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Efimov resonance position near a narrow Feshbach resonance in a 6Li - 133Cs mixture
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In the vicinity of a narrow Feshbach resonance Efimov features are expected to be characterized by the
resonance’s properties rather than the van der Waals length of the interatomic potential. Although this theoretical
prediction is well established by now, it still lacks experimental confirmation. Here, we apply our recently
developed three-channel model [Y. Yudkin and L. Khaykovich, Efimov scenario for overlapping narrow Fes-
hbach resonances, Phys. Rev. A 103, 063303 (2021)] to the experimental result obtained in a mass-imbalanced
6Li - 133Cs mixture in the vicinity of the narrowest resonance explored to date [J. Johansen, B. J. DeSalvo, K.
Patel, and C. Chin, Testing universality of Efimov physics across broad and narrow Feshbach resonances, Nat.
Phys. 13, 731 (2017)]. Our analysis suggests that the observed position of the Efimov resonance is dictated
mainly by the resonance physics while the influence of the van der Waals tail of the interatomic potential is
minor. We show that the resonance position is strongly influenced by the presence of another Feshbach resonance
which significantly alters the effective background scattering length at the narrow resonance position.

DOI: 10.1103/PhysRevA.105.053304

I. INTRODUCTION

The Efimov effect in ultracold atoms emerges when the
scattering length a greatly exceeds the van der Waals length
rvdW of the interatomic potential [1]. The resonantly enhanced
two-body interactions give rise to an infinite ladder of three-
body bound states separated by a universal scaling factor.
Thus, to fully determine the three-body spectrum it suffices
to do so for a single state. Moreover, as the state’s dependence
on a is described by a universal function, a single parameter
is enough to define the entire spectrum. For this matter it is
convenient to choose the scattering length value a− at which
the ground state of the Efimov state meets the free-atom con-
tinuum. Experimentally, this is the best studied parameter to
date [2–4].

It was predicted that a− depends on the underlying two-
body collisional resonance strength which is conveniently
characterized by a dimensionless parameter sres. A collisional
Feshbach resonance occurs when the free atoms in an open
channel are coupled to a nearly degenerate two-body bound
state in a closed channel [5]: For strong coupling with sres � 1
(also known as the broad resonance regime) a− is universally
related to rvdW [2,3]. When the coupling weakens, a− deviates
from this universality and, instead, tends to be dictated by the
effective range of the Feshbach resonance for sres � 1. The
latter regime can be described by a simplified theory with a
short-range potential tuned to have the same effective range
as the true interaction potential [6].

Experimental studies of narrow resonances are difficult
due to the extreme magnetic-field stability requirement. The
difficulties are twofold. First, the position of the Efimov res-
onance is predicted to be pushed towards higher scattering

length values as compared to broad resonances which fol-
low the Efimov–van der Waals universality. Second, narrow
resonances are usually literally narrow, i.e., they are narrow
functions of the magnetic field, which causes large changes
in the scattering length over tiny variations of the magnetic
field. The combination of these two factors renders an unre-
alistically tough requirement on the magnetic-field stability,
and hence this demanding regime was rarely approached ex-
perimentally [7,8]. The narrowest resonance studied to date is
in the 6Li - 133Cs mixture [9].

The few-body aspects of heteronuclear mixtures attracted
significant interest in the last decade, both theoretical [10–20]
and experimental [21–28]. The 6Li - 133Cs mixture is the most
extreme mass-imbalanced system in which Efimov features
were observed to date making it favorable for the attempt to
reveal the few-body physics at a narrow Feshbach resonance.
In contrast to homonuclear systems, where the large universal
scaling factor makes the observations of two consecutive Efi-
mov resonances challenging [29], the large mass ratio in the
Efimov favorable heavy-heavy-light scenario was predicted
to decrease the scaling factor significantly [10]. The Efimov
physics in the 6Li - 133Cs mixture has been the subject of
intense experimental investigation in the vicinity of two broad
Feshbach resonances and the decreased scaling factor was
confirmed [25–28]. This motivated the attempt to look for Efi-
mov features in the vicinity of a narrow Feshbach resonance
despite the fact that no theoretical prediction is available in
this region [9].

Indeed, the position of the Efimov resonance was revealed
at a larger scattering length as compared to the position
predicted by the Efimov–van der Waals universality and mea-
sured in the vicinity of broad resonances [9]. As the model
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of Ref. [6], in its original form, is limited to three identical
bosons, this result remains theoretically unexplored. Nev-
ertheless, developing a suitable theory can clarify several
interesting aspects of the three-body physics at a narrow res-
onance. For example, how important is the van der Waals tail
of the real interatomic potential compared to the resonance
physics? And what is the influence of a nearby overlapping
Feshbach resonance?

Here we consider these questions by extending our recently
developed three-channel theory to mass-imbalanced mixtures
and applying it to the experimentally relevant resonances in
the 6Li - 133Cs mixture. We show that the position of the
Efimov resonance is well captured by this theory if the over-
lapping Feshbach resonances are properly taken into account.
Based on this result we can place the upper bound for the
contribution of the finite range of the interatomic potential
(i.e., the van der Waals length) to the position of the Efimov
resonance. Unfortunately, the lack of other experimental re-
sults under similar conditions prohibits further benchmarking
of our model.

Finally, we note that there is a growing effort to incorpo-
rate realistic multichannel two-body interactions in few-body
theories to improve their performance when applied to real
systems [8,30–32]. Our approach supports the necessity of
these efforts.

II. MODEL HAMILTONIAN

Inspired by the two-channel model [6,33,34], we develop
a suitable model step by step, starting from an open channel
of free atoms. By considering a noninteracting open chan-
nel (zero background scattering) the short-range physics is
neglected. The resonant two-body interactions are modeled
by coupling the open channel to a closed molecular chan-
nel which is detuned by a magnetic-field-dependent binding
energy. The weakly coupled limit (narrow resonance) leads
to a large effective range re which significantly exceeds rvdW

[34]. More resonances can be included by coupling the open
channel to additional closed channels [35].

We consider a 6Li - 133Cs mixture where both atoms are
prepared in their respective absolute ground states (aa chan-
nel). At 893 G there is a narrow Feshbach resonance which,
according to coupled-channel calculations using the model
of Ref. [36], features a large and negative effective range
at the resonance’s position (re = −1541a0, where a0 is the
Bohr radius). As the van der Waals length of the Li-Cs in-
teraction potential is rvdW = 44.8a0, the narrow resonance
criterion is well satisfied: |re| � rvdW or, alternatively, sres =
0.0509 � 1. Moreover, abg = −30a0 justifies the assump-
tion of negligible background scattering [36–38]. However,

another Feshbach resonance at 843 G is expected to play an
important role. This resonance is of intermediate character,
being neither broad nor narrow. As is shown below, it overlaps
with the narrow resonance and strongly alters the local back-
ground scattering in the latter’s vicinity. Taking into account
the 843-G resonance is essential to reveal the predictive power
of our three-channel model.

We start with the most generic case of three distinguish-
able atomic species (labeled i = 1, 2, 3) with masses mi. Each
atom pair can form a molecule in either of two closed channels
ν = 1, 2. We define creation operators of atoms, â†

�q,i, and of

molecules, b̂†
�q,i,ν , where �q denotes the particle’s momentum.

The index i in b̂†
�q,i,ν labels the atom not part of the molecule.

The operators satisfy standard commutation relations. The
conversion of two atoms i �= j to a molecule k �= i, j in chan-
nel ν is most generally described by the term

δ(�q1 − �q2 − �q3)b̂†
�q1,k,ν

â�q2,iâ�q3, j, (1)

where δ(�q1 − �q2 − �q3) signifies momentum conservation.
The total Hamiltonian consists of a bare atomic, a bare

molecular, and an interaction term:

Ĥ = Ĥ (at) + Ĥ (mol) + Ĥ (int). (2)

The bare atomic term is made of three parts, one for each
species:

Ĥ (at) =
3∑

i=1

Ĥ (at)
i , (3a)

Ĥ (at)
i =

∫
d3q

(2π )3

h̄2q2

2mi
â†

�q,iâ�q,i. (3b)

The bare molecular term is made of six parts, one for each pair
(i) and each channel (ν):

Ĥ (mol) =
3∑

i=1

2∑
ν=1

Ĥ (mol)
i,ν , (3c)

Ĥ (mol)
i,ν =

∫
d3q

(2π )3

(
h̄2q2

2Mi
+ Ei,ν

)
b̂†

�q,i,ν b̂�q,i,ν , (3d)

where the mass of a molecule is Mi = (mj + mk ) and the en-
ergy detuning from the open channel is Ei,ν = μi,ν (Bi,ν − B)
with μi,ν the differential magnetic moment and Bi,ν the bare
resonance position. Finally, the interaction term also consists
of six parts:

Ĥ (int) =
3∑

k=1

2∑
ν=1

Ĥ (int)
k,ν

, (3e)

Ĥ (int)
k,ν

= �k,ν

2

∑
i, j �=k

∫
d3q1

(2π )3

∫
d3q2

(2π )3

[
b̂†

�q1,k,ν
â�q2+ �q1

2 , j
â−�q2+ �q1

2 ,i
+ â†

−�q2+ �q1
2 ,i

â†

�q2+ �q1
2 , j

b̂�q1,k,ν

]
, (3f)

where the factor of 1/2 avoids double counting. Note that we
assume zero direct coupling between the two closed channels
ν = 1 and 2. Without loss of generality, this coupling can be

diagonalized by introducing a dressed basis in which inter-
actions are absorbed by the energy shifts. A more rigorous
approach considered in Ref. [35] shows that this coupling
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adds an additional free parameter to the system which re-
mains redundant when the other parameters are fixed by the
two-body observables. Indirect coupling through the common
continuum remains intact.

III. THREE DISTINGUISHABLE PARTICLES

A. Two-body sector

Since there are three distinct atomic species there are three
two-body sectors k = 1, 2, 3. However, all three are permu-
tations of each other. The kth two-body sector is described
by the Schrödinger equation (Ĥ − E )|ψ (2B)

k 〉 = 0 and the
(center-of-mass frame) two-body ansatz is

∣∣ψ (2B)
k

〉 =
(∑

ν

βk,ν b̂†
�q=0,k,ν

+
∫

d3q

(2π )3 αk (�q)â†
�q,iâ

†
−�q, j

)
|0〉,

(4)

where i �= j �= k �= i. Scattering properties, in particular the
scattering length ak and the effective range re,k , are de-
rived from the positive-energy solution E = h̄2q2

k/2μk > 0,
while for E = −h̄2(λD

k )2/2μk < 0 the dimer binding energy
is found. Here, μk = mimj/(mi + mj ) is the reduced mass
of pair i �= j. Note that, for the sake of compact notation,
the relative momentum qk of the free atoms can be formally
related to the binding wave number λD

k via qk = iλD
k .

The two-body Schrödinger equation leads to the following
two coupled equations (ν = 1, 2):

β̃k,ν

(
Ẽk,ν − q̃2

k

) + �̃k,ν
(E )

− �̃k,ν

2π2

(
1 + iπ

2
q̃k

)∑
ν ′

�̃k,ν ′ β̃k,ν ′ = 0,
(5)

where 
(E ) is the Heaviside step function. In Eq. (5) all
quantities are renormalized with respect to the naturally oc-
curring momentum cutoff qc and its associated energy Ec,k =
h̄2q2

c/2μk (see Sec. III B). A dimensionful quantity x is de-
noted x̃ when normalized.

Solving Eq. (5) for E > 0 allows for computation of the
scattering amplitude:

f̃ (qk ) = −
∑

ν

�̃k,ν β̃k,ν

4π
. (6)

The resulting expression is expanded to second order in q̃k

and compared to the effective range expansion, f̃ −1(qk ) =
−ã−1

k − iq̃k + r̃e,kq̃2
k/2, to find the interspecies scattering

length ãk and the effective range r̃e,k . When q̃k = 0 the so-
lution of Eq. (5) leads to an expression of the scattering
length which can be directly compared to coupled-channel
calculations.

For negative dimer energy E < 0, Eq. (5) leads to a fourth-
order polynomial equation for λD

k , the positive roots of which
correspond to the physically relevant solutions [35].

B. Three-body sector

The trimer binding energy ET = −h̄2λ2
T /2μT , with λT >

max(0, λD
k ), is the eigenvalue associated with the three-body

wave function:

|ψ3B〉 =
∑
i,ν

∫
d3q

(2π )3 βi,ν (�q)b̂†
�q,i,ν â†

−�q,i|0〉 +
∫

d3q1

(2π )3

×
∫

d3q2

(2π )3 α(�q1, �q2)â†

−�q2+ �q1
2 ,1

â†

�q2+ �q1
2 ,2

â†
−�q1,3

|0〉.

(7)

Direct substitution of |ψ3B〉 into (Ĥ − ET )|ψ3B〉 = 0 leads to
seven coupled integral equations. The first one, from project-
ing onto the free atom continuum, is

α( �q1, �q2)

(
h̄2

∣∣ �q2 − �q1

2

∣∣2

2m1
+ h̄2

∣∣ �q2 + �q1

2

∣∣2

2m2
+ h̄2q2

1

2m3
− ET

)

+
∑

ν

[
�1,νβ1,ν

(
�q2 − �q1

2

)
+ �2,νβ2,ν

(
− �q2 − �q1

2

)
+ �3,νβ3,ν ( �q1)

]
= 0. (8a)

The remaining six are structured as three pairs ν = 1, 2:

β1,ν ( �q1)

(
h̄2q2

1

2μ′
1

+ E1,ν − ET

)
+ �1,ν

∫
d3q2

(2π )3 α

(
�q2 − �q1

2
,

�q2

2
+ 3 �q1

4

)
= 0, (8b)

β2,ν ( �q1)

(
h̄2q2

1

2μ′
2

+ E2,ν − ET

)
+ �2,ν

∫
d3q2

(2π )3 α

(
− �q2 − �q1

2
,

�q2

2
− 3 �q1

4

)
= 0, (8c)

β3,ν ( �q1)

(
h̄2q2

1

2μ′
3

+ E3,ν − ET

)
+ �3,ν

∫
d3q2

(2π )3 α( �q1,− �q2) = 0, (8d)

where μ′
k = Mimi/(Mi + mi ) is the reduced mass of the

molecule and the free atom.
We note that these equations reduce to the previously de-

rived homonuclear three-channel model for i = j = k and to

the heteronuclear two-channel model in the case �i,2 = 0. To
proceed, the free particle amplitude α( �q1, �q2) is eliminated
from the first equation and plugged into the others. The first
of the two integrals in each equation can be solved, as in the
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TABLE I. Parameters of the three-channel model derived from
fitting Eq. (9) to coupled-channel calculations of 6Li - 133Cs and using
analytic expressions from Ref. [35].

�1/a0 (G) 1741.13
�2/a0 (G) 131.351

B1 − B(res)
2 (G) −68.736

B2 − B(res)
2 (G) −1.01

�̃1 3.50
�̃2 0.707

two-body sector, by introducing a high momentum cutoff qc

with which the coupling constants are renormalized accord-
ing to �̃k,ν = �k,νq3/2

c /Ec, and the amplitudes according to
β̃k,ν = βk,νq3/2

c . The renormalized magnetic moment is μ̃i =
μi/Ec and all momenta are q̃ = q/qc. In addition one uses the
s-wave property that βk,ν (�q) = βk,ν (q) are spherically sym-
metric. One thus ends up with six one-dimensional coupled
integral equations.

IV. LITHIUM-CESIUM-CESIUM SYSTEM

While Eqs. (8) are too complex to solve in general, they
serve as a convenient starting point to study specific cases.
Here, we apply the model to the 2 + 1 case, i.e., two par-
ticles with equal masses and one distinguishable particle, of
6Li - 133Cs - 133Cs trimers.

A. Two-body sector

For the remainder of the paper we define the relevant
masses: m = mLi and M = mCs. In the two-body sector, only
one interspecies molecule is possible (LiCs) such that the in-
dex k can be omitted in Eq. (5). Solutions of the remaining two
equations for E > 0 are compared to coupled-channel calcu-
lations [36] to fix the free parameters of the model. Here we
consider the aa collisional channel of the 6Li - 133Cs mixture,
where both atoms are polarized on their respective absolute
ground states, and which is relevant for the experiment of
Ref. [9]. The two closed channels correspond to the molecules
associated with the 843- and 893-G Feshbach resonances.

We proceed in the following way. We fit the magnetic-field
dependence of the scattering length provided by coupled-
channel calculations with the well-known parametrization
expression

ãLiCs(B) = �̃1

B(res)
1 − B

+ �̃2

B(res)
2 − B

, (9)

where the resonance widths �̃ν and positions B(res)
ν are

experimental observables. These observable parameters are
conveniently related to the model’s bare parameters via an-
alytic expressions [35] with which the latter are found (see
Table I). The differential magnetic moments μ̃ν are not fitting
parameters. Instead, they are extracted from the asymptotic
behavior of the coupled-channel dimer binding energies. In
real units they are μ1 = −h × 3.03 MHz/G and μ2 = −h ×
2.84 MHz/G.

In Fig. 1(a) the scattering length of the three-channel model
as a function of the magnetic field, which by construction

FIG. 1. Two-body sector of LiCs. (a) Magnetic-field dependence
of the scattering length, (b) binding energy, and (c) the relative dif-
ference of the binding energy. In panels (a) and (b) the dashed brown
line corresponds to the coupled-channel calculations and the red solid
(blue dash-dotted) line represents the three-channel (two-channel)
model. In panel (c) the red solid (blue dashe-dotted) curve shows the
binding-energy relative difference between the coupled-channel and
the three-channel (two-channel) models. The comparison is shown
only for the energy level associated with the narrow Feshbach res-
onance. The difference with the three-channel model is consistently
lower at all magnetic-field values than with the less successful two-
channel model.

coincides with Eq. (9), is compared to the coupled-channel
calculations together with the result of the two-channel model.
The agreement is very good in the vicinity of the Feshbach
resonances. The discrepancies between the coupled-channel
calculations and the three-channel model are visible for small
absolute values of the scattering length. This is because our
model does not include the global background scattering
length.

To illustrate the success of the model, we compare it with
the performance of its simplified version which includes a
single closed channel associated with the narrow Feshbach
resonance at 893 G. The model is developed along the same
lines but keeping only ν = 2 in all expressions in Secs. II
and III. To find the bare parameters of the model we fit the
coupled-channel calculations with Eq. (9) in the vicinity of
the Feshbach resonance while keeping �̃1 = 0 (see Table II).
The fit, also shown in Fig. 1(a), is significantly less successful
at capturing the coupled-channel calculations. The absence
of the scattering length zero crossing leads to a significant
disagreement between the model and the coupled-channel
calculations.
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TABLE II. Parameters of the two-channel model derived from
fitting Eq. (9) (with �̃1 = 0) to coupled-channel calculations of
6Li - 133Cs in the vicinity of the narrow Feshbach resonance at
893 G.

�2/a0 (G) 132.165

B2 − B(res)
2 (G) −1.402

�̃2 0.673

In Fig. 1(b) the binding energies of the dimers from the
coupled-channel calculations are compared to the results of
the two- and three-channel model. Both models are successful
in describing the narrow resonance and capture the energy
level down to hundreds of MHz. However, a closer look at
the differences between the models [shown in Fig. 1(c)] em-
phasizes that the three-channel model is a more successful
approach to the real system. The three-channel model also
reproduces the binding energy of the intermediate resonance
although good agreement is obtained only in the regime of
weak binding. This discrepancy might be explained by the
intermediate character of the underlying narrow Feshbach
resonance for which our model’s assumptions ceases to be
valid.

In addition, we found the effective range re = −1743a0 (at
resonance) to differ by 4% from the resonance contribution
−1666 a0 to the effective range. The latter value is found by
subtracting the van der Waals contribution +125 a0 [39] from
the coupled-channel value −1541 a0, which includes the sum
of the van der Waals and resonant contributions [40].

In conclusion, the two-body sector reveals that the three-
channel model is a better way to describe the real Li-Cs
interactions in the aa collisional channel, due to the intermedi-
ate Feshbach resonance overlapping with the narrow one and
affecting the latter’s properties. Adding a third channel is a
necessary procedure.

Note that in this particular case there is an alternative the-
oretical approach. The two-channel model can be extended to
include a nonzero background scattering length [41] which is
expected to improve the agreement with the coupled-channel

calculations. This approach has its own limitations partially
discussed in Ref. [35] and it has not yet been extended to
the mass-imbalanced mixtures. The three-channel model is
superior because it takes the background scattering length into
account by considering its real cause, namely, the presence of
another Feshbach resonance in close proximity.

B. Three-body sector

For the LiCsCs three-body sector, Eqs. (8) reduce to four
coupled equations. The four remaining molecular amplitudes
βi,ν are i = {LiCs, CsCs} and ν = {1, 2}.

Further simplifications come from the fact that we neglect
Cs-Cs interactions by setting the relevant scattering length
(aCsCs) to zero. In reality, its value is moderate and positive
in the vicinity of the narrow Feshbach resonance (aCsCs =
260a0), while it is large and negative at the intermediate reso-
nance (aCsCs = −1400a0) [42]. Since we consider the Efimov
spectrum in the close vicinity of the narrow resonance the lat-
ter value is irrelevant. On the other hand, one should be aware
of the positive aCsCs, considering the fact that aCsCs > 0 affects
the Efimov spectrum measured at intermediate Feshbach res-
onances [9,27,28]. There, its main influence is to eliminate the
ground state of the Efimov spectrum [27,28]. Indeed, also in
the vicinity of the narrow resonance, the ground Efimov state
was not detected [9]. Additionally, the first excited Efimov
resonances in the vicinity of two intermediate resonances
were measured to be within ≈20% of each other for both
positive aCsCs = 200a0 and large negative aCsCs = −1400a0

Cs-Cs scattering lengths [9,27]. Thus, ≈20% can be consid-
ered the upper limit for our error if aCsCs is set to zero. Note,
however, that at the narrow resonance, aCsCs is at least an order
of magnitude smaller than the absolute values of the effective
range and the interspecies scattering length at which the first
excited Efimov energy level crosses the threshold. Therefore,
its influence on the position of the Efimov resonance is ex-
pected to be less important than in the case of intermediate
resonances.

This simplification leads to two coupled integral equa-
tions for βLiCs,ν = βν :

(
h̄2q2

2μ′ + Eν − ET

)
βν (q) − μ�ν

π2h̄2

⎛
⎝qc − π

2

√
(2r + 1)q2 + r(r + 1) m

μT
λ2

T

(r + 1)2

⎞
⎠ ∑

ν ′
�ν ′βν ′ (q)

− m�ν

4π2h̄2

∫ ∞

0
d p ln

(
p2 + 2r

r+1 pq + q2 + r
r+1

m
μT

λ2
T

p2 − 2r
r+1 pq + q2 + r

r+1
m
μT

λ2
T

) ∑
ν ′

�ν ′βν ′ (p) = 0, (10)

where r = M/m is the mass ratio and μT is the mass of the
trimer the definition of which varies throughout the literature.
For the sake of convenience in our calculations we define it to
be the reduced mass of LiCs. Following the procedure shown
in Ref. [35], we choose to extend the integration limit to −∞
and multiply the integral term by 1/2. Note that this extension
requires that both β1(q) and β2(q) be odd functions of q.
Then we represent the two three-body amplitudes as a vec-
tor, ψ (q) = [β1(q), β2(q)]T , and the coefficients of Eqs. (10)

as a 2 × 2 matrix, MλT (q1, q2), that depends on λT . Then
Eqs. (10) take the form

∫ ∞
−∞ dq2MλT (q1, q2)ψ (q2) = 0 and

a nontrivial solution is obtained for det MλT (q1, q2) = 0. We
perform renormalization as in Sec. III B and use the practical
substitution

q̃i =
√

r(r + 1)

(2r + 1)

m

μT
λ̃ sinh ξ, (11)
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and Eqs. (10) become ∫ ∞

−∞
dξMλT (ξ, ξ ′)ψ (ξ ′) = 0. (12)

The vector ψ (ξ ) and the matrix elements are

ψ (ξ ) = [β̃1(ξ ), β̃2(ξ )]T , (13a)

(MλT )i j = [ fi(ξ
′)δi j − �̃i�̃ jg(ξ ′)]δ(ξ−ξ ′) − �̃i�̃ jL(ξ, ξ ′),

(13b)

where

fi(ξ ) = λ̃T cosh ξ + μ̃i

λ̃T cosh ξ
(Bi − B), (14a)

g(ξ ) = 1

2π2

μ

μT

(
1

λ̃ cosh ξ
− π

2

√
r

r + 1

m

μT

)
, (14b)

L(ξ, ξ ′) = 1

16π2

m

μT

√
r(r + 1)

(2r + 1)

m

μT
ln

(
sinh2 ξ ′ + 2r

r+1 sinh ξ ′ sinh ξ + sinh2 ξ + (2r+1)
(r+1)2

sinh2 ξ ′ − 2r
r+1 sinh ξ ′ sinh ξ + sinh2 ξ + (2r+1)

(r+1)2

)
. (14c)

The requirement of a vanishing determinant,

det MλT (ξ, ξ ′) = 0, (15)

defines a closed equation for λT . In general, there are many
values λT = λ

(sol)
T for which Eq. (15) is satisfied, however

not all of them correspond to physical solutions. To identify
the real three-body bound states one must compute the zero-
eigenvalue eigenfunction ψ (ξ ) of M

λ
(sol)
T

in accordance with

Eq. (12) and determine β̃1(ξ ) and β̃2(ξ ). Then, the mathemat-
ical solution λ

(sol)
T is physical only if both are odd functions of

ξ . In addition, the number of nodes in β̃1(ξ ) and β̃2(ξ ) allows
assignment of λ

(sol)
T to the ground or an excited Efimov state

(see Sec. IV in Ref. [35] for details).
To solve Eq. (15) numerically, each block Mi j is repre-

sented as a n × n matrix by discretizing ξ and ξ ′ in the interval
[−ξm, ξm] and step size dξ = 2ξm/(n − 1). The total matrix
thus has dimensions 2n × 2n and its determinant is found. The
computed ground and first excited states are shown in Fig. 2,
where we used ξm = 20.02 and n = 200 (and n = 1600 for
some points) together with the parameters of Tables I and II.

V. DISCUSSION AND CONCLUSIONS

In Table III, a comparison between the position of the first
excited Efimov resonance predicted by the two- and three-
channel models and the experimental result from Ref. [9] is

TABLE III. The experimental value of the resonance position is
contrasted to the various theory values. The single-channel Efimov–
van der Waals universal theory result is cited as per Table I in Ref. [9].

Source a(2)
− (a0)

Experiment [9] −3330(240)
Three-channel theory −3600
Two-channel theory −7189
Efimov–van der Waals universal theory −2200

presented. The two-channel model overestimates the position
of the resonance by more than a factor of 2. In contrast, the
three-channel model agrees quite well with the experimental
value. For comparison the Efimov–van der Waals universal
theory prediction is also listed. The latter is based on a single-
channel model of Refs. [27,43] and cited in Ref. [9]. It is
important to emphasize the amazing and not at all obvious fact
that the overlapping resonances worked in favor of the exper-
imental observation of the Efimov resonance in this particular
case.

Note that our comparison between theory and experiment
is limited to the first excited Efimov state. Our minimal model
does not capture the absence of the ground state, caused by
the finite and positive Cs-Cs scattering length (see discussion
in Sec. IV B).

In summary, the results presented in this paper confirm
that the Feshbach resonance used in the experiment is narrow

FIG. 2. Three-body sector of LiCsCs. The three-channel model
(solid) is compared to the two-channel model (dashed). Shown are
the dimer (green) and the ground (red) and first excited (blue) Efimov
states. The purple data point is the measurement from Ref. [9]. Here,
the normalization energy is E0 = h̄2/2μT a2

0.
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enough to effectively decouple the three-body physics from
the van der Waals universality. The remaining influence of the
van der Waals length can then be estimated to be about 10%.
This estimation, however, is within the limits of the above-
mentioned conservative error set by the aCsCs = 0 assumption.
Therefore, the upper bound for the influence of the finite range
of the interaction potential is dominated by the latter, and can
thus be quoted as � 20%.
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