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We study a cluster Ising model with non-Hermitian external field which can be exactly solved in the language
of free fermions. By investigating the second derivative of energy density and fidelity, the possible new critical
points are tentatively located. The string order parameter and staggered magnetization are then detected to reveal
emergent phases of brand new characteristics. To categorize the exotic phases and phase transitions induced
by non-Hermiticity, we calculate the variation mode of the spin-correlation function as well as of the string
correlation function, which characterize the emergent phases and critical points with different patterns of decay
and critical exponents. With the help of the string order parameter and staggered magnetization, we find that there
are four phases after introducing the non-Hermiticity—the cluster phase, the gapless phase, the paramagnetic
phase, and the antiferromagnetic phase. A phase diagram is then presented to graphically illustrate, based on
two “Kosterlitz-Thouless-like” phase transitions and an Ising phase transition, respectively, the generation of
three critical lines as non-Hermitian strength increases. Our theoretical work is expected to be realized in the
experiment of ultracold atoms, pushing for progress in exploring novel phases and phase transitions.
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I. INTRODUCTION

According to the conventional Landau-Ginzberg-Wilson
paradigm [1], an ordered phase is characterized by certain
symmetry breaking of the system, whereas a disordered phase
features the preservation of symmetry. The phase transition
between ordered phases and disordered phases can be detected
by certain local parameters. However, Kosterlitz and Thouless
discovered a continuous phase transition without symme-
try breaking in systems involving classical vortex topology,
which is named the Kosterlitz-Thouless (KT) phase transi-
tion [2]. The key characteristic of a KT phase transition is
that it occurs between a disordered phase and a gapless phase
with quasi-long-range order which can be detected by the
power-law decay of the correlation function.

With the rapid development of quantum simulation and
computation, the marriage of traditional condensed-matter
physics and cutting-edge experimental techniques gives birth
to various new topics. In highly pure and controllable ul-
tracold atom platforms, a triangle optical lattice can be
set up with atoms loaded in a unique way [3] so as to
create an equivalent three-spin ring-exchange interaction in
a spin system that can be mapped to a “zigzag chain.”

*These authors contributed equally.
†lizphys@m.scnu.edu.cn

Notably, the ground state of the system is a cluster state [4],
a disordered state whose spin spatial rotational symmetry is
protected. However, research also indicates that except for a
three-spin ring interaction, a two-spin interaction relating to
the symmetry-breaking state is also observed in such a system,
causing competition between the two kinds of interactions.
From the view of quantum information, researchers regard
the two-spin interaction as a perturbation, for it will damage
the symmetry-protected topological (SPT) cluster state, and
they are curious about the SPT threshold of robustness [5–10].
From the perspective of condensed-matter physics, the exotic
continuous quantum phase transitions (QPTs) between the
SPT phases and symmetry-breaking phases are fascinating for
their own sake [11–13]. Therefore, the cluster Ising model is
put forward as a good toy model to investigate the phase tran-
sitions in such quantum many-body systems. Generally, the
SPT cluster phase is protected by a Z2 × Z2 symmetry [14]
and can be characterized by nonlocal string order [15,16],
while the symmetry-breaking antiferromagnetic (AFM) state
can be identified by local staggered magnetization [17,18].

The above discussion is based on traditional quantum
mechanics, which requires the Hermiticity of observables
to ensure that their eigenvalues are real numbers. However,
non-Hermitian physics has currently attracted extensive re-
search interest as the non-Hermitian experimental techniques
mature in a wide range of tabletop experimental plat-
forms [19,20], including the ultracold atom system [21,22],
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FIG. 1. Graphic demonstration of the cluster Ising model with
dissipation, where λ/J is the ratio of Ising exchange strength to
cluster exchange strength and � is the strength of loss or gain. We
take J = 1 in the following discussion.

optical system [23–26], nitrogen-vacancy center [27], etc.
Many novel non-Hermitian phenomena have been detected,
such as parity-time (PT ) symmetry [28–30], non-Hermitian
skin effect [31,32], new topological behaviors associated
with exceptional points [20,33–38], disorder induced by non-
Hermiticity [39–42], etc. Recently, much attention has been
paid to how non-Hermiticity influences quantum phase tran-
sitions in systems with rotation-time-reversal (RT ) symme-
try [42–46], spin model with imaginary external field [47–51],
and so on. It is also worth mentioning that some researchers
have developed a non-Hermitian linear response theory, which
uses dissipation as a means to reveal the properties of a Her-
mitian equilibrium system [52].

In this work, we try to uncover the connection between
novel emergent phases and non-Hermiticity without PT or
RT symmetry. The main body of this paper is organized
as follows. In Sec. II, we introduce the cluster Ising model
with on-site dissipations and analytically transform it into a
free fermion expression. In Sec. III, the observables and the
methods we adopted to characterize quantum phase transi-
tions are presented. In Sec. IV, we give the theoretical results
of observables and discuss the exotic phase diagram and phase
transitions. We summarize our work in Sec. V.

II. MODEL AND EXACT SOLUTION

In this section, we establish the non-Hermitian cluster Ising
model and conduct the diagonalization procedure to obtain an
exact solution of the ground state. Based on the conventional
cluster Ising model, we build up our Hamiltonian by inserting
dissipation, which is equivalent to an external imaginary field.
The expression reads

H = −J
N∑

l=1

σ x
l−1σ

z
l σ x

l+1 + λ

N∑
l=1

σ
y
l σ

y
l+1 + i�

2

N∑
l=1

σ u
l , (1)

where σ x
l , σ

y
l , and σ z

l are Pauli matrices of the lth spin and σ u

denotes the matrix [
1 0
0 0] corresponding to the loss or gain,

which is a simple way to involve non-Hermiticity in optical
or atomic experiments [24,40,53,54]. N is large enough for us
to view N/2 as a “decent half” regardless of the parity of N .
There are three control parameters J , λ, and � in our model,
where the former two indicate the competition between the
SPT phase and symmetry-breaking phase, while the latter
determines the strength of the complex field (see Fig. 1).
Notably, in this work, we set J = 1 and take it as an energy
unit in the following calculations.

The diagonalization process can be divided into three steps.
First of all, we rewrite the Hamiltonian in free fermionic
language using the standard Jordan-Wigner transformation,
which is defined as

σ z
l = 1 − 2c†

l cl , (2)

σ+
l =

∏
j<l

(1 − 2c†
j c j )cl , (3)

where c†
l and cl are the creation and annihilation operators at

site l , respectively. Then we can obtain the Hamiltonian in a
spinless fermion expression as

H =
N∑
l

[−(c†
l − cl )(c

†
l+2 + cl+2)

+ λ(c†
l + cl )(c

†
l+1 − cl+1)]

− i�

2

N∑
l

(1 − c†
l cl ). (4)

Second, a Fourier transformation cl = 1√
N

∑π/2
k=−π/2 e2π ikl/N bk

is conducted and we have

H = 2
∑

k

[iyk (c†
kc†

−k + ckc−k )

+ zk (c†
kck + c†

−kc−k − 1)]. (5)

Here, yk = −sin(2k) − λsin(k) and zk = −cos(2k) +
λcos(k) + iΓ

4 . Third, a Bogoliubov transformation helps
diagonalize the above equation, which reads

bk = cos

(
θk

2

)
γk + i sin

(
θk

2

)
γ

†
−k, (6)

b−k = cos

(
θk

2

)
γ−k − i sin

(
θk

2

)
γ

†
k . (7)

Eventually, a diagonalized solution is acquired as

H =
∑
k>0

	k

(
γ

†
k γk − 1

2

)
, (8)

where

	k =
√

y2
k + z2

k , (9)

tan(θk ) = −yk

zk
, (10)

and the ground state of the model is

|G〉 =
∏
k>0

[
cos

(
θk

2

)
+ isin

(
θk

2

)
c†

kc†
−k

]
|Vac〉 , (11)

where |Vac〉 denotes the vacuum state of the free fermion.

III. OBSERVABLES AND METHODS

A. Ground-state energy density and its second derivative

The nonanalyticity in the second derivative of ground-state
energy density implies that a continuous QPT occurs at zero
temperature. According to the above solution, the ground-
state energy can be calculated analytically and numerically
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via the equation

Ug = − 2

N

∑
k>0

√
y2

k + z2
k = − 1

π

∫ π

0

√
y2

k + z2
k dk, (12)

and we can easily obtain the second derivative of Ug with

respect to λ, i.e., ∂2Ug

∂λ2 .

B. Fidelity

As the inner product of two wave functions with a tiny
difference in parameters, fidelity is also efficient in indicating
the critical points of QPTs, whose expression reads

F (λ, λ + ε) = 〈G(λ) | G(λ + ε)〉 =
∏
k>0

Fk, (13)

with

Fk = cos
θk (λ) − θk (λ + ε)

2
. (14)

It is noticeable that ε should take a small value. However,
some arbitrariness in choosing the value of ε can be allowed
within a reasonable range, and the selection rule is just as what
we have discussed before [13]. Here, we set ε = 10−5, which
can ensure the stability of results under different parameters.

C. Order parameters

Two kinds of order parameters will be investigated in this
section, i.e., a nonlocal string order parameter characterizing
a disordered phase, and local staggered magnetization char-
acterizing an AFM phase. These order parameters will be
nonzero as long as the system is in the corresponding phase.

Let us begin with the string order parameter, which is
defined as

Ox = lim
N→∞

(−1)N

〈
σ x

1 σ
y
2

( N−2∏
k=3

σ z
k

)
σ

y
N−1σ

x
N

〉
0

. (15)

Using the technique in Ref. [55], we can express it by the
product of Aj = c†

j + c j and Bj = c j − c†
j , i.e.,

Ox = lim
r→∞〈B2A3B3 . . . ArBrAr+1Br+1Ar+2〉. (16)

Then, with the help of Wick theorem [55], we can go on
expanding it by the contractions 〈AjAl〉, 〈BjBl〉, and 〈BjAl〉,
whose expression can be acquired using the ground-state
function. We have

〈AjAl〉 = δ jl , (17)

〈BjBl〉 = −δ jl , (18)

〈BjAl〉 = Gj,l = Gr

= 1

π

∫ π

0
dk[cos(kr) cos θk + sin(kr) sin θk], (19)

where r = j − l . Since 〈AjAl〉 and 〈BjBl〉 are always equal to
zero and by considering the characteristics of their expression,

Ox can be transformed to a Toeplitz determinant,

Ox = lim
r→∞

∣∣∣∣∣∣∣∣∣∣∣∣

G−2 G−3 · · · G−r−1

G−1 G−2 · · · G−r

G0 G−1 · · · G−r+1
...

...
. . .

...

Gr−2 Gr−5 · · · G−3

Gr−3 Gr−4 · · · G−2

∣∣∣∣∣∣∣∣∣∣∣∣
. (20)

From the perspective of a numerical calculation, we can take
finite r and calculate a finite number of integrals to obtain Ox.
Note that r should be as large as possible in order to approach
the thermodynamic limit.

Next, we can acquire staggered magnetization at tempera-
ture T via the calculation of a spin-correlation function,

Rα
jl (T ) = 〈

σα
j σα

l

〉
T , (21)

where α can be x, y, or z. Let us take Rx
jl (T ) as an example.

Similar to the procedure of calculating the string correlation
function, Rx

jl (T ) can also be expanded by Aj = c†
j + c j, Bj =

c j − c†
j , that is,

Rx
jl (T ) =

〈
(c j − c†

j )
∏

j<m<l

(1 − 2cmc†
m)(c†

l + cl )

〉
T

= 〈BjAj+1Bj+1 . . . Al−1Bl−1Al〉T . (22)

By using Wick theorem again, we can also convert Rx
jl (T )

into a Toeplitz determinant,

Rx
r (T )=

∣∣∣∣∣∣∣∣

D(−1, T ) D(−2, T ) · · · D(−r, T )
D(0, T ) D(−1, T ) · · · D(−r + 1, T )

...
...

. . .
...

D(r − 2, T ) D(r − 3, T ) · · · D(−1, T )

∣∣∣∣∣∣∣∣
,

(23)
where the elements of the determinant read

〈BjAl〉T = Djl (T ) = D( j − l, T ) = D(r, T ). (24)

Similarly, Ry
r (T ) can be expressed by

Ry
r (T ) =

∣∣∣∣∣∣∣∣

D(1, T ) D(0, T ) · · · D(−r + 2, T )
D(2, T ) D(1, T ) · · · D(−r + 3, T )

...
...

. . .
...

D(r, T ) D(r − 1, T ) · · · D(1, T )

∣∣∣∣∣∣∣∣
.

(25)
With Ry

r , we can calculate staggered magnetization my with
the definition

lim
r→∞(−1)rRy

r (0) = m2
y . (26)

Overall, with the above expression, we can investigate the in-
fluence of non-Hermiticity on the cluster Ising model’s phase
distribution at certain temperature.

D. Variation mode of correlation function

In phase transition theory, the spin-correlation function
Ry(r) decreases to a fixed nonzero value as r increases in
the symmetry-breaking phase, in contrast with the exponential
decay to zero in the disordered phase. At the critical point
between these two phases, Ry(r) exhibits a unique power-law
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FIG. 2. The second derivative of ground-state energy density
with respect to λ. (a) When � = 0, the singularity occurs at λ = 1,
which is in good agreement with the critical point of a standard
cluster Ising model. (b) When � = 0.6, the nonanalytical point in
the Hermitian case splits into three points, indicating new potential
critical points. (c) When � = 1.6, the distance between the three non-
analytical points increases with the growing non-Hermitian strength.

decay. Similarly, the variation mode of the string order param-
eter Ox(r) also carries the key information of the phases and
phase transitions. Ox(r) tends to be a constant in a nontriv-
ial cluster phase, rather than the exponential decay in trivial
phases. Moreover, it is worth mentioning that if one plots the
curve of the power-law decay in the ln-ln coordinates, it will
become a straight line and the slope of the line will directly
reveal one of the critical exponents η.

IV. RESULTS AND DISCUSSIONS

In this section, we are going to illustrate the influence of
non-Hermiticity on different observables. Let us start with the
second derivative of the ground-state energy density. In the
Hermitian case, as shown in Fig. 2(a), the singularity emerges
at λ = 1, which corresponds to the critical point of the stan-
dard cluster Ising model. However, when the non-Hermitian
strength increases [see Figs. 2(b) and 2(c)], the singular point
turns into three points, which drift apart from one another with
an increasing �. The emergence of new nonanalytical points
indicates possible new phase transitions that remain unknown.
Notably, the continuous first derivative of Ug is also shown in
Appendix to prove that all three of these phase transitions are
continuous phase transitions.

We also demonstrate the fidelity whose singularity charac-
terizes a phase transition as well. As is shown in Fig. 3(a),
in the Hermitian case, the singular point also works well in
characterizing the SPT-AFM phase transition at λ = 1. Then,
we turn to the non-Hermitian cases as � increases to 0.6 and
1.6 [see Figs. 3(b) and 3(c)]. The behavior of singularity is in
good agreement with that of ∂2Ug/∂λ2. We can observe two

5.6×10-9

1.8×10-7

3×10-9

FIG. 3. The distribution of 1 − F (fidelity) vs λ. (a) When � = 0,
the singular point well indicates the critical point of a conventional
SPT-AFM phase transition. (b) When � = 0.6, the fidelity also char-
acterizes possible new phase transition points. (c) As � ascends to
1.6, the behavior of singularity is the same as that of the second
derivative of energy density.

more emerging singular points and witness them moving away
from each other as non-Hermiticity increases, which denotes
the emergence of the unknown phase transition. The results
of fidelity and the second derivative of ground-state energy
nicely support each other.

When one investigates the Hermitian cluster Ising model,
it is a standard procedure to calculate the string order pa-
rameter Ox and staggered magnetization my. One can directly
recognize the domination of the disordered (ordered) phase
with the help of a nonlocal (local) order parameter, i.e.,
string order parameter (staggered magnetization), provided it
is nonzero. We also investigate the distribution of these two
order parameters under different non-Hermitian strengths. In
the Hermitian case [see Fig. 4(a)], the behaviors of Ox and
my are the same as the previous research, where Ox (my) is
nonzero when λ < 1 (λ > 1) and its decline is continuous.
However, when we increase the non-Hermitian strength �

from 0 to 2, the distribution of the order parameters changes
greatly. At first, on the one hand, Ox shows an intense but
continuous decline after the kink at the first critical point,
while on the other hand, the parameter my illustrates a sharp
but continuous increase before the kink at the third critical
point. The insets of Fig. 4(b) show the close-ups of continuous
variation around the two kinks at critical points. Note that
although the kinks at continuous critical points are not to
be found in the Hermitian case, recent studies have proved
that this kind of kink is actually a real phenomenon in the
non-Hermitian case [56,57]. Thus, after involving dissipation
strength, one can witness that the original two phase zones are
divided into four. Then, one can see that in zones I and II, Ox

is nonzero and my is zero. In zone IV, my is nonzero and Ox is
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FIG. 4. The numerical results of string correlation function Ox

and staggered magnetization my for the (a) Hermitian case with
� = 0 and (b) non-Hermitian case with � = 2.0. The insets of (b) are
close-ups of the continuous change region around the two phase
transition points.

zero. However, in zone III, both Ox and my are zero, which
is beyond the way of phase classification in the Hermitian
case. In addition, it is noticeable that this is a numerical result
where r in Eqs. (20) and (26) is taken as 1000 instead of
infinite. Thus, a tiny numerical error is involved, leading to
some continuous transition areas between different zones. In
principle, there will be some nonanalytical slump as long

as r is large enough to approach the thermodynamics limit,
the position of which is also consistent with that of singular
points, as we calculated above.

From the above discussions, it is obvious that the introduc-
tion of a non-Hermitian term leads to new phases and phase
transitions that transcend the framework of the Hermitian
case. After that, we want to classify the emergent phases and
phase transitions with the help of the variation modes of spin-
correlation function Ry(r) and string parameter Ox(r). We
investigate the variation of Ox(r) and Ry(r) at different λ and
under different non-Hermitian strengths �. When � = 0, the
critical point is at λ = 1, which denotes the cluster-AFM phase
transition with symmetry breaking. From Fig. 5(a), we can see
that Ox(r) remains a constant value before λ = 1 and shows
exponential decay to zero after λ = 1, indicating a nontrivial
cluster phase and trivial AFM phase, respectively. Meanwhile,
from Fig. 5(c), we can see that the curves of Ry(r) before λ =
1 exhibit the exponential decay and those after λ = 1 decrease
to fixed nonzero values, denoting a symmetry-protected clus-
ter phase and symmetry-breaking AFM phase, respectively.
Notably, as is shown in the insets of the two graphs, the curves
at the critical point show the power-law decay, indicating the
phase transition. The critical exponent η at that critical point
can also be obtained as 3/4 according to the slope of the line
in the ln-ln coordinates (natural logarithm), which is different
from that of the Ising universality class. Previous work [12]
also points out that although most of the critical exponents
of the Hermitian cluster Ising model are equal to that of the
Ising universality class, the central charge of them is different,
which means the phase transition in the Hermitian cluster
Ising model is beyond the Ising universality class. From our
calculation, the difference in critical exponent η also provides
more evidence to support the above claim.

Interestingly, as � increases to 2 [see Figs. 5(b) and 5(d)],
exotic phases and phase transitions are revealed by the
variation mode of Ox(r) and Ry(r). Let us start with Ox(r)

FIG. 5. The variation modes of string parameter |Ox (r)| and correlation function |Ry(r)| at different λ for (a),(c) Hermitian case with � = 0
as well as (b),(d) non-Hermitian case with � = 2. When � = 0, the insets plot the curves at critical point λ = 1 in ln-ln coordinates and show
the slope K of the lines. As � increases to 2, the three critical points are at 0.551, 0.956, and 1.424. The insets also show the curves featuring
power-law decay in ln-ln coordinates (with subscript e).
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FIG. 6. The � − λ phase diagram according to Ug’s second
derivative. In the Hermitian case (� = 0), there is a conventional
critical point of the Ising universal class at λ = 1. With the increase
of �, the critical point splits into three critical points, denoting the
phase transitions among the four different phases.

[see Fig. 5(b)]. In zone I before the first critical point, Ox(r)
remains a constant as string length r increases, which in-
dicates it is a nontrivial cluster phase. In zones III and IV,
Ox(r) decreases exponentially to zero, which indicates they
are trivial phases. However, in the whole zone II, Ox(r) ex-
hibits a power-law decay and the slope of the curves in the
ln-ln coordinate system is close to −0.5, which indicates that
zone II is a gapless phase and the critical exponent η of the
phase transitions is 1/2. Then, let us move on to the behavior
of Ry(r) [see Fig. 5(d)]. One can only observe the power-law
decay at the third critical point, which means that the sym-
metry breaking only occurs at the third phase transition. By
analyzing the above two clues with the distributions of Ox

and my shown in Fig. 4(b), we find that in zone IV, Ox is
zero and AFM order parameter my is nonzero, which means
that zone IV is a trivial AFM phase with symmetry breaking.
However, both Ox and my are zero in zone III, which means it
is a trivial phase without symmetry breaking and magnetism.
Thus, it can only be a PM phase in a one-dimensional chain.
Therefore, it should be a paramagnetic (PM)-AFM phase tran-
sition of the standard Ising universality class between zones
III and IV. This claim is also supported by the critical exponent
obtained by the slope of Ry(r) at the critical point between
zones III and IV: η = 1/8, which is consistent with that of
the standard Ising universality class. As a result, the phase
transition between zones I and II as well as zones II and III are
phase transitions between a gapped phase and a gapless phase,
so we call them “KT-like” phase transitions. To conclude, the
introduction of the non-Hermitian term gives rise to novel
phases and phase transitions as well as to the shift of critical
points.

To be more comprehensive and intuitive, we investigate the
� − λ phase diagram according to the nonanalytical points of
Ug’s second derivative (see Fig. 6). When � = 0, there is only
one SPT-AFM phase transition that is beyond the Ising uni-
versality class at λ = 1. As � grows, the critical point extends
to three consecutive critical lines. Blue, red, and yellow lines
correspond to two KT-like phase transitions and a standard
Ising phase transition, respectively. Notably, only the phase

FIG. 7. The first derivative of ground-state energy density Ug

under different dissipation strength �. (a) When � = 0, the distri-
bution of ∂Ug/∂λ with λ. (b) When � = 0.6, the distribution of
∂Ug/∂λ with λ. (c) When � = 1.6, the distribution of ∂Ug/∂λ with λ.
Insets: the zoom-in of the central area where the second critical point
lies. All of the above distributions are continuous at the critical
points.

transition on the yellow critical line still accompanies with the
breaking of spin rotational symmetry.

V. SUMMARY

There is an SPT phase and an AFM phase in the Her-
mitian cluster Ising model and the phase transition between
them is beyond the Ising universality class. The influence
of non-Hermiticity on the cluster Ising model is investigated
in this work. We first detect the singular behaviors of the
second derivative of energy density and fidelity, finding that
new critical points may emerge and move away from each
other. Next, we numerically investigate the string order pa-
rameter and staggered magnetization, and the results show
that the introduction of non-Hermiticity will give rise to a very
rich phase diagram featuring phase transitions between four
phases. In order to characterize them, we then investigate the
variation modes of the string parameter and spin-correlation
function, which help us distinguish different phases and char-
acterize three phase transitions with the critical exponent.
By combining the result of the string order parameter and
staggered magnetization, the four phases are identified as a
cluster phase, a gapless phase, a paramagnetic phase, and an
antiferromagnetic phase, respectively. The phase transitions
between them are two KT-like phase transitions and one stan-
dard Ising phase transition with the corresponding critical
exponents η = 1/2, 1/2, and 1/8, respectively. Eventually, we
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give the � − λ phase diagram to visualize the emergence and
extension of the critical lines.

In the end, we briefly clarify the possible mechanism be-
hind the novel phenomena. In the Hermitian case, when λ <

1, the SPT phase of the cluster Ising model is well protected
by a Z2 × Z2 symmetry, i.e., both the Z2 symmetry of σz’s
product and the symmetry of time reversal are unbroken.
However, after introducing the non-Hermitian external field,
though the Z2 symmetry of σz’s product is intact, the time-
reversal symmetry is broken, which leads to the emergence of
the cluster phase in zone I, the closing of gap in zone II, as
well as the emergence of the paramagnetic phase in zone III.
The deeper mechanism behind the relation between the non-
Hermitian external field and gapless phase remains unclear to
date, which is related to the developing nonunitary conformal
field theory, and we will discuss it in our future work. Our
work can be realized in an ultracold atom experiment and
will shed light on the experimental construction of novel
phases and phase transitions in open quantum many-body
systems.
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APPENDIX: FIRST DERIVATIVE OF GROUND-STATE
ENERGY DENSITY

To prove that all the phase transitions in the non-Hermitian
case are continuous, we present the first derivative of the
ground-state energy density Ug (see Fig. 7), from which one
can see that the first derivative of the order parameters is
continuous. Since the second derivative of Ug is discontin-
uous (see Fig. 2), all the phase transitions after introducing
non-Hermitian dissipation are standard continuous phase
transitions.
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