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Temperature-induced dephasing in high-order harmonic generation from solids
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High-order harmonic generation (HHG) in solid and gaseous targets has been proven to be a powerful avenue
for the generation of attosecond pulses, whereas the influence of electron-phonon scattering on HHG is a critical
outstanding problem. Here we first introduce a temperature-dependent lattice vibration model by characterizing
the spacing fluctuation. Our results reveal that (i) structural disorder induced by lattice vibration does not lead
to generation of even-order harmonics; (ii) dephasing of HHG occurs as the lattice temperature is growing;
(iii) an open-trajectory picture predicts the maximal photon energy in the temperature-dependent HHG spectra.
Moreover, a formula assessing dephasing time with lattice temperature is proposed to identify the timescale of
electron-phonon scattering. This work paves the way to study the non-Born-Oppenheimer effect in solids driven
by a strong field.
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I. INTRODUCTION

High-order harmonic generation (HHG) from solids is at
the forefront of ongoing attosecond science and strong-field
physics [1,2]. Solid-state HHG provides a significant view to
explore the emerging condensed-matter systems [3–13], such
as two-dimensional materials [14,15], topological insulators
[16,17], Mott insulators [18,19], disorder solids [20–23], and
liquids [24]. In contrast to HHG in gases, strong-field induced
electronic dynamics among periodic nuclei inevitably suffers
many-body scatterings. Moreover, the high intensity and rep-
etition rate of strong laser pulses will lead to a lattice thermal
effect. An open question regards the failure to understand the
significant discrepancy between experimental and theoretical
HHG spectra, where the latter requires an extremely short
dephasing times [7–9].

The theoretical HHG simulations are lacking a classifi-
cation on many-body interactions, and it is challenging to
understand fully the solid-state HHG experiments. Currently,
all of the many-body interactions in solid-state HHG have
an indistinguishable dephasing parameter. One of the critical
many-body interactions is the scattering caused by phonons
(i.e., quasiparticles reflecting quanta of lattice vibrations).

The non-Born-Oppenheimer full ab initio quantum treat-
ments of a condensed-matter system are a nearly impossible
task due to the limit of available computing resource. There-
fore, a new lattice model involving temperature-dependent
nuclear vibrations is desirable to unravel the non-Born-
Oppenheimer effect of nuclei in solid-state HHG. Less is
known about the temperature-dependent nuclear vibrations
in experimental and theoretical HHG from solids, although
several results of temperature-dependent HHG from solids
[25,26] and liquids [27] have displayed sharply decreasing
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HHG yields with increasing temperature. Actually, those re-
sults imply dephasing, but there are no explicit discussions in
that regard.

In this work, we develop a finite-temperature crystal
model characterizing the temperature-dependent distribution
of nuclei to capture one of the real-space lattice vibration
modes (i.e., structural configurations), and we propose a for-
mula to extract dephasing time that can agree perfectly with
“experimental” observations. This opens up the possibility
of studying temperature-dependent quantum decoherence in
solid-state high-order harmonic spectroscopy.

II. MODEL

To investigate the impact of lattice temperature on HHG,
we first propose a model to assess the variation of nuclear
location under the different temperatures. In Fig. 1(a), the real-
space lattice-vibration modes at a specific temperature appear
as the disordered atomic positions x j ( j = 1, 2, . . . , N), and
they can be approximately modeled by a Gaussian probability
distribution function. Nuclear spacing ξ j = x j+1 − x j for each
vibration mode is assumed to obey the standard normal dis-
tribution f (ξ ) = (1/

√
2πσ 2)exp{−[(ξ − a)2/2σ 2]} with the

mean spacing value, i.e., the lattice constant a = 10 a.u.
(atomic units are used throughout unless otherwise indicated)
and variance σ 2. The fixed-nuclei chain (σ = 0) is a peri-
odic arrangement with lattice constant a. However, nuclei will
deviate from their equilibrium positions under the non-Born-
Oppenheimer picture. Since the Coulomb repulsion increases
significantly as two nuclei approach each other, intervals be-
tween nuclei have a lower limit. Similarly, an upper limit of
the nuclear intervals is also necessary before the structural
damage. For the rationality of our model, a truncated normal
distribution generator is adopted and thus only the atomic-pair
intervals falling within a symmetric range [a − ζ , a + ζ ] are
retained [28,29]. Here ζ adopting a/3 in simulations is the
maximal deviation under the harmonic-oscillator model.
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FIG. 1. (a) Schematic diagram of the interaction between fem-
tosecond laser pulses and a vibrating atomic chain. The light-colored
balls around each bright ball denote the deviation from the equilib-
rium position. (b) The radial distribution function with varying lattice
temperatures.

Based on the Debye model [30,31], we introduce a
temperature-dependent lattice vibration model, in which one
refers to the details in Appendix A. The expression of struc-
ture fluctuation under a certain temperature can be written as

σ 2 = 6

MwD

[
1

4
+

( T

�D

)2

�

]
, (1)

where M is the atomic mass, �D = h̄wD/kB is the Debye
temperature, and � = ∫ �D/T

0 k(ek − 1)−1dk involves the con-
tribution from all the phonon modes described by the phonon
density of states. Keeping the truncation in mind, the cor-
responding relation between fluctuation σ (or the effective
fluctuation σ ∗) and the lattice temperature is clarified in
Appendix B.

The radial distribution function (RDF), an experimental
order parameter, is the number of atoms in the shell between
x and x + dx. Counting the distance ξ j between any atomic
pairs, RDF is expressed as g(x) = ∑

j δ(x − ξ j ). The struc-
ture of RDF could characterize the variation of atomic-pair
distributions caused by growing lattice temperatures [32–34].
As shown in Fig. 1(b), the amplitudes of long-range peaks
decrease faster than those of the short-range peaks. These
characters are in good agreement with the experiments, in
which the effect of temperature on RDF had been studied
[35,36]. For each structural configuration, the nuclear spacing
arrangement displays the destruction of the long-range order,
but the short-range order is still kept well before the damage
of the atomic structure. To achieve our lattice-vibration model
with the solid characteristic of a periodic translation invariant,
in structural configurations we reduce significantly the level
of atomic-chain disorder by including the mirror symmetry

about the nucleus-vibrating equilibrium position. This scheme
includes the phase-breaking events reflecting the electron-
phonon scattering. The inclusion of periodic arrangement and
phase breaking determines intrinsically the uniqueness of our
solid-state model [37].

The electronic structure of solids under a certain tem-
perature is obtained from the diagonalization of the time-
independent Hamiltonian Ĥ0 = p̂2

2m + V (x). The calculated
details of the electronic structure could be found in
Appendix C. We adopt all the valence-band states as the initial
states for each structural configuration. And for each occu-
pied state |ψn〉, we independently solve the time-dependent
Schrödinger equation (TDSE) under the velocity gauge as

i
∂

∂t
|ψn(t )〉 = Ĥ (t )|ψn(t )〉, (2)

and then we calculate the time-dependent current by j(t ) =
−∑

n〈ψn(t )| p̂ + A(t )|ψn(t )〉. The laser vector potential with
frequency ω is A(t ) = − ∫ t

−∞ F (t ′)dt ′, and F (t ) is the electric
field. A0 and F0 are their respective amplitudes.

The duration of femtosecond (fs) laser pulses irradiating
targets is comparable to the timescale of phonon modes with
the 100-fs magnitude. Furthermore, the laser pulses with a
kilohertz (KHz) repetition frequency [24] could encounter
thousands of atomic-chain arrangements. Different configu-
rations have the same structural fluctuation but possess the
various spacial arrangements at a certain temperature. The
events occurring in a normal distribution generator with a
given fluctuation σ produce the atomic-chain configurations.
The experimental HHG spectrum contains thousands of cur-
rents contributed by different structural configurations. To
obtain the final harmonic spectrum, we coherently sum the
j(t ) of each correlative structural configuration as J (t ) =∑

j(t ) before the Fourier transform of the total current J (t ).

III. DISCUSSIONS

We first present the HHG spectra with the increasing
configuration number. Taking σ = 1.4 a.u. as an example,
Figs. 2(a)–2(c), respectively, show HHG spectra contributed
by the 1, 100, and 4000 configurations. In Fig. 2(a), the HHG
spectrum only contains the odd-order harmonics below the
41th harmonic, and the even-order harmonics then appear in
the spectral region beyond the cutoff frequency, as shown
by the shadow zone. As more structural configurations are
adopted in Figs. 2(b) and 2(c), the signals of the even-order
harmonics are suppressed, but those of odd-order harmonics
remain. Moreover, the plateau-zone intensities do not change,
but the harmonic intensities for the spectroscopic region be-
yond the robust cutoff frequency drop about three orders of
magnitude. The statistics of configurations imply the dephas-
ing process, which leads to the shrinking of the even-order
harmonic zone. Keeping each configuration corresponding to
one of the atomic arrangements in mind, each laser pulse
will capture one configuration of the vibrating structure, in
which the translation invariance of atomic spacing has been
broken. Thus, one observes the even-order harmonics beyond
the cutoff frequency. The disappearance of the even-order
harmonics in Fig. 2(c) indicates that the atomic chain will
retrieve the intrinsic and periodic symmetry with a sufficient
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FIG. 2. Parts (a), (b), and (c), respectively, present HHG spectra
obtained from 1, 100, and 4000 configurations, in which the lattice
temperature is 452 K (σ = 1.4). The amplitude and wavelength are
F0 = 0.025 a.u. and 1.5 μm, respectively. A uniformly trapezoidal
envelope laser with two rising, two falling, and eight plat-top cycles
is used in all the simulations. The cutoff frequency is denoted by a
vertical line.

configuration number. In brief, the vibration-induced disorder
could not give rise to the emergence of even-order harmonics
in solid-state HHG spectra, which agrees with the experimen-
tal observations [24,38].

Then, we discuss the impact of lattice temperature on the
cutoff frequency and the maximum photon energy in the
HHG spectra. Note that all the results discussed below are
obtained from the 4000 configurations. As the temperature
increases, one sees the robustness of the cutoff frequency and
the decrease of the maximum photon energy, as shown in
Figs. 3(a)–3(d). Here the maximal photon energies marked by
blue dashed lines in Figs. 3(a)–3(d) are confirmed by perform-
ing time-frequency analyses on the spectral region beyond the
cutoff frequency, as presented in Fig. 9 of Appendix D. The
dephasing of the quantum trajectory is enhanced with growing
lattice temperature, thus lowering the maximal photon energy.

The cutoff frequency ωcutoff of the HHG plateau, in fact,
is determined by the maximal kinetic energy obtained by
the electrons when the distance between the electron and
hole satisfies the condition of zero displacement (i.e., the
closed-trajectory model). As shown by Figs. 8(a)–8(d) of
Appendix C, we conclude that the nuclear vibration under
finite temperature just slightly perturbs the energy band struc-
ture, which clarifies the robustness of the cutoff frequency
in Figs. 3(a)–3(d). This robust cutoff energy is depicted as
ωcutoff = Ip + 3.17Up, where Ip is the ionized potential of
solids (about 16 eV), and the ponderomotive energy, Up, is
given by F 2

0 /4ω2.
However, the maximal photon energy in the HHG spec-

trum is related to the coherent overlap between electron
and hole wave packets. Taking into account the wavelike
property of the electron wave packet in solids, one could
remove the condition of zero displacement in a recom-
bined step, i.e., the open-trajectory model [39,40]. When the

FIG. 3. Temperature-dependent HHG spectra. The spatial fluc-
tuations adopted in (a), (b), (c), and (d) are 0.8, 1.2, 2, and 4 a.u.,
respectively.

coherent width (D) between electron and hole wave packets
is greater than the excursion distance of the electron, one
obtains the high-order harmonic photon energy formulated as
� = Ip + 2Up[sin(ωt ) − sin(ωt ′)]2 under the free-scattering
situation [41,42], where t ′ and t are the ionized and recom-
bined times, respectively. The maximal photon energy occurs
for ωt ′ = π/2 and ωt = 3π/2, which results in the upper
limit of the emitted photon energy � = Ip + 8Up. Keeping
the wave-particle duality in mind, dephasing of the electron
wave packet is characterized by its particlelike property. The
coherent width could be written as D = 2A0T2, where T2 is
the dephasing time. The formula derivation could be found
in Appendix E. The HHG induced by quantum coherence
will involve an electron-hole-pair polarization energy depicted
as F0D. Thus the emitted maximal photon energy could be
corrected as �corr = ωcutoff + F0D under the situation of
dephasing.

To demonstrate the formulas for the cutoff energy (ωcutoff)
and the maximal photon energies (� and �corr), in Figs. 4(a)
and 4(b), respectively, we present the dependencies of HHG
spectra on the electric amplitude and wavelength of laser
pulses. The emitted photon energies predicted by three for-
mulas reach a good agreement with the results of TDSE
simulations in both Figs. 3 and 4. The role of the lattice
temperature on the maximal photon energy has been attributed
to temperature-induced dephasing in �corr. To further confirm
the dephasing process induced by the finite-temperature nu-
clear vibrations, we perform the temporal profiles of HHGs.
In Figs. 5(a)–5(d) we display the time-frequency analysis of
the HHG spectra in Figs. 3(a)–3(d), respectively. In Fig. 5(a)
one could observe that the spectroscopic intensities of the long
trajectories are stronger than those of the short trajectories.
However, this situation will be reversed with the growing
lattice temperature in Figs. 5(b)–5(d), and the dephasing rate
of the long trajectory is greater than that of the short trajec-
tory. Similarly, this tendency is also observed in the quantum
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FIG. 4. Dependencies of the cutoff frequency and the maximal
photon energy on the laser parameters. The HHG spectra vary with
(a) electric field amplitude and (b) wavelength under a lattice tem-
perature of about 100 K (σ = 0.5 a.u.). The solid and dashed curves
are predicted by their respective formulas.

trajectories of the spectroscopic zone beyond the cutoff fre-
quency, as shown in Fig. 9(b). The laser-driven electronic
wave packets undergo non-negligible dissipation induced by
electron-phonon scattering. Furthermore, the long-trajectory
electrons will travel a longer excursion time than those of the
short trajectory, which means that the dissipation on the long
trajectory is dominated by that of the short trajectory.

The single active electron approximation suffers from ne-
glecting the dephasing from the inelastic scattering by lattices.
To remedy the dephasing in the single active electron approx-
imation, we incorporate an imaginary potential iU (x) into
the field-free Hamiltonian, which is denoted as Ĥ0 − iU (x)
[40,43]. In such a treatment, the eigenenergy becomes a

FIG. 5. Time-frequency analyses of the HHG spectra in Fig. 3.

FIG. 6. The extracted dephasing times T2 with varying lattice
temperatures and laser parameters are marked with square, circular,
and triangular dots. The dephasing times predicted by the formula
are plotted as a solid curve. The parameters β for the black, red,
and blue lines are adopted as −0.19, −0.24, and −0.16 fs−1, re-
spectively, which are determined by the laser-parameter-dependent
ionized rates.

complex value, and its imaginary part i� corresponds to the
dephasing term.

We take the HHG spectra obtained from the fixed-nuclei
periodic chain including phenomenological dephasing as the-
oretical input. The temperature-dependent HHG spectra are
regarded as experimental results. To extract the dephasing
time, we then perform an analysis as done in typical com-
parisons of theory and experiment [4,5,44]. Based on the
fact that the relative height of the HHG plateau depends
very sensitively on the dephasing rate, in the theoretical
calculations the value of � is used as a freely adjustable
parameter of the dephasing HHG spectra. As one can see
in Fig. 10 of Appendix F, we obtain rather good agreement
between temperature-dependent spectra and dephasing spec-
tra by systematically decreasing the used dephasing times,
along with increasing temperature. By comparing delicately
the finite-temperature HHG spectrum with that obtained from
the theoretical simulations, we could extract the dephasing
time with varying lattice temperatures and laser parameters,
as presented by the dots in Fig. 6. To understand these results,
we introduce a formula for the finite-temperature dephasing
rate as

� = γ
Lmax

a − σ
+ β, (3)

in which the electronic maximal classical excursion Lmax =
πF0
ω2 (cf. Appendix E), and the ratio of Lmax and the effec-

tive lattice constant a − σ denote the collision times between
electrons and lattices. The parameter γ adopted as 0.026 fs−1

represents the contributed dephasing rate from each electron-
lattice collision and is relative to the type of solid-state
materials. One can observe that the curves predicted by Eq. (3)
conform well with the extracted dephasing times (T2 = 1

2�
)

marked with dots in Fig. 6. Therefore, the dephasing time can
be quantitatively linked with the lattice temperature.
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IV. CONCLUSION

To summarize, the mechanism of temperature-induced
dephasing in solid-state HHG has been revealed. We de-
velop a temperature-dependent lattice vibration model by
characterizing the spacing fluctuations between atomic pairs.
Moreover, the lattice translation symmetry is not broken by
the vibration-induced fluctuation, which is verified by the
missing even-order harmonics in this work as well as ex-
perimental observations. In the temperature-dependent HHG
spectra, we clarify the impact of temperature-induced de-
phasing on the maximal photon energy in the open-trajectory
model. Finally, a formula shedding new light on the timescale
of electron-lattice scattering is introduced and also confirmed
by temperature-dependent HHG spectra. Our results reaffirm
the significance of quantum decoherence in the quantitative
analysis of HHG experiments.
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APPENDIX A: MEAN-SQUARE RELATIVE
DISPLACEMENTS IN THE TEMPERATURE-DEPENDENT

LATTICE VIBRATION MODEL

The peak of the atomic pair distribution function (PDF)
in simple crystals can be described approximately by a
Gaussian-type function with a fluctuation σi j . By projecting
onto the vector linking the atom pairs, the mean-square rela-
tive displacement of atom pairs is denoted as

σ 2
i j = 〈[(ui − uj) · êij]

2〉, (A1)

where ui, uj are thermal displacements of atoms i and j from
their equilibrium positions. The vector êij is a unit vector
along the direction connecting the atoms i, j, and the angular
brackets 〈〉 indicate an ensemble average. This equation can
be expanded as

σ 2
i j = 〈[ui · êij]

2〉 + 〈[uj · êij]
2〉 − 2〈(ui · êij)(uj · êij)〉. (A2)

Here the first two terms correspond to the mean-square ther-
mal displacement of atoms i and j. The third term is a
displacement correlation function, which encodes information
about the atomic motional correlations. For crystals consti-
tuted by a monatomic type, the σ 2

i j is expressed in terms of the
lattice phonons as follows:

σ 2
i j = 2

NM

∑
k,s

(êk,s · êij)2

ωs(k)

[
n(ωs(k)) + 1

2

]
[1 − cos(k · rij)],

(A3)

where ωs(k) is a phonon-mode frequency with crystal wave
vector k in branch s, n(ωs(k)) is the phonon occupation num-
ber, êk,s is the polarization vector of the k, s phonon mode,
N is the number of atoms, and M is the mass of an atom.
rij is the relative interval between atoms i and j along the
vector êij. In the calculation, the phonon frequency [ωs(k)]
and polarization vector (êk,s) could be obtain by solving the
dynamical matrix using up to high-order nearest-neighbor

interatomic force parameters. Note that the force parameters
of crystals become extractable by open-source first-principles
codes such as Phonopy and Quantum Espresso, and then
the phonon-dispersion curves can be obtained by using the
Born–von Karman (BvK) model. As mentioned above, the
force constants must be known in advance to obtain all phonon
modes via the BvK model calculation.

Then, we will simplify the result in Eq. (A3) using some
approximations to describe the effects of the lattice vibrations
on the peaks of the PDF without knowing the force constants.
Following the works reported by Debye [30] and Beni and
Platzmann [45], one could make no distinction between lon-
gitudinal and transverse phonon branches and further take
account of a spherical average. Then Eq. (A3) reduces to

σ 2
i j =

〈
2

Mω

[
n(ω) + 1

2

]
[1 − cos(k · rij)]

〉
, (A4)

where 〈· · · 〉 is the average over the 3N branches, and N is the
number of atoms. This equation is a general expression for all
crystal materials and is independent of the number of atoms
per unit cell. Using the Debye approximation, ω = ck, we can
rewrite Eq. (A4) as follows [46]:

σ 2
i j = 2

3NM

∫ ωD

0
dω

ρ(ω)

ω

[
n(ω) + 1

2

][
1 − sin(ωri j/c)

ωri j/c

]
,

(A5)

where ρ(ω) = 3N (3ω2/ωD
3) is the phonon density of states,

c is the sound velocity, and n(ω) is the phonon occupation
number. ωD = ckD is the Debye cutoff frequency. The Debye
wave vector is given by kD = (6π2N/V )1/3, where N/V is the
number density of atoms in the crystal. After integrating over
ω, we obtain

σ 2
i j = 6

MωD

[
1

4
+

(
T

�D

)2

�1

]
− 6h̄

MωD

[
1 − cos(kDri j )

2(kDri j )2

+
(

T

�D

)2 ∫ �D
T

0

sin
( kDri j T x

�D

)
/
( kDri j T

�D

)
ex − 1

dx

]
, (A6)

where �1 = ∫ �D/T
0 x(ex − 1)−1 dx, x is a dimensionless inte-

gration variable, and �D (=h̄ωD/kB) is the Debye tempera-
ture. Here, the first term corresponds to the usual uncorrelated
mean-square thermal displacements (2〈u2〉), and the second
term is the displacement correlation function. This result is
known as the correlated Debye model [45–47].

For simplicity, we could derive an uncorrelated Debye
model by neglecting the third term (a displacement correlation
function) in Eq. (A2). Only the first term in Eq. (A6) could be
retained, and the temperature-dependent mean-square relative
displacement of atom pairs i and j is finally denoted as

σ 2
i j = 6

MωD

[
1

4
+

(
T

�D

)2

�1

]
. (A7)

APPENDIX B: CORRESPONDING RELATIONSHIP
BETWEEN FLUCTUATION σ

AND LATTICE TEMPERATURE

In Fig. 7 the spacing fluctuation σ is obtained from the
full width at half-maximum (FWHM) of effective fluctuation
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FIG. 7. Lattice-vibration-induced spatial fluctuation σ as a func-
tion of temperature according to Eq. (A7). The spacing fluctuation
σ is defined by including the role of truncation in the effective
fluctuation σ ∗.

σ ∗ in the truncated normal distribution. Taking the Debye
temperature (150 K) and the carbon atomic mass into account,
the fluctuation of vibration amplitude is linked with the lattice
temperature clarified by Eq. (A7), as presented in Fig. 7. For a
certain material, �D can be used as an empirical parameter by
measurements of the specific heat or channeling experiments.
Finally, the atomic-chain structure of a real system under
different temperatures can also be indicated by the structure
factor σ .

APPENDIX C: TEMPERATURE-DEPENDENT
ELECTRONIC STRUCTURE

To generate a smoothly varying model potential, the
atomic-chain potential is defined as

V (x)=−V0

∑
j

{
exp

[
− (x − x j )2

2α2

]
+exp

[
− (x − x j+1)2

2α2

]}
,

(C1)

where V0 = 0.52 a.u. and α = 0.08 a.u., and the number of
atoms in the vibrating-lattice chain is N = 500. We utilize
the spectral function technique to directly analyze electronic
structure from the eigen-wave-function in the coordinate rep-
resentation. The function reads

I (k, E ) =
∑

n

δ(E − En)|〈k|ψn〉|2, (C2)

where En and |ψn〉 are, respectively, the eigenenergy and
eigen-wave-function by diagonalization of time-independent
Hamilton Ĥ0, and |k〉 is the plane wave function eikx. The
energy bands with various σ have a similar energy band
structure, as shown by Figs. 8(a)–8(d). As σ increases, in
the reduced Brillouin zone many bands disappear due to the
destruction of spatial symmetry. However, the low-energy
band and the parabolic band are maintained well, as presented
by the black dash-dotted parabolic curves in Figs. 8(a)–8(d).

FIG. 8. The electronic structure under various lattice tempera-
tures. In (a)–(d) the results correspond to the spatial fluctuation σ

= 0.8, 1.2, 2, and 4 a.u., respectively. In (a) the black solid curves are
the zero-temperature (σ = 0) energy bands. The black dash-dotted
parabolic curve in (a)–(d) is similar to the energy band for a free elec-
tron. According to the discrepancy between zero-temperature energy
bands and the parabolic band, we define the ionization potential (Ip)
of crystals, as denoted in (a).

Therefore, temperature-induced lattice vibration will not de-
stroy the energy band but only perturb the electronic structure.
In Fig. 8(a), one sees that the low-temperature energy bands
(colormap) have a great agreement with zero-temperature
energy bands (black solid curves), in which the temperature-
dependent energy bands (colormap) in the extended Brillouin
zone follow the parabolic dispersion (black dotted-dash curve)
when the eigenenergies are larger than 10 eV. Here the ion-
ization potential (Ip) of crystals is defined as 16 eV. Another
impact of the growing lattice temperature on the energy band
is that the small energy gap is gradually closed.

APPENDIX D: EFFECT OF LATTICE TEMPERATURE ON
THE MAXIMAL PHOTON ENERGY

The yields of HHG spectra beyond the cutoff frequency
decay fast with growing σ . We perform a time-frequency
analysis for the HHG spectra beyond the cutoff frequency.
The long and short trajectories are complete under the case
of zero temperature (σ = 0), as shown in Fig. 9(a). However,
in Fig. 9(b) with a lattice temperature of 165 K, the long
trajectory disappears and the emitted maximal photon energy
is decreased.

APPENDIX E: MAXIMAL CLASSICAL EXCURSION AND
COHERENT WIDTH

The electron-hole pair wave function can be denoted as

P(k, t ) = −
∫ ∞

0
dτ eiS(k,t,τ )−iωtζ , (E1)
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FIG. 9. Time-frequency analysis for the HHG spectra beyond the
cutoff frequency under two temperatures. The laser parameters are
the same as in Fig. 3.

with the classical action given by

S(k, t, τ ) = −
∫ t

t−τ

dt ′ �E (k, t ′) + i�τ + ωt

= −
∫ t

t−τ

dt ′
{

2Up

[
k

A0
− sin(ωt ′)

]2}
+ i�τ + ωt .

(E2)

Here the dephasing induced by our lattice vibration is in-
troduced via the dephasing rate �. ζ is the Rabi frequency
of multiplying the electric field amplitude and the transition
dipole moment, �E = k2

2mR
is the energy dispersion of the

electron-hole pair under the multiphoton resonant excitation
and parabolic approximations, and mR is the electron-hole
reduced mass. k(t ) = k0 − A0 sin(ωt ) is the canonical mo-
mentum of the electron-hole pair, and Up = A2

0/4mR is the
ponderomotive energy. We first expand Eq. (E2) and neglect
the indirect driving term with the 2ω frequency component.
Then we obtain the saddle-point equation by the first deriva-
tive of classical action S with respect to the recollision time t ,
which can be written as

ωs = 2Up{sin[ω(t − τ )] − sin(ωt )}2. (E3)

Finally, the highest energy can be obtained at the condition
for ωt = 3π/2 and ωτ = π . For trajectories that maximize
Eq. (E3) (ωt = 3π/2 and ωτ = π ), the electronic maximal
classical excursion is

Lmax = −
∫ t

t−τ

∂�E

∂k

∣∣∣∣
k(t ′ )

dt ′ = πF0

mRω2
. (E4)

To obtain an estimate of the wave-function diffusion width,
we expand the trigonometric functions to first order in t − τ ,
where only the points of the highest energy electron-hole pair
trajectories in Eq. (E3) are included. Evaluating the excursion

FIG. 10. Comparisons between theoretical (gray background
curves) and experimental (blue solid curves) examples of the HHG
spectrum.

time τ integral in Eq. (E1) approximatively gives rise to the
wave-function distribution in momentum space, which can be
denoted as

P(k, t ) ≈ eiS(k,t )−iωtζ

2Up
(

k2

A2
0
+ 2 k

A0

) − i�
. (E5)

Hence the half-maximum of the wave function in the crystal-
momentum space appears at k1/2 = −A0(1 ± √

1 + �/2Up)
and then one achieves a full width at half-maximum of
�kFWHM = A0�/2Up. The coherent width (2/�kFWHM) be-
tween electron and hole wave packets is given as D =
2A0T2/mR, where the dephasing time is clarified as T2 = 1

2�

and the reduced mass mR adopts 1 a.u. in this work.

APPENDIX F: COMPARISONS BETWEEN THEORETICAL
AND EXPERIMENTAL EXAMPLES

OF THE HHG SPECTRUM

By including the role of phenomenological dephasing, the
HHG spectra obtained from a fixed-nuclei periodic chain
are regarded as the theoretical spectra. The temperature-
dependent HHG spectra are the experimental HHG spectra.
To extract the dephasing time, we have performed a typical
comparisons of theory and experiment. Comparing the theo-
retical (gray background curves) and experimental (blue solid
curves) examples of the HHG spectrum (see Fig. 10), one can
observe very good agreement between them.
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