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Interface potential and line tension for Bose-Einstein condensate mixtures near a hard wall
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Within Gross-Pitaevskii (GP) theory we derive the interface potential V (�) which describes the interaction
between the interface separating two demixed Bose-condensed gases and an optical hard wall at a distance
�. Previous work revealed that this interaction gives rise to extraordinary wetting and prewetting phenomena.
Calculations that explore nonequilibrium properties by using � as a constraint provide a thorough explanation for
this behavior. We find that at bulk two-phase coexistence, V (�) for both complete wetting and partial wetting is
monotonic with exponential decay. Remarkably, at the first-order wetting phase transition, V (�) is independent of
�. This anomaly explains the infinite continuous degeneracy of the grand potential reported earlier. As a physical
application, using V (�) we study the three-phase contact line where the interface meets the wall under a contact
angle θ . Employing an interface displacement model we calculate the structure of this inhomogeneity and its line
tension τ . Contrary to what happens at a usual first-order wetting transition in systems with short-range forces, τ
does not approach a nonzero positive constant for θ → 0, but instead approaches zero (from below) in the manner
τ ∝ −θ as would be expected for a critical wetting transition. This hybrid character of τ is a consequence of the
absence of a barrier in V (�) at wetting. For a typical V (�) = S exp(−�/ξ ), with S the spreading coefficient and
ξ a decay length, we conjecture that τ = −2 (1 − ln 2) γ ξ sin θ is exact within GP theory, with γ the interfacial
tension and 0 � θ � π .
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I. INTRODUCTION

The experimental realization of Bose-Einstein condensa-
tion (BEC) in dilute Bose gases, now more than 25 years
ago, initiated big experimental and theoretical advances in
the field of ultracold gases [1]. Most interesting in this
context is that one gained immediate access to, and ex-
tended experimental control of the physics of, very pure
quantum systems. For example, by means of Feshbach res-
onances [2–4], one is capable of tuning the interactions
between the trapped atoms. Furthermore, an evanescent wave
surface trap provides one with adjustable particle-wall inter-
actions and permits one to approximate a “hard-wall” type
of boundary [5,6].

Uniform (flat-bottom) optical-box traps are now increas-
ingly used to establish homogeneous ultracold gases in
different dimensionality [7,8]. This is particularly interesting
from our perspective in this paper because a homogeneous
system in semi-infinite geometry is the ideal theoretical set-
ting for studying wetting phenomena. Therefore, results of
experiments in flat-bottom traps can be compared straight-
forwardly with predictions of density-functional theories with
(hard or soft wall) boundary conditions and without (har-
monic) external potential. Moreover, hybrid traps also exist

that combine boxlike confinement along two directions and
harmonic along the third [9] whereby the local chemical po-
tential can be adjusted. It has been suggested that these are of
particular interest for studying interfaces [7].

Atomic BEC mixtures have been realized using either
different isotopes or atomic species or by combining dif-
ferent hyperfine states of the same isotope. While weakly
demixed binary Bose-Einstein condensates (BECs) were al-
ready observed more than 20 years ago [10–15], strong phase
separation was demonstrated only a decade later [16–19].
More recent experimental realizations of various new mix-
tures and their immiscibility properties include Cs and Yb
[20], 41K and 87Rb [21], 39K and 87Rb [22], 23Na and 87Rb
[23].

In sum, the technological building blocks for experimen-
tally investigating the physics of binary BECs near walls exist.
Additionally, the experimental probing of an ultracold-gas
interface was recently shown for a Bose-Fermi system [24]
while multiple studies stipulate the important role of interface
physics in explaining equilibrium configurations of current-
day experimental situations [25–28]. Interface statics [29] and
especially interface dynamics of multicomponent condensates
gained substantial recent attention [30–33].
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II. WETTING PHASE TRANSITION AND
INTERFACE POTENTIAL

A wetting phase transition or, more generally, inter-
face delocalization transition [34–37] (for early reviews, see
[38–40]), in its simplest form, takes place when one phase,
say phase 1, is expelled from the surface or “wall” by another
phase, 2, which is then said to “wet” the interface between
the wall and phase 1. The wetting phase forms a macroscopic
layer between the wall and phase 1. The wetting transition
corresponds to a singularity in the equilibrium surface excess
(free) energy of the state in which phase 1 is the phase present
in bulk. This singularity manifests itself in the manner that
Young’s contact angle goes to zero when the wetting transi-
tion is approached from the partial wetting state or, simply,
“nonwet” state.

When the equilibrium (excess) energy exhibits a discon-
tinuity in its first derivative, the wetting transition is of first
order. This is the case of concern in our present study.
In a previous paper the first-order wetting phase transition
predicted by the Gross-Pitaevskii (GP) theory for adsorbed
binary mixtures of BECs at a hard wall was studied, as well as
the accompanying prewetting phenomenon [41]. Later work
elaborated on this and studied also softer walls and critical
wetting [42]. For the readers’ convenience, in [42] a thorough
description was provided of the setup and principal formalism
of the wetting phase transition in adsorbed BEC mixtures. In
addition, a pedagogical introduction is available in [43].

For our main purpose in this paper, being the derivation
and application of an interface potential for adsorbed BECs,
we would like to stress that some of the properties we will
encounter possess close analogs in a mean-field-type theory
for another quantum system, the Ginzburg-Landau theory of
superconductivity. The existence of (first-order and critical)
interface delocalization transitions in surface-enhanced type-I
superconductors was predicted in 1995 [44,45] and the later
derivation of the interface potential for that system has been
important to provide a deeper understanding and to offer fur-
ther new physics (nonuniversal exponents for critical wetting,
three-phase contact line structure) [46–50]. A succinct review
including a summary of the experimental verification of wet-
ting in superconductors can be found in [43].

The concept of an interface potential is a powerful tool
for studying the wetting phase transition at a level which
is more phenomenological (i.e., less microscopic) than a
density-functional theory, but at the same time quantitatively
precise for determining the character and associated singu-
larities of phase transitions and critical phenomena. This is
especially the case when the interface potential is used in an
interface Hamiltonian theory in combination with a functional
renormalization group approach [51–55]. An early review
[39] covers the uptake of this development and a later one
reports on its subsequent advancement [56]. Recently, the
usefulness and power of an interface-potential based approach
was demonstrated in the ingenious nonlocal interface Hamil-
tonian theory of Parry and coworkers reviewed in [57,58].

The interface potential V (�), in its simplest form, is a
collective-coordinate representation of the excess (free) en-
ergy per unit area of a homogeneous wetting film of prescribed
thickness � (� 0), regardless of whether or not this film is

Phase 1

Phase 2

Wall

FIG. 1. Configuration with pure phase 1 stable in bulk and an
adsorbed film of pure species 2 at the wall. This configuration is
homogeneous (i.e., translationally invariant in directions parallel to
the wall). The interface potential V (�) maps a configuration with a
microscopic adsorbed film of species 2 of thickness �, or a macro-
scopic wetting layer of pure phase 2 (� → ∞), to its excess grand
potential.

an equilibrium state. The system under consideration is il-
lustrated in Fig. 1. The dependence on the phenomenological
variable � is obtained after integrating out the microscopic de-
grees of freedom and performing a partial partition sum over
all configurations that satisfy the constraint of fixed �. The
stable (or metastable) states are recovered at the global mini-
mum (or local minima) of this function, which can also be a
boundary minimum (e.g., at � = 0). However, the entire func-
tion V (�) is useful when studying spatially inhomogeneous
states which connect stable states via a path along which �

varies. An example of this is a drop or wedge configuration
of an interface which meets the wall under a contact angle θ ,
relevant to partial wetting states.

In this work we derive the interface potential for a boson
mixture at zero temperature near a hard wall. Two phase-
segregated species are distinct in bulk and mutually permeate
at their interface, the structure of which is induced by three
distinct atomic interactions. As compared to the more usual
one-component (liquid-gas or binary liquid mixture) interfa-
cial system, this gives rise to the existence of at least two
additional length scales. We present the interface potentials
for five limiting regions of parameter space using analytic
methods. Although the system under consideration concerns
BEC phases, one may consider this work to describe also
the interface potential for a more general nonlinear two-
component system.

As a new physical application, we employ V (�) in an
interface displacement model and calculate the structure and
excess energy of an inhomogeneous state describing the
three-phase contact line where the interface between the two
condensates meets the optical wall under a contact angle θ .
The excess energy of this linear inhomogeneity is named the
line tension and it has been the subject of exquisite curiosity
and vigourous attention since, roughly, 1990. For a thorough
discussion of line tension statistical mechanics, see [59]. Es-
pecially the behavior of the line tension upon approach of
a wetting phase transition has been an arena of lively de-
bates and astonishing findings. For a review of line tension
at wetting, see [60]. We will uncover that in this system of
BECs adsorbed at a hard wall, in which the first-order wetting
transition possesses extraordinary features, the line tension
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follows suit and displays a singularity at wetting that would
normally be expected for critical wetting.

After introducing the setup and the Gross-Pitaevskii for-
malism in Sec. III, we recall the wetting phase diagram for
this setup in Sec. IV and present the thermodynamics of a two-
component interface potential in Sec. V. Its definition is given
in Sec. V A, and Sec. V B is devoted to a so-called “dynamical
approach” by means of which we illustrate our findings. A
discussion of the expected behavior of the interface potential
is given in Sec. V C. Our results are then presented in Sec. VI.
More specifically, in Secs. VI A and VI B, we assume the
healing length of the adsorbed phase to be much longer than
the healing length of the bulk phase and vice versa while
in Sec. VI C, we deal with large interspecies interactions or
strong segregation. Then, in a fourth regime in Sec. VI D,
we introduce and apply numerically a method to study the
case of a strong healing length asymmetry, combined with
strong interspecies repulsion. The case of weak segregation
and comparable healing lengths of the phases, is studied in
Sec. VI E. Based on the interface potential we then calculate
in a mean-field approach the structure of a three-phase contact
line and its line tension in Sec. VII. We conclude in Sec. VIII.
The results we present are partly based on earlier unpublished
work [61].

III. EXCESS ENERGY OF BOSE MIXTURES

Consider BEC gases 1 and 2, both at fixed chemical poten-
tials μ1 and μ2 , respectively. Phase 2 (when present) resides
only in the vicinity of the hard wall which is at z = 0 whereas
phase 1 prevails far from the wall where it is the phase im-
posed in bulk. An additional translational symmetry in the x-y
plane allows one to restrict attention to flat interfaces such that
the development of the interface potential becomes essentially
a one-dimensional problem. Weakly interacting BEC gases
at T = 0 are well described by the ground-state expectation
value of the boson field operator �i (z) with i = 1, 2 [1,62].
In the absence of particle flow one can choose the order pa-
rameters to be real valued such that the excess grand potential
per unit area can be cast in the form

γ (μ1 , μ2 ) =
∑

i=1, 2

(∫
z>0

dz �i

[
− h̄2

2mi
∇2 − μi

]
�i + Gii

2
�4

i

)

+
∫

z>0
dz

[
G12�

2
1
�2

2
+ P1

]
, (1)

from which one derives the coupled time-independent Gross-
Pitaevskii (GP) equations by minimization with respect to
�1 and �2 [41,42]. Interactions between atoms of species
i and j are characterized by the coupling constants Gi j =
2π h̄2ai j (m

−1
i

+ m−1
j

) > 0 with ai j the s-wave scattering
lengths and i, j = 1, 2. Henceforth, we denote the excess
grand potential per unit area by the more convenient term
“excess energy.”

The imposed boundary conditions are

�2 (z = 0) = �1 (0) = 0, �2 (∞) = 0, and �1 (∞) ≡ √
n1 ,

(2)

where n1 is the number density of the pure phase of conden-
sate 1 with fixed chemical potential μ1 and self-interaction

2

1

D

G  G   /G=
11 22 12

FIG. 2. The wetting phase diagram at two-phase coexistence
(μ2/μ2

= 1) with phase 1 imposed far from the wall, as a function
of ξ2/ξ1 and 1/K = √

G11 G22/G12 . The wetting line connects the
points (0,0) and (1,1) and separates the regions of partial wetting
(PW, no absorbed film of phase 2) and complete wetting (CW, a
macroscopic wetting layer of phase 2). When 1/K > 1, phases 1
and 2 mix and there, a (metastable) 1-2 interface does not exist. The
region indicated by letter A is treated in Sec. VI A, region B with
ξ2/ξ1 → ∞ in Sec. VI B, and analogously for regions C, D, and E.

G11 , i.e., n1 = μ1/G11 . Note that the particle-wall interactions
are solely mediated by the first two conditions in (2). The pure
bulk phase pressures Pi and the chemical potentials μi are
related by Pi = μ2

i
/(2Gii ) with i = 1, 2. Therefore, each value

of μ1 has an associated chemical potential for phase 2, defined
by μ

2
≡ μ1

√
G22/G11 , such that at two-phase coexistence, i.e.,

when P2 = P1 , μ2 equals μ
2
. We define n2 ≡ μ

2
/G22 .

IV. WETTING PHASE DIAGRAM

For the pure phases 1 and 2, the typical lengths of variation
of wave functions �1 and �2 are the healing lengths ξ1 ≡
h̄/

√
2m1μ1 and ξ2 ≡ h̄/

√
2m2μ2

, respectively. We introduce
two bulk parameters, namely, ξ2/ξ1 , and the interphase inter-
action parameter K ≡ G12/

√
G11 G22 . One can then rewrite K

and ξ2/ξ1 as a function of the masses mi and scattering lengths
ai j as follows [1]:

K = m1 + m2

2
√

m1 m2

a12√
a11 a22

and ξ2/ξ1 = 4

√
m1 a11

m2 a22

. (3)

For our purposes we assume P1 � P2 . In order to obtain pure
phase 1 as the stable phase in bulk, K must be larger than
μ2/μ2

= √
P2/P1 , where the external parameter 1 − μ2/μ2

quantifies the deviation from bulk two-phase coexistence. If,
in addition, P1 = P2 , pure phase 1 and pure phase 2 coexist
in bulk and the condition for phase separation then becomes
K > 1 [63].

The wetting phase diagram at bulk two-phase coexistence
is depicted in Fig. 2. It shows that complete wetting is possible
for practically every value of K whenever ξ2 � ξ1 and it
can also occur for practically every value of ξ2/ξ1 (< 1) in
the regime of weak segregation, i.e., (0 <) K − 1 � 1. The
wetting line (WL), separating the partial wetting (PW) and the
complete wetting (CW) regions, indicates a first-order surface
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phase transition [41]. On the WL, arbitrary film thicknesses
can occur and are associated with an infinite degeneracy of the
grand potential. This entails another peculiarity off of coexis-
tence where this first-order WL is continued by a nucleation
or prewetting line which is all the way of second order and,
contrary to expectations, not tangential to the line of bulk
coexistence at the wetting transition point [41].

The prewetting surface, which contains the WL at μ2/μ2
=

1, satisfies [42]√
K − μ2/μ2

=
√

2

3

(
μ2/μ2

ξ2/ξ1

− ξ2/ξ1

)
. (4)

In Sec. VI, we investigate the regions in the (K, ξ2/ξ1 ) space,
indicated in Fig. 2 by the letters A through E.

V. INTERFACE POTENTIAL

A. Definition

The interface potential V (�) relates a system, shown
schematically in Fig. 1, with phase 1 imposed in bulk and
an adsorbed film of phase 2 of thickness �, to its excess
energy per unit area. In addition, in our convention the poten-
tial vanishes for a configuration with an infinitely thick film
(macroscopic layer) at coexistence with the bulk. Therefore,
one can write

V (�) ≡ γ (μ1 , μ2 ; �) − γ0 , (5)

where we have added the argument � in the functional γ to
highlight that γ is evaluated for an adsorbed film of imposed
thickness �, and where

γ0 ≡ γ (μ1 , μ2
; �)|

�=∞. (6)

We define the film thickness � as

� ≡ 	/n2 ≡
∫ ∞

0

dz ψ2
2
, (7)

where 	 is the adsorption of species 2, being the excess
particle number of species 2 per unit area, and ψ2 ≡ �2/

√
n2

is the reduced wave function of condensate 2. Analogously,
ψ1 ≡ �1/

√
n1 .

This definition is a physically obvious way of relating the
length � to the (in principle) measurable quantity 	. It is
fortunate that the second power of ψ is featured in the inte-
gral constraint (7). This implies that the constrained profiles
are analytic everywhere (except at boundaries) and that the
singularities that are known to occur when a crossing criterion
is used [50] are absent in our approach. We may add here that
there are many ways to define a film thickness, all of which
should lead to the same physics in equilibrium, provided the
definitions and computational implementations are mathemat-
ically sound. An example of two types of criteria used for
defining � within one and the same physical density-functional
model for a two-component order parameter may be found in
[64,65].

Generally, states with arbitrary film thickness � are unsta-
ble as they do not obey the principle of minimal energy for
γ . The standard procedure to derive them nevertheless, using
a variational principle, is to constrain state space to states
with film thicknesses �, while assuming the potential γ still

describes the energy of the system. Thus, instead of γ , one
must minimize

γ̂ (μ1 , μ2 ; �) = γ (μ1 , μ2 ; �) + ��, (8)

with respect to ψ1 and ψ2 . Here the disjoining pressure

� ≡ −∂V (�)/∂� (9)

plays the role of a Lagrange multiplier. One therefore pro-
ceeds by first performing a variational procedure in order to
get the optimal film thickness � at fixed disjoining pressure,
and subsequently deducing the interface potential. We denote
the equations of state which minimize γ̂ with respect to the
bosonic wave functions, by the modified GP equations

ξ 2
1
ψ̈1 = ψ1

[−1 + ψ2
1

+ Kψ2
2

]
, (10a)

ξ 2
2
ψ̈2 = ψ2

[−η + ψ2
2

+ Kψ2
1

]
. (10b)

The dimensionless parameter

η ≡ μ2

μ
2

− �

2P1

(11)

takes over the role of Lagrange multiplier from �. When
the disjoining pressure vanishes, one recovers the equilibrium
solutions for γ which (usually) have the property that no force
is exerted on the 1-2 interface. However, one must also allow
for the existence of boundary minima at which � �= 0, notably
at � = 0. Global minima in the form of boundary minima may
also correspond to equilibrium solutions.

B. A dynamical point of view

By a “mechanical” analogy, used throughout this work, the
modified GP equations (10) can be reinterpreted as Newton’s
equations of motion for two particles where the evolution in
time must be replaced by a variation of the space coordi-
nate z. The particles have one-dimensional “positions” ψi and
“masses” h̄2/(2miμi ) and they move with kinetic energy T in
a potential U (both per unit volume) [66]. Then,

U [ψ1 , ψ2 ] = 2P1

[
ψ2

1
+ ηψ2

2
− ψ4

1

2
− ψ4

2

2
− Kψ2

1
ψ2

2

]
,

(12a)

T [ψ̇1 , ψ̇2 ] = 2P1

[
ξ 2

1
ψ̇2

1
+ ξ 2

2
ψ̇2

2

]
. (12b)

Here, the overdot denotes the derivative with respect to z.
Importantly, there is a one-to-one correspondence between

the wave-function profiles of thickness � and the parameter
η; therefore, all wave profiles for configurations with fixed
film thickness � are the same, independently of μ2/μ2

. In
other words, the nonequilibrium and equilibrium profiles of
equal thickness � are analytic and are the same at two-phase
coexistence and off of coexistence, respectively, provided the
latter exist as equilibrium states. A conservation of energy per
unit volume links the kinetic to the potential energy at each
point:

U [ψ1 , ψ2 ] + T [ψ̇1 , ψ̇2 ] = P1 , (13)

obtained by a summation of the first integrals of the modified
GP equations (10) [67].
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C. Discussion on V (�)

We discuss the behavior of the interface potential before
its explicit calculation. First, introduce the surface tensions
of the pure phases 1 and 2 when adsorbed at the wall, γ1W ≡
γ (μ1 , μ2

; � = 0) and γ2W ≡ γ (μ1 , μ2
; � = ∞) − γ12 , defined

at two-phase coexistence using only μ1 and μ
2

and not μ2 , and
with γ12 ≡ γ12 (μ1 , μ2

) the tension of the 1-2 interface. Expres-
sions for γ12 can be found in [68] and references therein; its
qualitative dependence on K is rather simple: γ12 is maximal
in the limit of K → ∞, decreases upon decrease of K , and
vanishes at K = 1.

It is instructive to reexpress the interface potential by use
of (13) in the following form:

V (�) + γ0 = 2P1 (1 − μ2/μ2
)� + 2P1 (η − 1)�

+ 2
∫ ∞

0

dz T [ψ̇1 (z), ψ̇2 (z)]. (14)

Remarkably, in (14) we were able to isolate the part dependent
on the deviation from bulk coexistence, which is the term
proportional to 1 − μ2/μ2

. Indeed, as mentioned before, the
wave functions for films with thickness � are the same for
different values of 1 − μ2/μ2

.
Starting with a configuration with only species 1 at the

wall, one gets V (�)|�=0 = γ1W − γ0 and since V (�)|�=∞ +
γ0 = γ2W + γ12 , we have that the difference V (�)|�=0 −
V (�)|�=∞ corresponds to the spreading coefficient S:

S ≡ γ1W − (γ2W + γ12 ). (15)

For a system at two-phase coexistence and in equilibrium,
the spreading coefficient S is negative (for partial wetting)
or zero (for complete wetting). A positive S corresponds to
a nonequilibrium state which, in the course of time, may
relax to a complete wetting equilibrium state (of lower excess
energy) with S = 0. Note that since we define the interface
potential to vanish in the limit � = ∞ at bulk two-phase coex-
istence, the partial wetting state (� = 0 in our system) satisfies
V (�)|�=0 = S .

To understand qualitatively how the parameters ξ2/ξ1 and
K influence the interface potential, we consider first a simple
one-component (e.g., an adsorbed liquid-vapor or Ising-type)
system. There, the form of the interface potential in the pres-
ence of interactions of short-range nature (ignoring van der
Waals forces) is

V (�) = h� +
∞∑

m=1

Am e−m�/ξc . (16)

Here h is the bulk field and the expansion coefficients Am are
independent of μ2/μ2

. The length ξc corresponds to the bulk
correlation length which is also the decay length of the tail in
the interface profile. The dominant variation for large � comes
from the first term A1 e−�/ξc , at least when A1 �= 0.

Further on we will establish that an expression akin to (16),
with exponentially decaying terms, gives the generic interface
potential for the two-component BEC system. The second �-
dependent term as well as the integral of (14) are independent
of the deviation from coexistence and depend only on the
constraint that � is fixed. The first �-dependent term, on the
other hand, depends on the deviation from coexistence and is

therefore, by definition, proportional to the “bulk” field

h = 2P1 (1 − μ2/μ2
). (17)

In analogy with the one-component system, one might expect
the length ξc in the binary system to be either ξ1 or ξ2 . How-
ever, we find that this is only true when the mutual penetration
is small. Generally, ξc also depends on the interspecies repul-
sion parameter K .

Yet, (16) turns out inadequate to describe the interface
potential in two regimes: (1) in Sec. VI A, long-range corre-
lations appear and V (�) displays an extraordinary algebraic
decay V (�) ∝ �−1 for large �, and (2) instead of one, two
length scales determine the exponential decay of the interface
potential found in Sec. VI D. The competition and crossover
behavior in the presence of two characteristic lengths was
earlier encountered in [69] and in [48,70] where it gave rise
to nonuniversal critical wetting exponents that depend on the
ratio of these two lengths.

One may wonder whether (17) is indeed what one expects
for the bulk field. For a (nonequilibrium) system with a large
film thickness �, the exponential contributions in (16) vanish
such that the excess energy should be �(P1 − P2 ) with Pi equal
to minus the derivative of � = γ − P1V with respect to the
volume V , evaluated for pure bulk phase i. However, the bulk
field in (17) is not exactly given by P1 − P2 , for the following
reasons. The method to construct the state with large film
thickness � is to minimize the γ̂ which is constrained because
of the applied disjoining pressure. This results in an equal
pressure for pure phase 1 and pure phase 2, where the pressure
is now the derivative of �̂ = γ̂ − P1V with respect to the
volume, again evaluated for the pure bulk phase. One easily
calculates that the pure bulk phase density of phase 2, obtained
with �̂, equals μ

2
/G22 , rather than the density μ2/G22 as

obtained with � [71]. Eventually, h = P1 [−2(μ2/μ2
) + 1] −

(−P1 ) which is (17). Note that a different choice of definition
for � would yield a different h.

VI. RESULTS FOR THE INTERFACE POTENTIAL

In this section we explore the interface potential in the
different regions of the phase diagram indicated in Fig. 2. We
recall that, even at bulk two-phase coexistence, the symmetry
corresponding to the interchange of species 1 and 2 is broken
by imposing phase 1 as the bulk phase far from the wall.
Therefore, the physics for a given ratio ξ2/ξ1 = c is different
from that for ξ1/ξ2 = c. Furthermore, we are interested also
in analytical results within GP theory for very large (or small)
values of this ratio of healing lengths. Physically, these limits
may transcend the validity of the mean-field theory that we
are dealing with because, in view of (3), the ratio of the pure-
species scattering lengths a11/a22 is dramatically sensitive (as
the fourth power) to a change in ξ2/ξ1 and the condition of
“weak interaction” is not guaranteed. Nevertheless, our inter-
est, in part, in strong asymmetry is justified by virtue of the
fact that scattering lengths can be manipulated experimentally
(over many orders of magnitude) by employing Feshbach
resonances [2–4,17], and we wish to know at least what the
mean-field theory predicts for the quantities of our concern,
under these circumstances.
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FIG. 3. The trajectory in the coordinates (ψ1 , ψ2 ) for ξ2/ξ1 = 0,
K = 2 (η = 0.9) with equipotential curves of U in the background.
The points (1,0) and (0,1) are maxima of U , whereas (0,0) is a
minimum and there exists a saddle point for the mixed phase in the
middle. The upper right equipotential curves were left out due to their
large density.

A. Strong healing length asymmetry I

We focus in the following on the situation in which the
adsorbed species 2 has a much smaller healing length than
species 1 or ξ2 � ξ1 . Looking at region 1 in Fig. 2, complete
wetting is expected at coexistence since S is identically zero.
Indeed, first of all γ2W is much smaller than the metastable
extension of γ1W , denoted by γ ∗

1W
because γ2W ∝ ξ2 and γ ∗

1W
∝

ξ1 , and second, γ12 � γ1W . This ascertains the zero spreading
coefficient.

According to the dynamical two-particle approach, ξ2/ξ1 =
0 means that particle 2 cannot gain momentum and will adapt
its position to the potential which is modified by the moving
particle 1. We plot the evolution of the particle positions
(ψ1 , ψ2 ) in Fig. 3 for a system with nonzero film thickness
and ξ2/ξ1 = 0. Starting in the point (0,0), particle 2 jumps to
position

√
η on the short timescale ξ2 . Then, particle 1 starts

to convert its potential to kinetic energy on a timescale �1 =
ξ1/

√
K − 1, as seen from the modified GP equations (10)

since η → 1 when � → ∞:

ξ 2
1
ψ̈1 = ψ1 [ηK − 1 + ψ2

1
(1 − K2)] and ψ2

2
= η − Kψ2

1
.

(18)

Then, particle 2 is stopped abruptly at the position ψ2 = 0
when ψ1 = √

η/K . This abruptness is allowed by a lack of
momentum of the massless particle 2. Subsequently, particle 1
continues climbing the potential hill, reaching the top ψ1 = 1
only after an infinite amount of time. The particles then follow
the equations of motion

ξ 2
1
ψ̈1 = ψ1

[−1 + ψ2
1

]
and ψ2 = 0. (19)

In the Appendix we give the exact interface potential
V (�) together with the applied analytic methods for this case
ξ2/ξ1 = 0. We show V (�) in Fig. 4 for K = 1 and 2, the latter
for different values of μ2/μ2

. For large � and K �= 1, we derive

µ /µ
2 2

µ /µ
2 2

µ /µ
2 2

µ /µ
2 2

FIG. 4. Interface potential V (�) in units of P1ξ1 as a function
of the film thickness � in units of ξ1 when ξ2/ξ1 = 0. The curve
for K = 2 and μ2/μ2

= 1 follows an exponential decay whereas
the slow decay for K = 1 is described by a power law. The thick-
ness �PW indicates the thickness of the prewetting film for K = 2
and μ2/μ2

= 0.9 when phase 1 is stable in bulk and phase 2 is
metastable. No such local minimum, or prewetting film of phase 2,
exists when μ2/μ2

> 1 because phase 1 is not stable in bulk.

the leading terms

V (�) = h� + A1 P1ξ1 e−2�
√

K+1/ξ1 + · · · (20)

with A1 given in (A7) and A1 → 0 when K → 1 and K → ∞.
The fact that the decay length ξc = ξ1/(2

√
K + 1) contains the

parameter K expresses that the film thickness is chiefly modi-
fied by a changing overlap between both species. The interface
potential is a monotonically decaying function for which both
the decay length ξc and V (0) decrease with increasing K (see
Fig. 4). Indeed, upon increase of K , V (0) goes down due to
the increase of γ12 .

For low pressure of the adsorbed species 2, when μ2/μ2
<

1, the energy necessary to adsorb a large film increases lin-
early with its thickness. Nevertheless, for every μ2/μ2

, there
exists an energy minimum for thin prewetting film thickness
�PW (short dotted line in Fig. 4). By a simple calculation using
(20), it is shown that the prewetting film thickness �PW diverges
logarithmically slowly for μ2/μ2

↑ 1. Its asymptotic behavior
is given by

�PW ∼ −[ξ1/(2
√

K + 1)] ln(1 − μ2/μ2
). (21)

As weak segregation is approached, i.e., K → 1, the length
ξc → ξ1/(2

√
2) remains finite, while the coefficient A1 van-

ishes [72]. At the bulk demixing point, i.e., when K = 1,
one can obtain from (A5) a power-law form for the interface
potential:

V (�) = h� + π2P1ξ1

8(�/ξ1 )
− π3P1ξ1

256(�/ξ1 )3
+ · · · . (22)

This potential is also depicted in Fig. 4 for μ2/μ2
= 1. From

(22), one can notice the long-ranged nature (algebraic decay)
of V (�) − h� since it is proportional to 1/�. This interface
potential predicts that the equilibrium configuration in the
limit K ↓ 1 consists of a 1-2 interface that is delocalized from
the surface. This interface, at K = 1, has interfacial tension
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FIG. 5. The trajectory for (ψ1 , ψ2 ) with ξ1/ξ2 = 0, K = 2, and
η = 1.02. Starting at position (0,0), the path goes to α = (0,

√
η)

where it turns back to the point β = (0,
√

1/K ). Further, both ψ1

and ψ2 are nonzero up to the point (0,1).

zero but nevertheless possesses a nonvanishing wave-function
profile that connects the two pure phases in bulk and that is
of infinite width as determined by the diverging interspecies
penetration depths ξi/

√
K − 1, i = 1, 2. This divergence is

reminiscent of a divergent correlation length and in that sense
the limit K ↓ 1 is akin to an approach to criticality, but with
still two distinct coexisting pure phases 1 and 2 in bulk.

The previous discussion was for ξ2/ξ1 = 0. If one sets ξ2/ξ1

to a small but nonzero value, the most significant change to
V (�) is a decrease of the spreading coefficient V (0), caused
by a modification of the wave function ψ2 at both locations
where it vanishes [68]. One location is near the surface, where
a negative correction linear in ξ2/ξ1 is incurred. The second
location is in the 1-2 interface where a positive correction
quadratic in ξ2/ξ1 results [68].

B. Strong healing length asymmetry II

We concentrate now on the inverse case ξ1 � ξ2 . As
one expects, partial wetting is met, evidenced by a negative
spreading coefficient since γ1W � γ2W . Species 2 is so strongly
disfavored near the wall, that it rather nucleates in the bulk.
Indeed, we find that “wall-adsorbed states” attain a higher
energy than “bulk-nucleated states” with the same thickness
� and where the latter are planar bulk states or essentially one-
dimensional stationary soliton states. Henceforth, we focus on
the limiting case ξ1/ξ2 = 0. A general two-particle trajectory
for wall-adsorbed states is given in Fig. 5. Particle 2 starts
at position (0, 0) and reaches its maximal position α over
a timescale ξ2 , where it reverts its motion, up to the point
β = (0,

√
1/K ). This evolution is described by

ξ 2
2
ψ̈2 = ψ2

[−η + ψ2
2

]
and ψ1 = 0. (23)

When ψ2 reaches the point β for the second time, ψ1 becomes
nonzero and in analogy with the last section, the conversion
of kinetic to potential energy is achieved on a timescale �2 =

FIG. 6. Interface potential V (�) in units of P1ξ2 as a function
of the film thickness � in units of ξ2 for the wall-adsorbed and the
bulk-nucleated states when ξ1/ξ2 = 0 and K = 5 and for different
μ2/μ2

. The point L indicates a stratification point where pure phase
1 is separated into two regions due to a planar film of pure phase 2
parallel to but infinitely far from the wall. Note that the thickness �

which corresponds to the point L does not equal �Q . The latter is the
initial point of the potential of the wall-adsorbed state for all values
of μ2/μ2

. However, the values of the potential for the three different
values of μ2/μ2

at �Q , differ slightly; this is not visible. It is obvious
that we are in the partial wetting regime and that for all values for �,
the bulk-nucleated state has the lower excess energy.

ξ2/
√

K − 1 as may be seen from

ξ 2
2
ψ̈2 = ψ2

[
ηK − 1 + ψ2

2
(1 − K2)

]
and ψ2

1
= η − Kψ2

2
.

(24)

A remarkable feature is encountered when considering small
adsorption �; V (�) is found not to exist when � < �Q . A similar
phenomenon was observed in the context of the interface
potential for superconducting surface sheaths in Ginzburg-
Landau theory [46]. This “quantum” effect arises because,
spatially seen, the wave function ψ2 (z) is constrained to vanish
at z = 0 and to have the value

√
1/K at a certain point z = z0 ;

wave solutions therefore do not exist for too small values of
z0 . Expression (A8a) gives the interface potential which is
shown in Fig. 6 for K = 5 and for different values of μ2/μ2

.
The quantum effect is apparent in Fig. 6 at the thickness �Q ,
being the minimal thickness for which the interface potential
is defined.

Although we were unable to expand the potential in terms
of large �, we can point out its principal feature. For large film
thicknesses, the penetration depth of species 2 into species
1 (the bent path in Fig. 5) saturates, such that the film is
grown from phase 2, with ψ1 = 0 (the vertical path in Fig. 5).
Therefore, the decay length of the interface potential is ξc =
ξ2/2. Contrary to findings of Sec. VI A, ξc does not change
with K , and |V (0)| increases for larger values of K . Also,
one can prove that for weak segregation, the thickness �Q

(see Fig. 6) diverges logarithmically as K approaches 1 from
above such that the interface potential is not well defined
when K = 1. The trajectories of the coordinates (ψ1 , ψ2 ) for
“bulk-nucleated states” with a finite “adsorption” are shown in
Figs. 7(a) and 7(b), and the associated spatially varying wave
functions are depicted qualitatively in Fig. 8. It is interesting
to note the existence of a stratification point L for these states
(see Fig. 6), where the intrusion of species 2 is sufficient
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FIG. 7. The paths followed by the coordinates (ψ1 , ψ2 ) in the
case of “bulk excitations” when ξ1/ξ2 = 0, K = 2, and η = 1.3
(a) and η = 1.02 (b). Both paths start in the point (1,0) and finally
return to this point. The wave-function profiles corresponding to
these paths are sketched in Fig. 8.

to sever space in two parts of pure phase 1. In Fig. 6, we
compare V (�) with the excess energy γ of the bulk states
which have the same “adsorption,” by subtraction of γ0 . We
found numerically that at coexistence the bulk states have a
lower energy for all thicknesses � and this is valid for all
values of K [73].

When � = ∞, the condition for the excess energy of the
“bulk-nucleated states” γ1W + 2γ12 to be lower than the excess
energy of the “wall-adsorbed states” γ12 + γ2W yields the com-
plete drying condition γ1W + γ12 = γ2W . In other words, if pure
phase 2 were to be the bulk phase, pure phase 1 would wet the
wall. This was already encountered in [45]. Lastly, we note
that it is not clear whether or not the quantum effect disappears
once we take ξ1/ξ2 �= 0.

Condensate 1

Condensate 2

Condensate 1 Condensate 2

Bulk-nucleated states

FIG. 8. Qualitative sketches of the spatially varying wave-
function profiles of the condensates, corresponding to bulk-nucleated
states. The upper frame shows a bulk-nucleated condensate 2 of
thickness � larger than that associated with the stratification point
L depicted in Fig. 6. Condensate 1 is severed by the intrusion in bulk
of condensate 2 and consists of two disconnected parts [cf. the path
in Fig. 7(b)]. The lower frame shows bulk nucleation of condensate
2 for a film thickness � below that which corresponds to point L in
Fig. 6 [cf. the path in Fig. 7(a)].

0

0

µ /µ
2 2

µ /µ
2 2

µ /µ
2 2

µ /µ
2 2

z

z

FIG. 9. Interface potential V (�) in units of P1ξ2 as a function of
the film thickness � in units of ξ2 when 1/K = 0 and for different
values of μ2/μ2

as a function of both � and z0 where the value of z0

is determined by the locus of the 1-2 interface. The state of lowest
energy corresponds to zero film thickness. Note the steep increase of
the potential as a function of small � whereas V varies linearly as a
function of z0 for small values of z0 . This behavior for small � and
small z0 is due to the shift of the wave-function profile of species 1
with just a few particles of species 2 being adsorbed at the surface.

C. Strong segregation

The condition 1/K = 0 induces species 1 and 2 to have
no overlap such that the densities of both species vanish at a
certain distance z0 from the wall (at least whenever � �= 0).
Since, in that case, γ12 = γ2W + γ1W , partial wetting immedi-
ately follows from S < 0. Only density variations of adsorbed
phase 2 modify the interface potential. In fact, “inflating” the
wetting layer merely shifts the density profile of species 1,
being ψ1 = tanh[(z − z0 )/(

√
2 ξ1 )] through an increase of z0 .

Species 2 replaces species 1 in the shifted region, thereby
modifying its own density profile. The exact interface poten-
tial is provided in (A5) and can be seen in Fig. 9 as a function
of both � and z0 . For large �, we derived that [74]

V (�) = h� − 32
√

2 P1ξ2 e−(4+√
2 �/ξ2 ) + · · · (25)

and V (z0 ) is found using the relation z0 = � − 2
√

2 ξ2 , also
valid for large �. Note that (25) can also be obtained by con-
straining the value of z0 instead of �. In Fig. 9, one observes
an important difference between V (�) and V (z0 ) for small
values of � and z0 . This difference can be attributed to a feature
which is reminiscent of the quantum effect as encountered in
Sec. VI B. Indeed, wave function ψ2 (z) is constrained to van-
ish at z = 0 and at z = z0 . By application of a sufficiently large
disjoining pressure, solutions exist for all values of μ2/μ2

. For
a fixed small value of the potential, the adsorption � remains
very small whereas the corresponding value for z0 increases
linearly. Therefore, for low values of z0 , the potential V (z0 )
roughly quantifies the energy needed to push species 1 to a
distance z0 from the wall and this is linear in z0 .

When 1/K is small but nonzero, an overlap region of the
condensates induces corrections to γ12 and therefore V (0) of
order 1/

4
√

K . It is then possible to sketch the evolution of ψ1

and ψ2 as was done for K = 1000 in Fig. 10(a). One sees the
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FIG. 10. (a) The path for (ψ1 , ψ2 ) when K = 1000 and η = 1.1.
In the upper right corner, we left out the equipotential curves due to
their high density. (b) A part of the path followed by (φ1 , ψ2 ) for
κ = 0.5 and η = 1.4. In the continuation of the depicted path, ψ2 →
0 while φ1 increases.

extreme deformation of the potential by dense contour lines
when both densities are nonzero.

In fact, the above analysis is only valid when 1/
√

K �
ξ2/ξ1 . In the following section we study the intermediate re-
gion in which ξ2/ξ1 ≈ 1/

√
K is small compared to unity.

D. Both strong segregation and strong
healing length asymmetry

As indicated in Fig. 2, a transition from PW to CW occurs
in regions E and D. These two regimes have in common the
existence of two important length scales; one length scale near
the wall and one length scale far from it, and therefore turn
out more difficult to solve, especially numerically. However,
upon approach of the points (ξ2/ξ1 , 1/K ) = (0, 0) and (1,1),
one length will be much larger than the other such that the
analysis can be performed on two length scales separately.

Next, we treat the case when both ξ2 � ξ1 and 1/K � 1
while

κ ≡ [[ξ2/ξ1 ]
√

K]−1 (26)

is of order unity [68]. In this limit and at coexistence, PW is
encountered when κ < 3/

√
2 while CW is found when κ >

3/
√

2; this may be deduced from (4) and seen in Fig. 2. The
associated important length scales are ξ2 , near the wall and a
much larger ξ1 , far from the wall. Whereas the largest energy
contribution is governed by density variations on the latter
scale, the phenomena on the former scale decide whether there
is PW or CW.

Let us first focus on the density variations close to the wall.
We introduce the rescaling z ≡ z/ξ2 and a new wave function
φ1 as in [68] following the calculational approach taken in
[47,75]:

ψ1 = [ξ2/ξ1 ]

[
φ1 − �(z − δ)(z − δ)√

2

]
+ �(z − δξ2 ) tanh

(
z − δξ2√

2ξ1

)
, (27)

where φ1 must have the asymptotic behavior φ1 (z → ∞) ∼
(z − δ)/

√
2 and φ1 (z → −∞) = 0. The scaling, ψ1 ∝ ξ2/ξ1

stems from the fact that ψ1 makes variations of order unity
over a length ξ1 and hence variations of order ξ2/ξ1 over the

FIG. 11. The numerically obtained interface potential V (�) in
units of P1ξ2 as a function of the film thickness � in units of ξ2 for the
case ξ2 � ξ1 and 1/K � 1 while κ = [[ξ2/ξ1 ]

√
K]−1 is finite. We

see that one encounters CW for κ > 3/
√

2 and PW for κ < 3/
√

2.
These regimes are separated by the extraordinary flat potential.

length scale ξ2 . Close to the wall, one can expand U and T to
zeroth order in ξ2/ξ1 and in 1/K :

U [φ1 , ψ2 ] = 2P1

[
ηψ2

2
− ψ4

2

2
− φ2

1
ψ2

2

κ2

]
, (28a)

T [φ̇1 , ψ̇2 ] = 2P1

[
φ̇2

1
+ ψ̇2

2

]
, (28b)

where the dot now indicates the derivative with respect to z.
The extension to the region far from the wall (where z � ξ2 ) is
made by observing that there ψ2 = 0 while φ1 goes over into a
tanh profile. By straightforward calculation, one can write the
interface potential as

V (�) = 4P1ξ2

∫ ∞

0

dz

[(
φ̇1 − 1√

2

)2

+ ψ̇2
2

]
− �� − 2δP1ξ2 − γ12 . (29)

In Fig. 11 we depict the interface potential for different values
of κ . The results are obtained by a numerical integration of the
profiles, followed by the evaluation of the potential with the
functional (29). Clearly, we see that the transition from PW to
CW is mediated by a completely flat potential for κ = 3/

√
2.

The constancy of the interface potential is a property of crucial
importance in the context of the wetting phase transition in
this model. It corroborates the earlier observation of the infi-
nite degeneracy of the grand potential at first-order wetting
[41]. This property is in stark contrast with the normally
expected and ubiquitous double-minima structure of V (�) at
first-order wetting.

We proceed by arguing that the interface potential in the
limit under consideration should have the form

V (�) = h� + Ce−√
2 �/ξ2 + De−2

√
K �/ξ1 + · · · , (30)

where the amplitudes C and D are independent of � and
positive such that no critical wetting transition is possible
[76]. First of all, for small values of κ and thus ξ2/ξ1 � √

K ,
V (�) − h�, for large �, should be the one obtained in Sec. VI B
and thus be proportional to e−√

2 �/ξ2 , which means that ξc =
ξ2/

√
2. For large values of κ , i.e.,

√
K � ξ2/ξ1 , we must
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1/

/2

3/

FIG. 12. Plot for the numerically obtained length ξc in units of
ξ2 in the case of ξ2 � ξ1 and 1/K � 1. This length characterizes the
exponential decay for large �. The transition from ξc = 1/

√
2 for low

values of κ to ξc = κ/2 is obvious. For values of κ lower than 3/
√

2,
we are in the PW regime whereas for higher values, CW occurs.

obtain the same result as obtained in Sec. VI A which is that
ξc = ξ1/(2

√
K ) = κ ξ2/2. These considerations are supported

by fitting the numerically obtained values for ξc as a function
of κ , as shown in Fig. 12. One observes that, indeed, ξc takes
the value ξ2/

√
2 for low κ and the value κ ξ2/2 for larger

values of κ [77]. Note that for different types of surfaces
(involving softer walls) also critical wetting transitions have
been established in GP theory [42].

E. Weak segregation

We now direct our attention to the case when both 0 <

K − 1 � 1 and 0 < ξ1/ξ2 − 1 � 1. In this regime we will
show that the transition from PW to CW at coexistence, medi-
ated by a flat interface potential, takes place when

√
K − 1 =

2
√

2(ξ1/ξ2 − 1)/3, as is readily deduced from (4). In the fol-
lowing, we take the Lagrange multiplier to be � = 2P1μ2/μ2

;
in order to fix the film thickness, we use instead a parameter
which is featured in our expansion. The expansion parameters
are

√
K − 1 � 1 and ξ1/ξ2 − 1 � 1 and we assume both to

be of the same order. We extend a method, used earlier by
Malomed et al. [78] and Mazets [79] for the calculation of
the interfacial tension. In the limit K → 1, the potential U of
(12a) is rotationally invariant (see Fig. 13); it is then natural
to rewrite ψ1 and ψ2 as follows:

ψ1 ≡ g(z) sin[χ (z)], (31a)

ψ2 ≡ g(z) cos[χ (z)], (31b)

where the boundary conditions (2) imply g(z)|z=0 = 0,
χ (z)|z=0 < π/2, χ (z)|z=∞ = π/2, and g(z)|z=∞ = 1. The
existence of two largely different length scales ξ2 and
ξ2/

√
K − 1 gives rise to an expansion in its most general form:

χ (z) = χ0 (z) + χ1 (z
√

K − 1) + √
K − 1 χ2 (z) . . . , (32a)

g(z) = g0 (z) + g1 (z
√

K − 1) + √
K − 1 g2 (z)

+√
K − 1 g3 (z

√
K − 1) + · · · . (32b)

FIG. 13. The path for the normalized densities in the case of
weak segregation with K = ξ1/ξ2 = 1.001 and χ (0) = 0.3. Notice
the (near-)rotational symmetry of the underlying potential U .

Here, χ1 , g1 , and g3 vary as a function of the “slow co-
ordinate” z

√
K − 1 whereas g0 , g2 , χ2 , and χ0 vary on the

short length scale ξ2 near the wall. Expanding the mod-
ified GP equations (10) in the small parameters

√
K − 1

and ξ1/ξ2 − 1 and equating the same orders of magnitude,
leads to

χ0 = g1 = g3 = 0, (33a)

ξ 2
2

g̈0 = −g0 + g3
0
, (33b)

ξ 2
2

g̈2 = g2

[ − 1 + 3g2
0

]−2

(
ξ1/ξ2 − 1√

K − 1

)
ξ 2

2
g̈0 sin[χ1 (0)],

(33c)

2ġ0 χ̇ + χ̈2 = −(ξ1/ξ2 − 1)g̈0 sin2[2χ1 (0)], (33d)

ξ2 χ̇1 = −√
K − 1

sin 2χ1

2
. (33e)

The last expression is obtained by setting g = 1 and taking
the first-order terms of the subtraction of the GP equations. In
the third and fourth expressions, we expand χ1 (z) = χ1 (0) +√

K − 1 χ2 (z) + O(K − 1) about its value at the wall; this is
justified since g2 is nonzero only near the wall. The solutions
are (with K �= 1)

g0 (z) = tanh[z/(
√

2 ξ2 )], (34a)

g2 (z) =
(

ξ1/ξ2 − 1√
K − 1

)
sin2[χ1 (0)]

(
g2

0
− 1

)
arctanh g0 , (34b)

χ1 (z) = arctanh(e−√
K−1 z/ξ2 tanh[χ1 (0)]). (34c)

The solution for χ2 is irrelevant for our further analysis.
The value of χ1 (0) is undetermined and we use this parameter
to tune the film thickness. The interface potential can now be
separated into a part close and a part far from the wall. It
is interesting that, independently of the film thickness, both
density profiles vary on the small length scale ξ2 close to
the wall, whereas a length scale ξ2/

√
K − 1 is found for the

behavior far from the wall. Note that this set of equations is
consistent with an expansion of the conservation of energy.
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FIG. 14. Interface potential V (�) in units of P1ξ2 as a function of
the film thickness � in units of ξ2/(2

√
K − 1) for weak segregation

and small ξ1/ξ2 − 1. Here,
√

K − 1 = 0.01 while ξ1/ξ2 − 1 varies.
At the point where ξ1/ξ2 − 1 = 3

√
K − 1/(2

√
2), we go over from

PW to CW through a flat potential.

By use of (13) and (14), we then find to first order in√
K − 1

V (�) + γ0 − h�

2P1

=
∫ ∞

0

dz

[(
1 − g2

0

)2 + (K − 1)
sin 2χ1

4

+ 4
√

K − 1 g0 g2

(
g2

0
− 1

)] + · · · , (35)

while the expression for the film thickness is

� =
∫ ∞

0

dz
[(

g2
0
− 1

)
cos2[χ1 (0)] + cos2 χ1

] + O(
√

K − 1).

(36)

Both � and V (�) depend on χ1 (0) in such a way that this
parameter can be eliminated. One can derive the exact inter-
face potential to first order in

√
K − 1 and to first order in

ξ1/ξ2 − 1, which we give in (A12); for large � it reduces to

V (�) = h� + 2P1ξ2

[
2
√

2

3
(ξ1/ξ2 − 1) − √

K − 1

]
× exp

(
−2�

√
K − 1

ξ2

)
+ · · · . (37)

Obviously, when h = 0 and
√

K − 1 = 2
√

2(ξ1/ξ2 − 1)/3, (38)

this interface potential, as well as the exact one in (A12),
vanishes for all �. Note that here, as opposed to the case
in Sec. VI D, only one length scale, namely ξ2/(2

√
K − 1),

determines the interface potential. The derived interface po-
tential is depicted in Fig. 14 for different values of ξ1/ξ2 − 1.
Clearly, one can have either PW or CW and there is a com-
pletely flat interface potential when (38) is satisfied.

VII. LINE TENSION

A system having a three-phase contact line can be at-
tributed an excess energy which is proportional to the contact
length. The excess energy per unit length is called the line
tension. It is important to appreciate that a line tension can
be of either sign, it need not be positive. The prerequisite for

such contact line to be present is a finite (nonzero) contact
angle, that is, to have a partial wetting state or to be just
at a first-order wetting point. In this work, the latter was
encountered in the crossover regions of Secs. VI D and VI E.
In the case of an ordinary first-order wetting transition the line
tension at the first-order wetting transition can be approached
along two paths: along the coexistence line (from PW) and
along the first-order prewetting line (PL) off of bulk coex-
istence. Along the latter path the line tension is referred to
as boundary tension because the adsorbate is a single phase
and there is consequently no three-phase contact line. The
boundary tension at a first-order thin-thick transition (along an
ordinary PL) can be seen as the energy cost per unit length of
the density inhomogeneity formed between a thin and a thick
film. The boundary tension is in fact an interfacial tension in
an effectively (d − 1)-dimensional subset of a system with
bulk dimensionality d and is therefore non-negative. Along
a thin-thick transition line, the boundary tension starts off
from zero at the prewetting critical point and typically (for
short-range forces) increases to a finite positive value at the
wetting transition at coexistence. For long-range forces also
a divergence of the line (and boundary) tension at wetting is
possible [60].

However, in our system the wetting phenomena are ex-
traordinary and do not follow the typical behavior and this
has surprising consequences also for the line tension. In our
case, the prewetting line PL is entirely critical and the first-
order character only shows up at one point, which is the
wetting transition at coexistence. This implies that the bound-
ary tension is zero along PL because there is no density jump
across PL at all. Moreover, also at the wetting point where
PL meets two-phase coexistence, the line tension is zero.
This property of a vanishing line tension at wetting follows
from the fact that the interface potential is perfectly flat at
the wetting transition [there is no barrier in V (�)]. This is
consistent with the infinite degeneracy of the grand potential
at wetting first noticed in [41]. We focus on a three-phase
contact line the cross section of which is shown in Fig. 15.
The line is centered about x = 0 and � = 0 (� = 0 coincides
with the surface of the optical hard wall) and runs along
the y direction (perpendicular to the figure). The interface
displacement �(x) has translational symmetry in the y direc-
tion. Note that the shape of �(x) displays a monotonically
increasing slope. This feature would be typical for a tran-
sition zone that corresponds to the approach to an ordinary
critical wetting transition rather than a first-order wetting
transition. Upon approach of an ordinary first-order wetting
transition, a transition zone with an inflection point would be
expected [80]. This illustrates once again the extraordinary
character of the wetting transition in this model of adsorbed
BEC mixtures.

According to the interface displacement model (IDM)
[80,81], the line tension τ is the following functional
of the interface displacement �(x), at bulk two-phase
coexistence:

τ [�] =
∫ ∞

−∞
dx

[
γ12

[√
1 + �2

x
(x) − 1

]
+ V (�(x)) − S + c(x)

]
. (39)
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FIG. 15. Cross section perpendicular to the three-phase contact
line where phases 1, 2 and the wall meet. Depicted is the interface
displacement �(x) in units of 10 ξc against the coordinate position x
in units of ξc for a 1-2 interface which is incident on a hard wall and
for an interface potential which is of the form V (�) = S e−0.1 �/ξc . For
this calculation the ratio −S/γ12 equals 0.2. The interface meets the
wall at x = 0 (open circle) tangentially with zero slope and �(x) ∝ x2

for small x > 0 [while �(x) = 0 for x < 0].

where �x = d�(x)/dx and the piecewise constant c(x) is such
that the integrand vanishes at large values of x. Note that
the V (�) used in [80,81] is shifted with respect to our V (�)
by a constant equal to the spreading coefficient S . The first
term in (39) measures the excess energy per unit length due
to the surface curvature close to the three-phase contact line.
By a minimization procedure, one derives the relevant Euler-
Lagrange equation and associated constant of the motion. One
finds that the equilibrium (or optimal) �(x) starts from zero,
at, say x = 0, with zero slope and finite second derivative, as
shown in Fig. 15. Note that �(x) = 0 for all x < 0 (there is
no microscopic adsorbed film of condensate 2 in this region).
The line-tension functional evaluated in this optimal profile
provides the equilibrium line tension and can be written as the
following integral [81]:

τ = √
2γ12

∫ ∞

0

d�

[√
(V (�) − S )

(
1 − V (�) − S

2γ12

)

−
√

−S
(

1 + S
2γ12

)]
. (40)

The validity of the use of the IDM for the purpose of calculat-
ing the properties of the three-phase contact line is determined
by the requirement that �(x) be slowly varying with x. In-
deed, the V (�) that is employed is a quantity that is a priori
calculated for a uniform thickness �, not a spatially varying
one. Nevertheless, extending it to a spatially varying function
V (�(x)), one may hope to get a reasonable approximation for
inhomogeneous configurations such as those we are interested
in here. However, for contact angles that are not small, and
certainly for θ ≈ π/2, the gradient d�/dx is too large (and
even diverges) for this model to be reliable and unphysical
features should be expected. A discussion of some of the
artifacts that may result can be found in [81].

FIG. 16. The line tension τ in units of γ12ξc versus 1 − cos θ ,
where θ is the interface inclination angle defined asymptotically, far
from the three-phase contact line (i.e., the contact angle as predicted
by Young’s law). The lower curves (dashed lines) correspond to the
gradient-squared approximation within the IDM. The upper curves
(solid lines) correspond to the full IDM calculations. For both ap-
proaches, the physically stable part is in black (the extension in gray).
The smooth curve (dashed-dotted in gray), which runs in-between the
stable parts of the IDM curves, corresponds to the conjecture (45)
for the exact line tension in GP theory consistent with the typical
interface potential (41).

The interface potentials as we found here in the GP theory,
were all, except for one, of the typical form, asymptotically
for � → ∞,

Vtyp(�) = S e−�/ξc , (41)

for partial wetting states (S � 0) at two-phase coexistence.
We will take this Vtyp(�) as our model interface potential in
what follows and attempt to determine the corresponding line
tension and interface displacement as accurately as possible,
within the IDM and also beyond the IDM by means of a
conjecture based on symmetry and analyticity considerations.

Within the IDM, substitution of (41) in (40) brings us to
the analytic expression for the line tension:

τ = γ12ξc

2
[(2ς − 1)(2 arcsin[2ς − 1] + π )

+ 4
√

ς (1 − ς )(ln[4(1 − ς )] − 1)
]
, (42)

where 2ς = −S/γ12 = 1 − cos θ with θ the angle at which
the asymptote (for x → ∞) to the wedge is incident on the
wall (see the dashed line in Fig. 15).

This expression for τ is displayed in Fig. 16 as the solid
line. Note that the model is “mirror” symmetric about θ =
π/2 (wetting and drying symmetry) and all properties at θ are
identical to those at π − θ provided the roles of phases (and
species) 1 and 2 are interchanged. This explains the presence
of two solid lines, each of which is the supplement of the
other. Since the IDM is most reliable for weakly varying �(x),
the reliable parts are those in black and the extensions that do
not correspond to the physically stable solutions are in gray.
The singularity at the crossing point θ = π/2 is an artifact
of the IDM. There is no physical singularity at the “neutral”
point at which there is no preferential adsorption of one of the
phases. On the other hand, the singularities at θ = 0 (and π )
are physical and correspond to the wetting (and drying) phase
transitions. Before we turn to those in more detail, we point
out yet another interesting fact.
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An often-used simplification of the IDM consist of ex-
panding the square root in (40) to first order in the gradient
squared, thereby explicitly acknowledging that the model is
meant to serve (only) for weakly varying �(x). This is the
so-named gradient-squared approximation of the IDM. At
the level of (40) one easily verifies that the gradient-squared
approximation amounts to reducing the integrand in (40) to√

V (�) − S − √−S . In this approximation the analytic result
for τ is the following simple expression:

τ = −2
√

2 (1 − ln 2) γ12ξc

√
1 − cos θ. (43)

This simplification of (42), together with its symmetric sup-
plement, is displayed as the dashed lines in Fig. 16. While
(43) is expected to lose accuracy more rapidly than (42)
upon increasing θ from zero, both are expected to be equally
precise for small θ and indeed the asymptotic forms of (43)
and (42) approaching wetting are coincident. Specifically, τ

approaches zero with a square-root singularity in the variable
1 − cos θ (see Fig. 16). Consequently, approaching complete
wetting, for θ → 0, we find that the line tension is asymptoti-
cally equal to

τ ∼ −2 (1 − ln 2) γ12ξc θ, (44)

and thus τ at wetting approaches zero from negative values.
This result is surprising because it is reminiscent of the

behavior of the line tension close to critical wetting in systems
with short-range forces [i.e., exponentially decaying V (�)]
in a standard mean-field theory [80]. Since we are dealing
with a wetting transition that is not critical but of first order,
τ is expected to attain a nonzero and finite positive value,
also from below, at wetting [80]. The behavior of the line
tension at wetting depends, in mean-field theory, mainly on
two characteristics. One is the order of the transition and the
other is the range of the forces. Beyond mean-field theory
there are fluctuation effects. For a review see [60].

We conclude that the line tension for adsorbed BEC mix-
tures displays a hybrid character, which is caused by the
extraordinary absence of a barrier in the interface potential
V (�). The absence of a barrier implies that for θ → 0 there
is no transition zone which builds up in �(x) between zero
thickness and a macroscopic (infinite) thickness. Instead, a
completely flat profile �(x) results. Note that we cannot ex-
clude that physically a transition zone at first-order wetting
may still exist in this system, but an interface displacement
model based on V (�) cannot capture it.

The results for τ obtained within the IDM, in gradient-
squared approximation, (43), and beyond this approximation,
(42), suggest a conjecture for the exact solution for τ within
GP theory and for the simple choice of interface potential
given by (41), without correction terms that become important
at small � and would modify also the line tension results quan-
titatively. This conjecture is based on three assumptions: (i)
there is nothing physically special about θ = π/2 (obtained
for ξ1 = ξ2 ) and τ must be smooth (i.e., analytic) in that vicin-
ity; (ii) the θ � π − θ symmetry must be respected; and (iii)
the asymptotic behavior near wetting (and drying) established
with the help of the IDM calculations must be preserved in
detail. The simplest function which satisfies (i)–(iii) is

τconj = −2 (1 − ln 2) γ12ξc sin θ, (45)

and it is displayed by the dashed-dotted line in gray in Fig. 16.
Perhaps it is possible to verify this conjecture (to a decisive
extent) by designing an exact calculation of τ right at θ = π/2
in GP theory.

Let us now return to the IDM results and close this sec-
tion with some remarks. While the expression (42) is general
and displays that τ is essentially a numerical factor times
the interfacial tension multiplied by a characteristic surface-
related length, it is possible in special cases (cf. the different
regimes we studied) to obtain an explicit dependence on other
characteristic lengths and on the interaction strength in our
system. For example, in Sec. VI D, we considered the case
ξ2/ξ1 → 0 and K → ∞ while [ξ2/ξ1 ]

√
K was of order unity.

We analyzed numerically the length scale of exponential de-
cay of the interface potential [see (30)], and the result was
shown in Fig. 12. For the partial wetting regime, i.e., when
[ξ2/ξ1 ]

√
K >

√
2/3, we found that ξc goes over from the value

ξ2/2 to ξ1/(2
√

K ) upon varying [ξ2/ξ1 ]
√

K . The dependence
of the line tension on ξ1 , ξ2 , and K therefore obeys

τ ∝ P1ξ1ξc , (46)

with a proportionality factor of order unity, and where we used
that γ12 ≈ P1ξ1 and where the value of ξc is plotted in Fig. 12.
Note that τ scales as 1/

√
K and is therefore small.

We consider now the case of weak segregation (see
Sec. VI E), i.e., when 0 < ξ1/ξ2 − 1 � 1 and 0 < K − 1 � 1,
for which (37) expresses the exact interface potential, to lead-
ing order for large �. At PW or when 2

√
2[ξ1/ξ2 − 1]/3 <√

K − 1, we found that

cos θ = 2
√

2

3

[ξ1/ξ2 − 1]√
K − 1

, ξc = ξ2

2
√

K − 1
, (47)

since γ12 = 2P1ξ2

√
K − 1.

VIII. CONCLUSION

We established the interface potential V (�) for binary mix-
tures of Bose-Einstein condensates near a hard wall. The
interface potential relates a configuration of adsorbed film
thickness � of species 2 to its excess grand potential per
unit area such that the equilibrium thickness is the value
which minimizes the potential. Generally, we find for large
�, V (�) = h� + Ae−�/ξc + · · · where h is the bulk field. At
two-phase coexistence (h = 0), the leading exponential decay
dominates the entire V (�). There is no barrier (contrary to
what happens in other models where the next-to-leading terms
may be relevant, too). When A is positive, complete wetting
(CW) occurs whereas partial wetting (PW) is induced by a
negative A.

We distinguish the following regimes (when h = 0) [82]:
(1) strong healing length asymmetry ξ2 � ξ1 : CW and ξc =

ξ1/(2
√

K + 1);
(2) strong healing length asymmetry ξ1 � ξ2 : PW and ξc =

ξ2/2;
(3) strong segregation 1/K = 0: PW and ξc = ξ2/

√
2;

(4) both strong segregation 1/K � 1 and strong healing
length asymmetry ξ2 � ξ1 :

(a) PW and ξc = ξ2/
√

2 for [[ξ2/ξ1 ]
√

K]−1 � 1,
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(b) transition from PW to CW and ξc = ξ1/(2
√

K + 1)
for [[ξ2/ξ1 ]

√
K]−1 � 1;

(5) Weak segregation 0 < K − 1 � 1 and 0 < ξ1/ξ2 −
1 � 1: transition from PW to CW and ξc = ξ2/

√
K − 1.

For the cases 4 and 5, the transition from PW to CW
is mediated by a completely flat interface potential, that is,
V (�) = 0 for all �. This observation explains several earlier
reported features of the extraordinary wetting (and prewet-
ting) phase transition in this system. Of particular interest is
case 5 for which we obtained an analytical expression of the
full interface potential (A12), the leading term of which, for
large �, was used as a typical model interface potential for
calculating the line tension of a three-phase contact line where
the 1-2 interface meets the wall.

The calculation of the line tension represents the most
important physical advance reported here. The use of the IDM
has allowed us to calculate properties of the inhomogeneous
three-phase contact line based on the knowledge of the V (�)
calculated for homogeneous states. The first of these prop-
erties is the interface displacement profile �(x) for partial
wetting states. Close to wetting these profiles are akin to
those normally expected near a critical wetting transition, in
spite of the fact that the wetting transition here is of first
order. The second property is the line tension τ for which
we have analytic results from the IDM, as well as an analytic
conjecture that satisfies all physical requirements for arbitrary
contact angle 0 < θ < π and captures the precise singularity
at wetting (or drying).

The fact that the line tension is maximal at wetting is in
accord with the predictions from and expectations raised by
other models and theories of the line tension [60]. However,
the fact that τ approaches zero at wetting (from negative
values) and the precise linear dependence on θ with which it
does so, is reminiscent of a mean-field critical wetting transi-
tion (for short-range forces) rather than a first-order one. This
hybrid character of τ (reinforced by the fact that the boundary
tension along prewetting is zero) is explained by the fully flat
barrierless V (�) at wetting, which we calculated in this work.
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APPENDIX

What follows are the solutions for the interface potentials
as closed-form integral expressions wherein the parameter η

must be eliminated to obtain the relation between V (�) and �.
Note that one may find (rather elaborate) analytic expressions
in terms of hyperbolic integrals for the expressions which
follow.

(1) Define first the functional and functions:

Ẑ0 (A, B; [C(r), D(r)]) ≡
∫ √

B

√
A

dr√
D(r)

[D(r) +C(r)], (A1a)

Z1 (r) ≡ 1 − 2ηr2 + r4, (A1b)

Z2 (r) ≡ 1 − η2

+ 2r2(ηK − 1) + (1 − K2)r4,

(A1c)

Z3 (r) ≡ 2r2(K − η) + (1 − K2)r4, (A1d)

Z4 (r) ≡ 1 − 2r2 + r4, (A1e)

Z5 (r) ≡ r2(η − 1), (A1f)

Z6 (r) ≡ r2 − Z3 (r), (A1g)

Z7 (r) ≡ r2 − Z1 (r), (A1h)

Z8 (r) ≡ (η − 1)(η − Kr2), (A1i)

Z9 (r) ≡ η − Kr2 − Z2 (r). (A1j)

(2) We briefly explain now how to obtain the interface
potential for the case ξ2/ξ1 = 0, as treated in Sec. VI A. The
potentials of Secs. VI B and VI C are given below and can be
obtained in a similar fashion. Looking at Fig. 3, one sees that
one can split the path of the densities (ψ1 , ψ2 ) into three parts.
Since ξ2/ξ1 = 0, there is no energy contained in the vertical
path with ψ1 = 0. The equations of motion for the curved path
are given in (18) for which the conservation of energy yields

ξ 2
1
ψ̇2

1
= 1 − η2

2
+ ψ2

1
(ηK − 1) + 1 − K2

2
ψ4

1
. (A2)

Further, the horizontal path starts in (
√

η/K, 0) and arrives in
(1, 0) as depicted in Fig. 3. The equations of motion are there
governed by (19) with the following conservation of energy:

ξ 2
1
ψ̇2

1
= 1

2 − ψ2
1

+ ψ4
1
. (A3)

Writing out expression (14), we get

V (�) + γ0 − h�

2P1ξ1

=
∫ ∞

0

dz
[
2ξ 2

1
ψ̇2

1
+ (η − 1)ψ2

2

]
. (A4)

Splitting the integrals into the parts [0, z0 ] and [z0 ,∞], using
the transformation dz = dψ1/ψ̇1 , combined with the conser-
vation laws (A2) and (A3), we then find

V (�) + γ0 − h�

2
√

2P1ξ1

= Ẑ0 ( η/K, 1; [0,Z4 (r)])

+ Ẑ0 (0, η/K ; [Z8 , Z2 (r)]), (A5)

with the functions Z8 , Z2 , and Z4 defined in (A1). We elimi-
nate the multiplier η < 1 by writing

�

ξ1

=
√

2Ẑ0 (0, η/K ; [Z9 (r), Z2 (r)]). (A6)

The coefficient A1 in (20) is

A1 = 128
√

2

3

(2K + 1)(K − 1)3

K3/2(K + 1)2
(A7)

×
[√

2K + √
K − 1√

2K − √
K − 1

]
exp

[
4K

(
1 −

√
K − 1

2K

)]
.

(3) For the wall-adsorbed states in the case of ξ1/ξ2 =
0, the interface potential is found to be a solution of the
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following two equations with η > 1:

V (�) + γ0 − h�

2
√

2P1ξ2

= Ẑ0 (0, 1/K ; [Z5 (r), Z3 (r)]) + Ẑ0 (0, η −
√

η2 − 1; [Z5 (r), Z1 (r)])

+ Ẑ0 (1/K, η−
√

η2−1; [Z5 (r), Z1 (r)]), (A8a)

�

ξ2

=
√

2 Ẑ0 (0, 1/K ; [Z6 (r), Z3 (r)]) +
√

2 Ẑ0 (1/K, η −
√

η2 − 1; [Z7 (r), Z1 (r)])

+
√

2 Ẑ0 (0, η −
√

η2 − 1; [Z7 (r), Z1 (r)]). (A8b)

(4) For the bulk states with ξ1/ξ2 = 0, we must distinguish two cases. First of all, when the multiplier η takes the values
(1 + K2)/(2K ) < η < K , we have

V (�) + γ0 − h�

4
√

2P1ξ2

= Ẑ0

(
0,

2(K − η)

K2 − 1
; [Z5 (r), Z3 (r)]

)
, (A9a)

�

ξ2

= 2
√

2 Ẑ0

(
0,

2(K − η)

K2 − 1
; [Z6 (r), Z3 (r)]

)
. (A9b)

Second, when 1 < η < (1 + K2)/(2K ), we have

V (�) + γ0 − h�

4
√

2P1ξ2

= Ẑ0 (0, 1/K ; [Z5 (r), Z3 (r)]) + Ẑ0 (1/K, η −
√

η2 − 1; [Z5 (r), Z1 (r)]), (A10a)

�

ξ2

= 2
√

2 Ẑ0 (0, 1/K ; [Z6 (r), Z3 (r)]) + 2
√

2 Ẑ0 (1/K, η −
√

η2 − 1; [Z7 (r), Z1 (r)]). (A10b)

(5) When 1/K = 0, the interface potential is found through a solution of the following two equations with η > 1:

V (�) + γ0 − h�

4
√

2P1ξ2

= Ẑ0

(
0, η −

√
η2 − 1; [Z5 (r), Z1 (r)]

)
, (A11a)

�

ξ2

= 2
√

2Ẑ0

(
0, η −

√
η2 − 1; [Z6 (r), Z1 (r)]

)
. (A11b)

(6) The exact interface potential in the case 0 < K − 1 � 1 and 0 < ξ1/ξ2 − 1 � 1 is

V (�) = 1√
2

[
2
√

2(ξ1/ξ2 − 1)

3
√

K − 1
− 1

]
LambertW(−2

√
2
√

K − 1 e−2
√

K−1 (�/ξ2 +√
2)), (A12)

where LambertW(x) is the solution y(x) to the equation y(x)ey(x) = x.
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