three
parts, including the kinetic part Hk, the SOC Hamiltonian
HSOC mentioned above, and the two-body interaction Hamil-
tonian HI which includes both dipolar interaction and the
contact interaction:

HI = 1

2

∫
d3xd3x′ψ†

α (x)ψ†
β (x′)U (x, x′)αα′,ββ ′ψβ ′ (x′)ψα′ (x),

(2)

where ψα and ψ†
α are fermion annihilation and creation oper-

ator for the α component (α = 1 and 2 represent spin-up and
spin-down) and

U (x, x′)αα′,ββ ′ = d2

r3
σ i

αα′ (δi j − 3r̂ir̂ j )σ
j

ββ ′ + gδαα′δββ ′δ(r),

(3)

where r̂ ≡ (x − x′)/ | x − x′ |, and d and g are the dipole mo-
ment of the fermions and the coupling strength of the contact
interaction, respectively.

We have to apply a unitary transformation under which we
have obtained the effective HSOC to the interaction Hamilto-
nian HI ,

H ′
I = V †HIV, (4)
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where

V =
(

e−ik0x 0
0 eik0x

)
. (5)

In the following, we do the approach as (
ψ ′

↑
ψ ′

↓

)
=

(
e−ik0x 0

0 eik0x

)(
ψ↑
ψ↓

)
, (6)

and the interaction Hamiltonian becomes

H ′
I =

∫
d3xd3x′{ψ†

↑(x)ψ†
↑(x′)U (x, x′)↑↑,↑↑ψ↑(x′)ψ↑(x) + ψ

†
↓(x)ψ†

↓(x′)U (x, x′)↓↓,↓↓ψ↓(x′)ψ↓(x)

+ ψ
†
↑(x)ψ†

↓(x′)U (x, x′)↑↑,↓↓ψ↓(x′)ψ↑(x) + ψ
†
↓(x)ψ†

↑(x′)U (x, x′)↓↓,↑↑ψ↑(x′)ψ↓(x)

+ [ψ†
↑(x)ψ†

↑(x′)U (x, x′)↑↓,↑↑ψ↑(x′)ψ↓(x) + ψ
†
↑(x)ψ†

↓(x′)U (x, x′)↑↓,↓↓ψ↓(x′)ψ↓(x)]e2ik0x

+ [ψ†
↓(x)ψ†

↑(x′)U (x, x′)↓↑,↑↑ψ↑(x′)ψ↑(x) + ψ
†
↓(x)ψ†

↓(x′)U (x, x′)↓↑,↓↓ψ↓(x′)ψ↑(x)]e−2ik0x

+ [ψ†
↑(x)ψ†

↑(x′)U (x, x′)↑↑,↑↓ψ↓(x′)ψ↑(x) + ψ
†
↓(x)ψ†

↑(x′)U (x, x′)↓↓,↑↓ψ↓(x′)ψ↓(x)]e2ik0x′

+ [ψ†
↑(x)ψ†

↓(x′)U (x, x′)↑↑,↓↑ψ↑(x′)ψ↑(x) + ψ
†
↓(x)ψ†

↓(x′)U (x, x′)↓↓,↓↑ψ↑(x′)ψ↓(x)]e−2ik0x′

+ ψ
†
↑(x)ψ†

↑(x′)U (x, x′)↑↓,↑↓ψ↓(x′)ψ↓(x)e2ik0 (x+x′ ) + ψ
†
↑(x)ψ†

↓(x′)U (x, x′)↑↓,↓↑ψ↑(x′)ψ↓(x)e2ik0 (x−x′ )

+ ψ
†
↓(x)ψ†

↑(x′)U (x, x′)↓↑,↑↓ψ↓(x′)ψ↑(x)e−2ik0 (x−x′ ) + ψ
†
↓(x)ψ†

↓(x′)U (x, x′)↓↑,↓↑ψ↑(x′)ψ↑(x)e−2ik0(x+x′ )}. (7)

Next we transform the interaction Hamiltonian of the coordinate representation above into momentum representation and we
obtain

H ′
I =

∑
k1,k2,q

[U (q)↑↑,↑↑a†
k1,↑a†

k2,↑ak2−q,↑ak1+q,↑ + U (q)↑↑,↓↓a†
k1,↑a†

k2,↓ak2−q,↓ak1+q,↑

+ U (q)↓↓,↑↑a†
k1,↓a†

k2,↑ak2−q,↑ak1+q,↓ + U (q)↓↓,↓↓a†
k1,↓a†

k2,↓ak2−q,↓ak1+q,↓

+ U (q)↑↓,↑↑a†
k1,↑a†

k2,↑ak2−q,↑ak1+q−2k0,↓ + U (q)↑↓,↓↓a†
k1,↑a†

k2,↓ak2−q,↓ak1+q−2k0,↓

+ U (q)↓↑,↑↑a†
k1,↓a†

k2,↑ak2−q,↑ak1+q+2k0,↑ + U (q)↓↑,↓↓a†
k1,↓a†

k2,↓ak2−q,↓ak1+q+2k0,↑

+ U (q)↑↑,↑↓a†
k1,↑a†

k2,↑ak2−q−2k0,↓ak1+q,↑ + U (q)↓↓,↑↓a†
k1,↓a†

k2,↑ak2−q−2k0,↓ak1+q,↓

+ U (q)↑↑,↓↑a†
k1,↑a†

k2,↓ak2−q+2k0,↑ak1+q,↑ + U (q)↓↓,↓↑a†
k1,↓a†

k2,↓ak2−q+2k0,↑ak1+q,↓

+ U (q)↑↓,↑↓a†
k1,↑a†

k2,↑ak2−q−2k0,↓ak1+q−2k0,↓ + U (q)↑↓,↓↑a†
k1,↑a†

k2,↓ak2−q+2k0,↑ak1+q−2k0,↓

+ U (q)↓↑,↑↓a†
k1,↓a†

k2,↑ak2−q−2k0,↓ak1+q+2k0,↑ + U (q)↓↑,↓↑a†
k1,↓a†

k2,↓ak2−q+2k0,↑ak1+q+2k0,↑], (8)

where k0 = (k0, 0, 0) and

U (q)αα′,ββ ′ = 4πd2

3
σ i

αα′ (3q̂iq̂ j − δi, j )σ
j

ββ ′ + gδα,α′δβ,β ′ .

(9)

The results above include a few momentum-nonconservation
terms which we can ignore in the following calculation for
the reason that we are dealing with a homogeneous gas. After
a mean-field approximation and bringing in a few symbols
nk,α = 〈a†

k,αak,α〉 representing the particle density of spin-up

and spin-down in momentum space and tk = 〈a†
k,↑ak,↓〉 rep-

resenting the spin-flip density, the total Hamiltonian has the
simple form of

H =
∑

k

(
a†

k,↑, a†
k,↓

)(ε1(k) ε3(k)
ε3(k) ε2(k)

)(
ak,↑
ak,↓

)
, (10)

where

ε1(k) = h̄2k2

2m
+ h̄2k0

m
kx + g

V

∑
k′

nk′,↓ +
∑

k′

2πd2

3V

× [(3 cos2 θk−k′+2k0−1)nk′,↓+(3 cos2 θk−k′−2k0−1)

× nk′,↓ − 2 ∗ (3 cos2 θk−k′ − 1)nk′,↑], (11)

ε2(k) = h̄2k2

2m
− h̄2k0

m
kx + g

V

∑
k′

nk′,↑

+
∑

k′

2πd2

3V
[(3 cos2 θk−k′+2k0 − 1)nk′,↑

+ (3 cos2 θk−k′−2k0 − 1)nk′,↑ − 2∗
× (3 cos2 θk−k′ − 1)nk′,↓], (12)
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ε3(k) = �

2
− g

V

∑
k′

tk′ +
∑

k′

4πd2

3V
(3 cos2 θk−k′ − 1)tk′ .

(13)

After a canonical transformation we obtain the total Hamilto-
nian of the following form:

H =
∑

k

(b†
k,↑, b†

k,↓)

(
ξ1(k) 0

0 ξ2(k)

)(
bk,↑
bk,↓

)
, (14)

where b†
k and bk are creation and annihilation operators of the

quasiparticles and

ξ1(k) = u(k)2ε1(k) + v(k)2ε2(k) + 2u(k)v(k)ε3(k), (15)

ξ2(k) = v(k)2ε1(k) + u(k)2ε2(k) + 2u(k)v(k)ε3(k), (16)

u(k)2, v(k)2 = 1/2 ± ε1(k) − ε2(k)

2
√

[ε1(k) − ε2(k)]2 + 4ε3(k)2
. (17)

The density distribution nk,α , spin-flip tk, and chemical poten-
tial μ can be calculated self-consistently with the help of the
following equations:

nk,↑ = u(k)2 f (ξ1(k)) + v(k)2 f (ξ2(k)), (18)

nk,↓ = v(k)2 f (ξ1(k)) + u(k)2 f (ξ2(k)), (19)

N =
∑

k

(nk,↑ + nk,↓), (20)

tk = u(k)v(k)[ f (ξ1(k)) − f (ξ2(k))], (21)

f (x) = 1

e(x−u)/kBT + 1
. (22)

We introduce the dimensionless parameters including the
dipolar interaction parameter λd = nd2/εF , the SOC param-
eter λsoc = k0/kF , the contact interaction parameter λs =
gn/εF , the Raman coupling parameter λω = �/εF , and the
temperature parameter λT = kBT/εF , where εF , kF , and kB are
the Fermi energy, the Fermi wave vector, and the Boltzmann
constant, respectively. Then the consistent equations can be-
come dimensionless and be calculated numerically.

III. RESULTS

Our calculation indicates that ferromagnetism phase tran-
sition can occur under suitable parameters. We plot the phase
diagrams as functions of λd , λω, and λsoc shown in Figs. 1
and 2. An apparent conclusion can be drawn that the Raman
spin-flip effect can eliminate the tendency to ferromagnetic
transition. The competition between dipolar interaction and
Raman coupling might seem strange because spin-flip could
intuitively imbalance the atoms of spin-up and spin-down,
thus favoring a ferromagnetic state. However, as we think
further, the ground state should be a Hartree-Fock state with
the following form:

ψ (r1, . . . , rN) =
∑

P

(−1)P

√
N!

φ1(r1)φ2(r2) . . . φN (rN), (23)

FIG. 2. (a) Zero-temperature phase diagram as functions of SOC
strength λsoc and dipolar interaction λd with λω = 0.2 and λs = 0.
The dashed lines correspond to the phase boundaries shifted by a
finite contact interaction λs = 0.5. Panel (b) is the same as panel (a),
but for λω = 1. (c) Phase diagrams as functions of contact interac-
tion λs and Raman coupling strength λω with λsoc = 1. (d) Phase
diagrams as functions of contact interaction λs and SOC strength λsoc

with λω = 0.2. Both panels (c) and (d) are for λd = 0.3.

where P is an arbitrary permutation. For instance, if we
take N = 2, the total wave function with spin freedom
will become ψ (r1, r2, α, β ) = 1√

2
[φ1(r1, α)φ2(r2, β ) −

φ2(r1, β )φ1(r2, α)]. For a symmetry-broken ferromagnetic
state, the wave function can be certainly written down as
ψ (r1, r2,↑,↑). If we regard the spin-flip term as an operator
F̂ satisfying F̂ |↑〉 = |↓〉, F̂ |↓〉 = |↑〉, then F̂ has a zero
expectation with ψ (r1, r2,↑,↑). For a normal state (S = 0),
the wave function of the spin part must be an antisymmetric
spin singlet, and the whole wave function turns out to be a
combination of ψ (r1, r2,↑,↓) and ψ (r1, r2,↓,↑), which will
add a minus if we exchange spin-up and spin-down and the
expectation of F̂ is also not zero with this state. The analysis
above can be certainly generalized to a many-particle system.
For a many-particle system, the expectation is that F̂ is zero
even in a partially ferromagnetic state and has a nonzero
value only in a symmetric normal state. Thus a system with
a spin-flip term favors a nonferromagnetic phase. This effect
can be also an analogy with the magnetic-nonmagnetic
quantum phase transition as Raman coupling increases in a
bosonic spin-orbit-coupled system [67].

It is also interesting from the phase diagrams of Fig. 2
that the 1D SOC can enhance the ferromagnetism with a
saturation, which can be seen from a rough calculation of the
dipolar energy which takes the form of (d1 · d2)/r3 − (d1 · r)
(d2 · r)/r5, where d1, d2, and r are dipole moments and the
separation of two dipoles. If we equally cast the dipoles of
spin-up and spin-down into a spherical region, the interspecies
DDI and the intraspecies DDI cancel out. But if we separate
two identical spherical balls each filled with dipoles of differ-
ent spins, the interspecies DDI approaches zero as the distance
between two balls becomes large enough with the remaining
intraspecies DDI being a constant value. At a sufficiently large
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FIG. 3. (a) Zero-temperature chemical potential μ (blue solid
line) and magnetization M (orange dashed line) as functions of
Raman coupling strength λω with λsoc = 1. The inset shows the total
spin-flip t = ∑

k〈a†
k,↑ak,↓〉 as a function of λω. (b) Zero-temperature

chemical potential μ (blue solid line) and magnetization M (orange
dashed line) as functions of λsoc with λω = 0.2. Both panels (a) and
(b) are obtained with λd = 0.30 and λs = 0.1.

1D SOC, Fermi surfaces are well separated in momentum
space, under which the difference of total DDI between a
normal state and a ferromagnetic state will saturate with the
separation of Fermi surfaces.

The detail of the ferromagnetic transition is analyzed by
plotting the chemical potential and magnetization as displayed
in Fig. 3. The derivations of chemical potential at transition
points behave discontinuously, manifesting a first-order ferro-
magnetic phase transition. The order parameters nk,↑ and nk,↓
are depicted in Fig. 4 and have a rotational symmetry. Quite
contrary to an ideal spherically Fermi surface, the distribution
of particles in momentum space shows a distorted shape be-
cause of the presence of anisotropic dipolar interaction. On the
other hand, the shapes of Fermi surfaces are also influenced
by the Raman coupling strength whose detail can be referred
to Fig. 5. Generally speaking, spin-flip can gradually connect
the disjointed Fermi surfaces as displayed in Fig. 5, while
dipolar interaction can distort Fermi surfaces. Interestingly,
Raman coupling leads to a nonzero spin-flip tk which has

FIG. 4. Zero-temperature density distributions nk,↑[panels (a)–
(c)] and nk,↓ [panels (d)–(f)] and spin-flip distribution tk [panels
(g)–(i)] with λsoc = 1, λs = 0.1, and λd = 0.30. Panels (a), (d), and
(g) are for λω = 0.8; panels (b), (e), and (h) are for λω = 1.2; and
panels (c), (f), and (i) are for λω = 1.45. These figures from the left
column to the right column show a transition from a ferromagnetic
state to a normal state.

FIG. 5. Density distribution of the spin-up component nk,↑ [pan-
els (a1)–(d1)], the spin-down component nk,↓ [panels (a2)–(d2)],
and the spin-flip distribution tk = 〈a†

k,↑ak,↓〉 [panels (a3)–(d3)] with
λsoc = 1 and λs = 0. Panels (a1)–(a3) are for λω = 0.2 and λd =
0.255; panels (b1)–(b3) are for λω = 2.0 and λd = 0.3; panels (c1)–
(c3) for λω = 3.0 and λd = 0.355; and panels (d1)–(d3) are for
λω = 4.5 and λd = 0.45.

a nonuniform distribution in momentum space as shown in
Fig. 6. The total spin-flip t = ∑

k tk is a negative value and
declines monotonously as λω increases, which is displayed in
Fig. 3. We can regard this spin-flip distribution as a symmetry
“gate” through which particles of spin-up can accumulate and
particles of spin-down can escape. As λω increases further,

FIG. 6. Spin-flip distribution tk = 〈a†
k,↑ak,↓〉 when Raman cou-

pling gradually increases with λsoc = 1, λs = 0.1, and λd = 0.3.
Panel (a) is for λω = 2, panel (b) is for λω = 3, panel (c) is for
λω = 6, and panel (d) is for λω = 9. With an increasing λω, the
spin-flip distribution in momentum space becomes more uniform and
attains up to a saturation of −0.5.
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FIG. 7. Ferromagnetic transition temperature as functions of
dipolar interaction λd (a), SOC parameter λsoc (b), and Raman cou-
pling strength λω (c). Panels (a) and (b) are for λs = 0 and panel (c) is
for λs = 0.1 and λsoc = 1. (d) Entropy as a function of temperature
λT with λd = 0.30, λsoc = 1, and λs = 0.1.

this “gate” becomes more widespread, which makes the zero-
temperature ground state a pseudosymmetric one different
from the general Pauli paramagnetic state. Here we have to
specify the pseudosymmetric normal state in our phase dia-
grams as a combination of a true normal state (S = 0) and an
x-direction-polarized state. A true normal state minimizes the
kinetic energy and an x-direction-polarized state minimizes
the Raman coupling energy. Thus as λω increases, the ground
state should be a combination of an actually normal state
and an x-direction-polarized state which minimizes the total
energy.

As the dipolar interaction increases, a dynamical unstable
property is displayed. In this unstable region, compressibility
K−1 = n(∂P/∂n), where pressure P = −(∂E/∂V )N becomes
negative. When this system becomes unstable, K−1 changes
into a negative value from a positive value and passes through
zero, which manifests a divergency. What has to be pointed
out is that the boundary line of the dynamical unstable region
does not rely on λω or λsoc and is hammered at λd ≈ 0.52
[51], which can be inferred from the following facts. When
λω is small enough, the state near the unstable boundary is
a fully magnetic state and tk equals zero, thus leading to no
contribution to the total energy. When λω is large enough,
the state near the unstable boundary is a fully x-direction-
polarized state and t = ∑

k tk is a constant. The energy of the
Raman coupling part takes the form of �V k3

Ft , whose second
derivative to n is zero, thus also making no contribution to
compressibility. As for the intermediate region, the Raman
coupling term equals an x-direction-exerted magnetic field
and does not influence the intrinsic unstable properties as we
have argued in my previous paper [52] that a momentum-
dependent magnetic field in z direction does not change the
unstable region. In Fig. 7, we plot the ferromagnetic transition
temperatures as functions of λd , λsoc, and λω. The transition

temperature increases with λd and λsoc and declines with
λω. Finally, it is also of great interest to know how entropy
behaves at finite temperature, which takes the form of S =
−kB

∑
k{ f (k) ln f (k) + [1 − f (k)] ln[1 − f (k)]}.

As displayed in Fig. 7(d), entropy increases as temperature
increases, which agrees with our general knowledge. What
may seem strange to us is that the residual entropy at zero
temperature does not always approach zero when altering the
Raman coupling parameter. We speculatively attribute this to
be an illusive quantum fluctuation which reflects some defi-
ciencies in the mean-field approximation used in the work.

IV. CONCLUSION

In most of the previous experiments, two-component
fermions were usually a mixture of ultracold 6Li atoms
[5,9,10] in which the system could be cooled down to about
0.1TF to 1TF . By tuning the effective scattering length as

through the Feshbach resonance, a strong repulsive branch
could be reached in which a Stoner-type itinerant ferro-
magnetism could be possibly verified. In a recent Raman
spin-orbit-coupled dipolar 161Dy system [61], the Zeeman
sublevels of |↓〉 ≡ |F = 21/2, mF = −21/2〉 and |↑〉 ≡ |F =
21/2, mF = −19/2〉 were coupled by two Raman lasers with
wavelength λ = 741 nm. The parameters of λω and λsoc are
about 1 and 0.4 with a peak density of 1014 cm−3. The dipolar
interaction parameter λd is about 0.02 and the temperature
λT ranges from 0.1 to 0.4. By using a scattering theory, the
main results of the dipolar 161Dy [61] gas were well explained
consistently. Besides, the early theoretical predictions of the
deformation of Fermi surfaces were also verified from a mo-
mentum distribution image [61]. In our work to observe this
ferromagnetic transition demonstrated, apart from manipulat-
ing the Raman lasers, we can manage to increase the effective
dipolar interaction. For instance, a three-dimensional molec-
ular quantum gas with tunable dipolar interaction [68] was
successfully evaporatively cooled by performing an electric-
field-induced shielding resonance technique which was based
on the theory that the elastic collision and the cooling rates
had a dependence on the angle between the dipole and the
heating direction. This tunability of the dipolar interaction in
this system provides a great platform to attest many of the pre-
vious theoretical predictions. To observe a spin polarization
experimentally, monitoring the suppression of collision could
be an adopted way as collisions would be forbidden in a fully
ferromagnetic state [5]. Otherwise a probing of the spin-dipole
dynamics can also demonstrate the spin susceptibility [9].

In summary, we have investigated the itinerant ferromag-
netic phase transition in a Raman-induced spin-orbit-coupled
dipolar Fermi gas, which is mainly dominated by the
long-range dipole-dipole interaction. The presence of Raman-
induced spin-orbit coupling makes great contributions to the
formation of the itinerant ferromagnetism and provides us a
feasible tool with which to manipulate the system. The long-
range dipole-dipole interaction and the spin-orbit coupling
also bring us interesting physical mechanisms, for instance,
the deformations of Fermi surfaces and novel spin-flip distri-
butions.
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