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Magnetic monopoles and kinks are topological excitations that have been extensively investigated in quantum
spin systems, but usually, they are studied in different setups. We explore the conditions for the coexistence and
interaction effects of these quasiparticles in the pseudospin chain of an atomic dipolar superlattice gas. In this
chain, the magnetic kink is the intrinsic quasiparticle, and the particle (hole) defect takes over the role of the
north (south) magnetic monopole, exerting monopolar magnetic fields on neighboring spins. A binding effect
between the monopole and kink is revealed, which renormalizes the dispersion of the kink. The corresponding
dynamical antibinding process is observed and arises due to the kink-antikink annihilation. The rich interaction
effects of the two quasiparticles could stimulate corresponding investigations in bulk spin systems.
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I. INTRODUCTION

Quantum spin systems possess various topological excita-
tions, such as magnetic kinks [1,2], spinons [3,4], skyrmions
[5], Majorana modes [6], and magnetic monopoles [7–10].
These quasiparticles possess rich magnetic properties and
endow spin systems with potential applications, such as func-
tional spintronic devices [11–13]. The interaction between
different quasiparticles is of particular importance since it not
only enriches the dynamical properties of spin systems but
also provides efficient manipulation tools for corresponding
applications. The coexistence and interaction effects between
different quasiparticles, such as a magnon and a spinon
[14,15], a kink and a magnon [16], and a magnon and a
skyrmion [17–19], have been extensively investigated. Ap-
pealing coupling effects have been revealed between these
quasiparticles, which has led to the demand for an inves-
tigation of so far unknown interaction effects of magnetic
quasiparticles, specifically the monopole and the kink. This
could be explored both in condensed-matter spin systems and
in pseudospin systems emulated with, e.g., ultracold atomic
gases.

Ultracold atomic gases have become one of the major
platforms for quantum simulation [20–40] thanks to the rich
degrees of freedom of the atomic gas to construct the target
Hilbert space and the tunability to engineer the demanded
Hamiltonians. Concerning quantum simulation of spin sys-
tems, the target spin degree of freedom can be modeled by
the atomic species [21,22], the atomic internal states [23–30],
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and the spatial modes of the lattice atoms, such as the oc-
cupation states in tilted lattices [31] or superlattices [32–35].
Effective interactions such as spin-spin interactions [26] and
spin-orbital couplings [32,33] have also been engineered. Var-
ious magnetic quasiparticles have been simulated, such as
magnons [23], spinons [24], magnetic polarons [27,28], and
magnetic kinks [29,30,34]. Particularly, magnetic monopoles
of different types have been both theoretically and experi-
mentally implemented for atomic Bose-Einstein condensates
[36–40], with the generation, dynamical properties, and inter-
action effects investigated.

The magnetic monopoles generated in ultracold atomic
[36–40] and condensed-matter systems [7–10] are mainly
embedded in the superfluid and spin-ice phases, respectively,
in which the excitation condition and dynamical properties
of the monopoles have been extensively investigated. These
magnetic phases, however, can hardly sustain the coexistence
of the monopole with other magnetic quasiparticles and hinder
the investigation of their coupling effects. In this paper we
propose a quantum simulation scheme which generates the
monopole on the ferromagnetic host background and enables
the coexistence of and interaction between the monopole
and the intrinsic ferromagnetic quasiparticle, i.e., the kink.
Our simulation scheme adapts and generalizes the pseudospin
mapping of ultracold atoms in a double-well superlattice,
which has been exploited to simulate spin-orbit coupling
[32] and the corresponding supersolidlike phase [33], as well
as magnetic phase transitions [34] and quasiparticles [35].
Based on this simulation scheme, we show that the monopole
can exert an attractive interaction with the kink through the
monopolar magnetic field, which gives rise to the binding
of the two quasiparticles. The binding can also be released
by a kink-antikink annihilation. In essence, our simulation
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scheme comprises coupling effects of the magnetic monopole
to other magnetic quasiparticles and reveals their binding and
antibinding transition. It provides a tool to control and manip-
ulate the dynamics of magnetic monopoles.

This paper is organized as follows. In Sec. II, we demon-
strate the pseudospin chain based on the dipolar superlattice
gas. In Sec. III, we focus on the interaction effects between
the north monopole and kink. A brief discussion and outlook
are given in Sec. IV.

II. SETUP AND PSEUDOSPIN MAPPING

We consider the dipolar superlattice gas (DSG) of spin-
polarized fermions confined in the one-dimensional double-
well superlattice, in which the fermions interact with each
other through the repulsive dipole-dipole interaction (DDI)
[41]. The DSG system can be described by the following
Fermi-Hubbard Hamiltonian:

ĤFH = −J
M∑

i=1

( f̂ †
2i f̂2i−1 + H.c.) − J1

M−1∑
i=1

( f̂ †
2i f̂2i+1 + H.c.)

+
∑

i< j∈[1,2M]

Vd ( j − i)n̂in̂ j, (1)

where f̂ †
2i−1/2i and f̂2i−1/2i are the fermionic creation and anni-

hilation operators on the left (right) site of the ith supercell and
the operator n̂i = f̂ †

i f̂i counts the number of fermions at site
i. The first two terms in ĤFH describe the intra- and intercell
hopping, respectively, with hopping amplitudes J � J1. The
DDI between two fermions located in the ith and jth sites is
taken to be Vd ( j − i) = d/|x j − xi|3, where xi (x j) is the local
minimum of the corresponding site, and d denotes the DDI
strength. Without loss of generality, we take J = 10J1 and
(x2 j − x2 j−1)/(x2 j+1 − x2 j ) = 1/2, with the lattice constant
a = x2 j+1 − x2 j−1. We further truncate the DDI to the nearest-
neighbor interaction, which presents a good approximation for
the parameter regime explored in this paper.

The pseudospin mapping transfers the DSG system to an
effective spin chain, and we generalize it and bring in defects
to the spin chain. Under the tight-binding approximation, each
cell of the DSG system accommodates four local occupa-
tion states of {|1, 0〉i, |0, 1〉i, |1, 1〉i, |0, 0〉i}, where |nL, nR〉i

denotes nL and nR fermions occupying the left and right sites
of the ith cell, respectively. In the pseudospin mapping, the
single-occupation states |1, 0〉i and |0, 1〉i are mapped to the
spin states | ←〉i and | →〉i at the ith site of the chain. We
further map the double occupation |1, 1〉i and local vacuum
state |0, 0〉i to the particle and hole defects of the spin chain,
denoted by |P〉i and |H〉i, respectively. Under the pseudospin
mapping, the DSG system is mapped to an effective spin
chain, with the Hamiltonian ĤDSG

spin = Ĥ0 + ĤSD:

Ĥ0 = −J
M∑

α=1

σ̂ α
x − d

4

M−1∑
α=1

σ̂ α
z σ̂ α+1

z + d

2

M∑
α=1

σ̃ α
z

+ d

4

(
σ̂ 1

z − σ̂ M
z

) + d

4

(
σ̃ 1

z + σ̃ M
z

)
, (2)

ĤSD = d

4

M∑
α=1

σ̃ α
z

(
σ̂ α−1

z − σ̂ α+1
z

)

− J1

M−1∑
α=1

[(
ŝα
→,H ŝα+1

H,← + H.c.
) + (

ŝα
←,Pŝα+1

P,→ + H.c.
)]

− J1

M−1∑
α=1

[(
ŝα

H,→ŝα+1
P,→ + H.c.

) + (
ŝα

P,←ŝα+1
H,← + H.c.

)]
.

(3)

In Ĥ0, σ̂ α
x and σ̂ α

z are the Pauli operators exerted on the
pseudospins, and σ̃ α

z ≡ |P〉α〈P| − |H〉α〈H | is the effective
Pauli operator exerted on the defects. To describe the coun-
terpropagation of the defect and pseudospin, the exchange
operator is introduced in ĤSD, defined as ŝα

�,σ ≡ |�〉α〈σ |, with
� ∈ {P, H} and σ ∈ {→,←}. In the following, we call the
effective spin chain the DSG pseudospin chain.

The DSG pseudospin chain is manifested as a transverse
Ising spin chain, whose pseudospins interact by the Ising-type
spin-spin interaction and are subjected to a transverse mag-
netic field, as indicated by the first two terms in Ĥ0. The fourth
term in Ĥ0 refers to the antiparallel boundary magnetic (ABM)
field localized at the two edges of the chain. The ABM field
has been recognized as an efficient way to excite a kink since
the original studies on magnetic kinks [1,42–44], and it gives
rises to an intrinsic kink in the DSG pseudospin chain. More
interestingly, as indicated by the last term in Ĥ0, the ABM
fields also exert an attractive (repelling) potential to the hole
(particle) defect along the direction of the field, which mimics
the response of the magnetic south (north) monopole to the
external magnetic field.

Besides the response to the magnetic field, further finger-
prints of the magnetic monopole, i.e., the monopolar magnetic
field and the Dirac string, are also reproduced by the particle
and hole defects, which causes the particle and hole defects to
well resemble the north monopole (NM) and south monopole
(SM), respectively. The monopolar magnetic field is normally
evidenced by the spin texture around the monopole, and as
indicated by the first term in ĤSD, the particle (hole) defect
polarizes the neighbor spins away from (towards) the defect,
which resembles the monopolar magnetic field surrounding
the NM (SM). The second term in ĤSD further demonstrates
that the hopping of the defects is accompanied by the flipping
of the counterpropagating spin, which has been recognized as
a signature of the Dirac string for the monopoles [7–10]. The
last term in ĤSD refers to the pair production of a NM and
a SM, which manifests as the main excitation channel of the
monopoles in spin ices.

The DSG pseudospin chain is sketched in Fig. 1(a), where
the ABM and the monopolar magnetic field around the NM
and SM are schematically shown. Figure 1(b) shows the ex-
pectation values of 〈σ̂z〉 and 〈σ̂x〉 of the pseudospins around a
localized NM in the paramagnetic phase, in which the trans-
verse magnetic field aligns the pseudospins in the x direction.
It can be seen that the pseudospins far away from the NM align
along the transverse direction, while the spins neighboring the
NM are polarized away from the NM, as indicated by the spin
texture at the bottom of Fig. 1(b). Figure 1(c) summarizes
the pair production and spin-flipping effects of ĤSD with a
dynamical process in which, initially, a pair of monopoles is
excited and then they hop away from each other, accompanied
by the spin flipping. A detailed sketch of the pseudospin

053308-2



INTERACTION EFFECTS OF PSEUDOSPIN-BASED … PHYSICAL REVIEW A 105, 053308 (2022)

FIG. 1. (a) The pseudospin chain based on the DSG system. The NM and SM are sketched with the dark and light blue balls, respectively.
The transparent orange and dark and light blue arrows refer to the ABM and the monopolar magnetic fields around the NM and SM,
respectively. (b) The polarization of neighboring spins around a localized NM, in terms of 〈σ̂x〉 (solid lines) and 〈σ̂z〉 (dashed lines). The
spin polarization is also explicitly shown at the bottom. (c) The dynamical process of the pair excitation, the tunneling of the NM and SM, and
the spin flipping along the tunneling are shown.

mapping and a comparison of the spin polarization around
the NM, SM, and a normal magnetic defect in the pseudospin
chain are given in Appendixes A and B, respectively.

III. INTERACTION EFFECTS BETWEEN THE
NM AND KINK

In the strong-interaction regime, the DSG pseudospin
chain sustains the coexistence of the magnetic monopole
and kinks and provides an ideal platform to investigate
the interplay of the two quasiparticles. Here, we focus
on the doping of a single NM defect to the DSG chain,
and the results can be straightforwardly generalized to the
SM doping. We define the tail-to-tail and head-to-head
kinks as the kink and antikink, respectively. The Hilbert
space is truncated to the subspace spanned by the basis
states |n〉NM ⊗ |α̃0, α̃1 · · · α̃2N 〉, in which |n〉NM denotes
the position of the monopole and |α̃0, α̃1 · · · α̃2N 〉 =
|· · · ← ←α̃0−1 → · · · →α̃1−1 ← · · · ←α̃2N −1 → · · ·〉
indicates the location of the (anti)kinks in the squeezed
space where the monopole site is removed [24,45] (more
details of the definition of the squeezed space are given in
Appendix C). Accordingly, the Hamiltonian can be spanned in
the monopole-kink subspace as Ĥdoped−spin = ĤK + ĤNM−K,
in which,

ĤK = d
M∑

α̃=1

n̂α̃
A − J

M−1∑
α̃=1

(Ŝα̃
+ + Ŝα̃

−)(Ŝα̃+1
+ + Ŝα̃+1

− ), (4)

ĤNM−K = −d
M∑

α=α̃

n̂α̃
K n̂α

N − J1

M−1∑
α=α̃

(
b̂α

N
†b̂α+1

N Ŝα̃
−Ŝα̃+1

+ + H.c.
)
.

(5)

In ĤK, n̂α̃
A refers to the number of antikinks between sites

α̃ and α̃ + 1 in the squeezed space, and Ŝα̃†
+/− = (âα̃†

A +
âα̃)

K /(âα̃
A + âα̃†

K ) combines the creation of a kink and the annihi-
lation of an antikink. In ĤNM−K, b̂α†

N (b̂α
N ) denotes the creation

(annihilation) of a NM on the αth site, with n̂α
N = b̂α†

N b̂α
N .

ĤNM−K then describes the interaction between the monopole
and kinks, which includes the attractive interaction between

a NM and a kink and the effect of monopole hopping on the
(anti)kink.

The effects of interaction between the NM and the
(anti)kinks can be captured by the dynamical structure factor
S(k, ω) [46,47], and S(k, ω) of the DSG pseudospin chain is
shown in Fig. 2(a) and is calculated using the multilayer, mul-
ticonfiguration, time-dependent Hartree method for arbitrary
bosonic (fermionic) mixtures [48–50] (for more details see
Appendix D). In Fig. 2(a), a single-mode branch appears in
the first band and gives a strong hint that the doped NM and
the intrinsic kink are bound and behave as a single composite
quasiparticle. The emergence of the NM-kink bound state
can be confirmed by the NM-kink correlation 〈ψ |n̂α̃

K n̂β
N |ψ〉,

with |ψ〉 running through all eigenstates in the first band.
Figure 2(b) shows the NM-kink correlation for an arbitrary
eigenstate in the first band, and it clearly demonstrates that
the NM and the intrinsic kink always occupy the same site.
The NM-kink correlations for the other eigenstates in the first
band all present the same bound behavior (not shown here).

The second band in Fig. 2(a) presents a broad spec-
trum, leading to a continuum band in the infinitely long
chain limit. It is known that in the absence of the NM, the
antikink-kink pair excitation dominates the excitation from
the ground to higher bands, which leads to continuum ex-
cited bands in the infinite-chain limit. An analysis using the
multiparticle correlations, however, reveals that the presence
of a NM not only preserves the excitation channel of the
antikink-kink pair excitation but also brings in a new channel
contributing to the second band, which is the deconfinement
of the NM and the intrinsic kink. Multiparticle correlations
have become powerful and experimentally accessible tools to
identify quasiparticle excitation in ultracold-atom simulated
pseudospin chains [51], and here, we determine the four-body
correlation C4 = ∑

α,β,γ 〈n̂α
K n̂α

N n̂β
K n̂γ

A〉 and the three-body cor-

relation C3 = ∑
α,β 〈(1 − n̂α

K )n̂α
N n̂β

K 〉 to identify the excitation
channels from the first to the second band, where α, β, and
γ run over all sites in the (squeezed) chain with α 
= β. C4

and C3 signify the antikink-kink pair excitation in the pres-
ence of the bound NM-kink and the deconfinement of the
bound NM-kink, respectively. The nonvanishing correlations
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FIG. 2. (a) The dynamical structure factor S(k, ω) for the 14-
site pseudospin chain with d = 40J . The frequency interval of ω ∈
(0.5, 36) is removed where the gap between the first two bands
lies. The representative basis states contributed to each band are
shown to the right of the structure factor plot, where different fer-
romagnetic domains are emphasized with solid-line steps and the
(anti)kinks locate at the edges of the steps. The pink diamonds in
the main plot are the band dispersion obtained from the effective
single-particle Hamiltonian describing the emergent particle com-
posed of the monopole and kink. (b) The NM-kink correlation for the
ground state. (c) The three-body correlation C3 (blue) and four-body
correlation C4 (yellow) of the second band.

C4 and C3 for the eigenstates in the second band, shown in
Fig. 2(c), demonstrate that both excitation channels contribute
to the second band and also suggest that the excitation of an
antikink-kink pair can be transformed to the deconfinement
state of the NM-kink bond, which has potential applications
for the manipulation of monopoles and kinks. In Fig. 2, the
boxes to the right of Fig. 2(a) sketch the dominant contribu-
tions to the first two bands, and from bottom to top they are the
NM-kink bound state, the free pair of a NM and a kink, and
the coexistence of the bound NM-kink with the antikink-kink
pair.

It is well known that composite quasiparticles composed
of two types of particles, such as polarons [52,53], can renor-
malize the dispersion and mobility of the bare particles and
provide a unique control tool. The NM-kink bound state
also shares this renormalization effect with the bare kink.
As shown in Fig. 3, the dispersion of the bound state is
significantly changed from that of the bare kink and can be
tuned by the mobility of the NM. Furthermore, to verify the
manipulation of the bound NM-kink by the antikink-kink pair
excitation, we determine the dynamical process with the initial
state where a bound NM-kink and an antikink-kink pair are

FIG. 3. The dispersions of a bare kink (black dashed line) and
the composite quasiparticle for J1 = 0.1 (blue circles), 0.2 (brown
triangles), 0.3 (cyan diamonds), and 0.4 (yellow squares).

located at the left and right edges of the pseudospin chain. The
temporal evolutions of C3(t ) and C4(t ) as shown in Fig. 4(a)
indicate that, at the beginning of the dynamics, the system is
dominated by the coexistence of the bound NM-kink and the
antikink-kink pairs, whereas for later times (marked by gray
vertical lines), the deconfinement of the bound NM-kink takes
place, accompanied by the disappearance of the coexistence
of the NM-kink and antikink-kink pairs. This confirms that
the antikink-kink pair excitation can induce the deconfinement
through the annihilation of the antikink with the kink bound
to the NM.

In Figs. 4(b)–4(d), we also show the spatial densities of
the NM, kink, and antikink at the beginning and later times
marked in Fig. 4(a). The densities clearly show that in the
beginning the NM-kink and antikink-kink pairs are separately
located on opposite edges, and at later times the NM and
kink become deconfined, with the antikink almost vanishing.
The spatial densities further verify the deconfinement of the
bound NM-kink by the antikink-kink annihilation process.
The renormalization effect and the manipulation of the NM-
kink bound state with the antikink suggest rich interaction
effects between the NM and the (anti)kinks and provide a
potential control of the kink by monopoles.

FIG. 4. (a) Temporal evolution of C3 (blue) and C4 (yellow) dur-
ing the dynamical process. (b)–(d) The spatial densities of the NM
〈n̂α

N 〉 (blue circles), the kink 〈n̂α̃
K 〉 (red diamonds), and the antikink

〈n̂α̃
A〉 (purple triangles) at (b) the beginning and (c) and (d) later times

marked by gray vertical lines in (a).
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IV. DISCUSSION AND OUTLOOK

Ultracold atoms have become an important platform for
quantum simulation and allow us to implement various
atomic pseudospin models. The latter enabled the simula-
tion of different magnetic quasiparticles, such as magnons
[23], spin and magnetic polarons [27,28], spinons [24], and
kinks [29,30,34], as well as the monopole [36–40]. Existing
simulations have mainly focused on the excitation condition
and the dynamical properties of quasiparticles of an individ-
ual type. The DSG pseudospin system allows, however, for
the coexistence and coupling, i.e., interaction effects, of the
magnetic monopole and kink, which enriches the previously
investigated scenario of the quantum simulation of individual
magnetic quasiparticles with ultracold atoms.

The key ingredients of the DSG pseudospin scheme in-
volve the double-well superlattice and the dipolar interaction,
which are realizable within current experimental techniques.
The double-well superlattice is typically realized by the su-
perposition of two pairs of counterpropagating laser beams
[54–57], with λ1 = 2λ2, where λ1(2) refer to the wavelengths
of the laser beams. Dipolar quantum gases can be composed
of ultracold polar atoms [58,59], Rydberg atoms [60,61], and
polar molecules [62,63]. In particular, our numerical simula-
tions truncated the dipolar interaction to the nearest-neighbor
interaction, which can be implemented by, e.g., the Rydberg
dressing [64,65]. (An estimation of the experimental param-
eters is given in Appendix E.) Moreover, this simulation
scheme can be directly generalized to two-dimensional super-
lattice potentials, which not only generalizes the spin chain
to the two-dimensional square [66] and triangular lattices
[54,67] but also enables the simulation of Dzyaloshinskii-
Moriya-like spin-spin interactions by exploring the anisotropy
of the dipolar interaction.

Based on our simulation scheme, we have revealed binding
and antibinding effects between the monopole and the kink.
These effects are not restricted to the case of ultracold atomic
pseudospins and can be generalized to condensed-matter spin
systems. It is interesting to note that a very recent experimen-
tal work investigating CoTb films [68] reported the excitation
of magnetic monopole pairs, in which the excited monopole
pairs are bound to a ferromagnetic domain wall, i.e., the two-
dimensional counterpart of the magnetic kink. The binding
effect in both the pseudospin and condensed-matter spin sys-
tems can be attributed to the common nature of the singular
magnetic field of the monopole exerted on neighboring spins,
which induces the attractive interaction between the monopole
and the kink or domain wall. It can also be expected that a
simulation based on ultracold quantum gases would stimulate
related investigations in (artificial) spin lattices [69,70].
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APPENDIX A: THE PSEUDOSPIN MAPPING

In this Appendix, a more visualizable demonstration of
the pseudospin mapping is provided in Fig. 5. As introduced
in the main text, there are four single-cell occupation states,
{|1, 0〉i, |0, 1〉i, |1, 1〉i, |0, 0〉i}, each of which is mapped to a
spin state and/or defect state. The mapping of the four oc-
cupation states to the corresponding spin and/or defect states
is given in Fig. 5(a). Following the pseudospin mapping, the
whole superlattice loaded with atoms can be mapped to a spin
chain with doped NM and SM, and the mapping between the
superlattice of a particular atom-filling configuration and the
corresponding doped spin chain is shown in Fig. 5(b).

APPENDIX B: THE POLARIZATION EFFECT
OF THE MONOPOLE

Here, we provide more calculation results for the spin-
polarization effect of the NM and SM, which are compared
to the spin polarization induced by a normal magnetic defect.
To accomplish this, we consider a transverse Ising spin chain
doped with a defect localized in the middle of the chain.
Without the doping, the spins in the chain are all aligned in
the x direction by the transverse magnetic field, and the spin
chain resides in the paramagnetic phase. The doped defect can
interact with its neighboring spins and can polarize these spins
in a “new” direction. Defects of different types can result in
very different spin textures of the neighboring spins. Here, we
separately consider three types of defects, namely, the NM,
the SM, and a normal magnetic defect, and compare the spin
textures from these defects. We model the normal magnetic
defect as a particle of 1/2 spin, and the spin state of the defect
is fixed to | ↑〉z.

In our study, the Hamiltonian is taken as Ĥ = Ĥ0 + Ĥα
defect,

where Ĥ0 refers to the Hamiltonian of the transverse Ising spin
chain, as introduced in the main text. Ĥα

defect corresponds to
the spin-defect interaction, with α = NM, SM, and normal,
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FIG. 6. The polarization effect for different defects for d = 3J . (a) The magnetization along the x (black) and z (blue) axes of the undoped
spin chain. (b) The NM, (c) SM, and (d) normal magnetic defect cases. The black solid circles and blue diamonds represent 〈σ̂x〉 and 〈σ̂z〉,
respectively.

denoting the NM, SM, and normal magnetic defects. The
different spin-defect interactions read

ĤNM
defect = d

4

M∑
α

n̂α
N

(
σ̂ α−1

z − σ̂ α+1
z

)
, (B1a)

ĤSM
defect = d

4

M∑
α

n̂α
S

(−σ̂ α−1
z + σ̂ α+1

z

)
, (B1b)

Ĥnormal
defect = d

4

M∑
α

n̂α
nor

(−σ̂ α−1
z − σ̂ α+1

z

)
. (B1c)

Ĥnormal
defect is taken from the case of, for instance, doping mag-

netic atoms to electron gases, where the doped atom plays the
role of the normal magnetic defect. The results are shown in
Fig. 6. Figure 6(a) shows the spin polarization of the undoped
DSG spin chain in the weak interaction regime (d = 3J),
which corresponds to the paramagnetic phase. In Figs. 6(b)
and 6(c), we present the results for the NM and SM de-
fects. Here, we observe that the neighboring spins point away
from (towards) the NM (SM) defect. Figure 6(d) provides a
comparison to the normal magnetic defect, which polarizes
the neighboring spins on its left and right sides in the same
direction.

APPENDIX C: THE SQUEEZED SPACE

In this section, we use Fig. 7 to give a more explicit demon-
stration of the basis defined in the squeezed space. Figure 7(a)
shows one of the basis states of the pseudospin chain with nine
spins labeled α = 1–9. Two kinks and an antikink are located
between sites (2, 3), (8, 9), and (6, 7). The basis with a doped
particle defect on the fifth site is shown in Fig. 7(b). Subse-
quently, we remove the particle defect from the pseudospin
chain, and the left spins [Fig. 7(c)] form the squeezed space.
The spins on the right side of the particle defect are squeezed
forward. The left spins in the squeezed space are relabeled
α̃ = 1–8, where α̃ = α and α̃ = α + 1 for α < 5 and α > 5,

respectively. In the squeezed space, the kinks and antikink are
located between sites (2, 3), (7, 8), and (5, 6). The falling and
rising edges of the purple solid line in Fig. 7(d) indicate the
positions of kinks and antikink, respectively.

APPENDIX D: CALCULATIONS OF THE DYNAMICAL
STRUCTURE FACTOR

In this Appendix, we present two approaches to calculate
the dynamical structure factor. The first approach is based on
[1], in which S(k, ω) is determined using the Fourier trans-
formation of the time-dependent correlation function. The
second approach, following the proposal in [46], couples the
DSG system to a particle bath and applies a periodic varia-
tion of the coupling strength. Then S(k, ω) is extracted from
the dynamical process under periodic driving, which resem-
bles the angle-resolved photoemission spectroscopy (ARPES)
signal. The two approaches give qualitatively the same re-
sults, and the main difference arises from the quantitative
weights of each mode. Given the comparison between the two

FIG. 7. Illustration of squeezed space. (a) The basis without de-
fects. (b) The basis with the single-particle defect at the fifth site.
(c) The basis in a squeezed space. (d) The kink-antikink basis.
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approaches, we show the results of the first approach in
Fig. 2(a) in the main text.

First, we provide the definition of the single-particle
spectral function, which is the imaginary part of the
single-particle retarded Green’s function. The single-particle
retarded Green’s function GR(k, t ) in the Lehmann represen-
tation at zero temperature reads [71]

GR(k, ω) =
∑
n,σ

{ ∣∣〈ψn

∣∣â†
k,σ

∣∣ϕ0
〉∣∣2

ω + ε0 − εn + iη
+ |〈ψn|âk,σ |ϕ0〉|2

ω − ε0 + εn + iη

}
,

(D1)

where â†
k,σ

= √
2/(M + 1)

∑M
j=1 sin[k j/(M + 1)]â†

j,σ creates
a fermion with momentum k and spin σ . |ϕ0〉 is the ground
state of the system without doping, and |ψn〉 is the nth eigen-
state of the system with single-particle doping, while ε0 and εn

are their energies. η ∈ R+, and we consider the limit η → 0+.
We focus on the single-particle excitations, and we therefore
have |〈ψn|âk,σ |ϕ0〉|2 = 0. The single-particle spectral function
S(k, ω) takes on the following appearance:

SG(k, ω) = − 1

π
Im{GR(k, ω)}

=
∑
n,σ

|〈ψn|â†
k,σ

|ϕ0〉|2δ(ω + ε0 − εn),
(D2)

and the density of states (DOS) is defined as ρG(ω) =∫
dkSG(k, ω).

1. Approach 1

Following Eq. (A1) in Ref. [47], the approach first de-
termines the spin-spin time-dependent correlation function,
which is defined as

C(i, t ) =
∑

σ

〈ϕ0|eiĤt âi,σ e−iĤt â†
1,σ |ϕ0〉, (D3)

where â†
i,→/←/âi,→/← = f̂ †

2i/2i−1/ f̂2i/2i−1 is the fermionic cre-
ation (annihilation) operator of the right (left) site of the ith
supercell. Then the spatial Fourier transform is performed and
gives rise to

A(k, t ) =
√

2

M + 1

∑
i
sin

(
ik

M + 1

)
C(i, t ). (D4)

Finally, the dynamical structure factor SF (k, ω) is obtained
with the Fourier transformation in time:

SF (k, ω) = 1

2π

∫ ∞

−∞
dtA(k, t ), (D5)

and the DOS is given by ρF (ω) = ∫
dkSF (k, ω).

2. Approach 2

The second approach involves the simulation of the
ARPES process [46]. In the simulation of ARPES, the un-
doped DSG system is first connected to a bath system, which
allows particle hopping between the DSG chain and the bath.
Periodic shaking is then applied to the coupling strength with
a particular shaking frequency. During the dynamical process
under the shaking, particles can tunnel from the bath to the

DSG chain, corresponding to the doping of a particle to the
DSG system. The structure factor is then associated with the
momentum distribution of the hole in the bath at the particular
driving frequency. We illustrate our simulation setup of this
ARPES process as follows: First, we consider the DSG+bath
system in Fig. 8, in which the bath is a lattice of atoms in the
Mott state. The lattice of the bath system has the same period
as the double-well superlattice, but there is a single site per
cell. We load the same spin-polarized fermions into the DSG
system and the bath system, while the DSG and bath systems
are half and unit filling, respectively.

The Hamiltonian of the DSG+bath system reads

ĤDSG+bath = ĤDSG + Ĥbath + Ĥintra, (D6a)

ĤDSG = −J
M∑

i=1

( f̂ †
2i f̂2i−1 + H.c.)

− J1

M−1∑
i=1

( f̂ †
2i f̂2i+1 + H.c.)

+
M−1∑

i< j∈[1,2M]

Vd ( j − i)n̂in̂ j, (D6b)

Ĥbath = −J0

M∑
i=1

(ĉ†
i ĉi−1 + H.c.) + �

M−1∑
i=1

ñi, (D6c)

Ĥinter = −Jinter sin(ωSt )
M∑

i=1

[ĉ†
i ( f̂2i−1 + f̂2i ) + H.c.],

(D6d)

where f̂ †
2i/2i−1 and f̂2i/2i−1 (ĉ†

i and ĉi) are the fermionic cre-
ation and annihilation operators, respectively, of the right and
left sites of the ith supercell (cell) in the DSG (bath) system
and the operator n̂i = f̂ †

i f̂i (ñi = ĉ†
i ĉi) counts the number of

fermions in site i in the DSG (bath) system. The first two
terms in ĤDSG describe the intra- and intercell hoppings, re-
spectively, with hopping amplitudes J and J1. � is the offset
of the bath relative to the DSG, and the hopping amplitude of
the fermions in the bath is J0. The dipole-dipole interaction
(DDI) between two fermions located in the ith and jth sites is
taken to be Vd ( j − i) = d/|x j − xi|3, where xi (x j) is the local
minimum of the corresponding site and d denotes the DDI
strength. In the bath system, the fermions are well separated
from each other, and we therefore ignore the DDI among
them. The lattice modulation can be described by Ĥinter, and
Jinter � J1 is the perturbation term.

Ĥinter induces hopping of atoms from the bath to the DSG
system, and the energy change in the DSG system due to
the doping is h̄ω = EM+1 − EM for single-atom hopping. For
lattice modulation frequency ωS , this is determined by the
energy conservation:

h̄ω = h̄ωS − EB(k) − �, (D7)

where EB(k) = −2J0 cos(k) is the energy of the hole in the
bath system. The offset � is taken to be 8d and 9d when we
detect the dynamical structure factors of the first and second
bands, corresponding to the energy of a NM and the energy
of one NM and antikink, respectively. The momentum and
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FIG. 8. The proposed setup. The red (black) arrows indicate the intracell (intercell) hopping of spin-polarized fermions in the DSG system.
The brown arrows indicate the hopping of fermions in the bath, while the green arrows are the modulation between these two systems.

energy resolution spectrum function are obtained by detecting
the momentum distribution of the hole for different ωS .

The structure factor SM (k, ωS ) is determined from the re-
duced density matrix of the hole in the bath system as

SM (k, ωS ) = h̄

2πJ2
0

�(k, ωS ), (D8)

where �(k, ωS ) = 1
M+1

∑
i, j sin(ik) sin( jk)RωS (i, j) is the

probability of creating a particle with momentum k and en-
ergy h̄ωS . RωS (i, j) = trDSG[|ψ (tωS )〉〈ψ (tωS )|] is the reduced
density matrix of the hole in the bath, while |ψ (tωS )〉 is the
wave function of the complete system at tωS . At t = tωS , the
probability of the tr[RωS (i, j)] hole takes a maximum for a
given shaking with frequency ωS . The DOS is naturally de-
fined as ρM (ω) = ∫

dkSM (k, ω).
In the strong-interaction regime, which is of interest here,

the gap between the adjacent bands is much larger than the
strength of shaking. As a result, we need to take only the
resonant states into account. For a certain ωS , after trans-
forming to the rotating frame and performing a rotating-wave
approximation, one obtains the Hamiltonians

ĤRWA = ĤDSG + ĤRWA
bath +ĤRWA

inter , (D9a)

ĤDSG = −J
M∑

i=1

( f̂ †
2i f̂2i−1 + H.c.) − J1

M−1∑
i=1

( f̂ †
2i f̂2i+1 + H.c.)

+
M−1∑

i< j∈[1,2M]

Vd ( j − i)n̂in̂ j, (D9b)

ĤRWA
bath = −J0

M∑
i=1

(ĉ†
i ĉi−1 + H.c.) + (� − ωS )

M−1∑
i=1

ñi, (D9c)

ĤRWA
inter = −Jinter

2

M∑
i=1

[ĉ†
i

(
f̂2i−1 + f̂2i

) + H.c.]. (D9d)

Throughout our numerical calculation, we set J = 1 as the
unit. The other parameters are J0 = J1 = 0.1, d = 40, Jinter =
0.01, and the evolution time T = 1000.

The structure factors computed with the first and second
approaches are given in Figs. 9(a) and 9(b) with SF (k, ω) and
SM (k, ω), respectively. We omit the frequency interval of ω ∈
(0.5, 35) as SF/M (k, ω) ∼ 0, which is the gap between the first
two bands. SX (k, ω) is normalized to unity

∫
dωSX (k, ω) = 1,

with X = F, M, G [72]. SF (k, ω) and SM (k, ω) are qualita-
tively the same, although it looks like there are more details in
Fig. 9(b). This is confirmed by the DOS shown in Figs. 9(c)
and 9(d). Figure 9(c) shows ρG(ω) (purple), ρF (ω) (blue),
and ρM (ω) (red) for ω ∈ [−0.5, 0.5], and their peaks locate
at the same position with similar amplitudes. In Fig. 9(d), we
show the DOS for ω ∈ [−35, 45]. The peaks almost match,
although ρF (ω) is invisible for the higher excited states of
the second band. This is because |〈ψn|ĉ†

k,σ
|ϕ0〉|2 ∼ 0 for these

higher excited states. The most direct way to improve the
intensity of SF (k, ω) is to take the rest of the eigenstates of
the undoped system into account.

The above analysis compares different approaches to ob-
tain the dynamical structure factor, which give qualitatively
the same spectrum, with the difference mainly arising in the
quantitative amplitude of each mode. We then adapt the first

FIG. 9. Dynamical structure factor of the six-site DSG pseudospin chain. (a) SF (k, ω) obtained with the Fourier transform of the time-
dependent correlation function. (b) SM (k, ω) originating from the lattice modulation. (c) and (d) The DOSs with ρG (red dashed line), ρF (blue
solid line), and ρM (orange solid line).
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FIG. 10. The interaction strength versus the relative distance be-
tween atoms, in units of J and λs, respectively. The panel above plots
the double-well superlattice with the same length scale as the relative
distance in the main plot to demonstrate that the interaction mainly
affects atoms that are nearest neighbors.

approach since it is more setup independent and does not rely
on the setting of, e.g., the bath.

APPENDIX E: THE EXPERIMENTAL REALIZATION

Here, we discuss the experimental realizability of the DSG
simulation scheme. The key ingredients of our scheme in-
volve the double-well superlattice and the dipolar interaction,
which are realizable within the current experimental tech-
niques. The double-well superlattice is typically realized by
the superposition of two pairs of counterpropagating laser
beams [54–57]. The dipolar quantum gases can be composed
of ultracold polar atoms [58,59], Rydberg atoms [60,61], and
polar molecules [62,63]. In particular, our numerical simula-
tions truncated the dipolar interaction to the nearest-neighbor

interaction, which can be implemented by, e.g., the Rydberg
dressing [64,65]. The DSG simulation scheme also requires
U � J � J1, where U , J , and J1 denote the strength of the
nearest-neighbor (NN) interaction as well as the intra- and
intercell hoppings. In our numerical simulation, we take the
parameters U = 40J = 400J1, where the DSG pseudospin
chain resides in the single-kink phase.

Taking 6Li atoms as the working medium, the wavelengths
for the laser beams to form the double-well superlattice are
λs = 2.3 μm and λl = 2λs. Fixing the amplitudes of the
lattice height of the short- and long-wavelength lattices as
Vs = 18ER, Vl = 6.2ER leads to intra- and intercell hopping
strengths of J = 10J1 = 68 Hz, where ER = h2/(2λ2

s mLi) is
the recoil energy, with h and mLi denoting the Planck constant
and the atomic mass.

The NN interaction can be induced by the Rydberg
dressing, and we take the Rydberg state to be |34S1/2〉 for
demonstration, with the van der Waals–type interaction co-
efficient C6 = 46.5 MHz μm6. To be consistent with the
double-well superlattice settings, the NN interaction strength
should take the value U = 2.72 kHz, with the Rydberg radius
approaching the period length of the lattice. It can be found
that choosing the detuning and Rabi frequency of the Rydberg
excitation laser to be 43.8 and 6.6 MHz leads to U ∼ 2.72 kHz
and Rydberg radius Rc = 0.9 μm, which meets the require-
ment of the setting of our numerical simulations. We plot
the interaction strength as a function of the relative distance
between atoms in Fig. 10 to visualize the NN interaction
induced by the Rydberg dressing, and this interaction fulfills
the DSG simulation scheme.

It is also worth mentioning that the simulation scheme
is flexible with respect to the choice of parameters and can
be implemented over a wide parameter regime, enabling a
feasible experimental realization.
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