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Beam focus and longitudinal polarization influence on spin dynamics in the Kapitza-Dirac effect
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We theoretically investigate the influence of a longitudinal laser polarization component from beam focusing
on spin dynamics in Kapitza-Dirac scattering by solving the relativistic Dirac equation with time-dependent
perturbation theory. The transverse spacial dependence of the longitudinal beam polarization component is
accounted for by approximating a Gaussian beam with plane-wave components. We find that corrections from
a longitudinal laser beam polarization component approximately scale with the second power of the diffraction
angle ε, from which we conclude that a related influence from beam focusing can be made negligibly small for
sufficiently low beam foci.
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I. INTRODUCTION

In recent years, theoretical investigations have suggested
that the spin of an unbound electron in free space can be
inferred by a standing wave of light [1–4]. The idea for
the underlying electron diffraction effect in a standing light
wave goes back to a proposal from Kapitza and Dirac in
1933 [5] and, with the discovery of the laser, the first ob-
servation attempts were made in the 1960s [6–8], which,
however, were in dispute. Renewed attempts reported the ob-
servation of the Kapitza-Dirac effect in 1980s for atoms in
a strong interaction regime with many diffraction orders [9]
and also in a weak interaction regime with isolated diffrac-
tion orders [10]. In the context of the Kapitza-Dirac effect,
strong and weak interaction refer to a distinction between the
diffraction regime (strong interaction), in which the energy-
time uncertainty allows for multiple diffraction peaks and the
Bragg regime (weak interaction), where the duration of the
interaction is typically sufficiently long, such that only one
diffraction order is allowed [11,12]. This one diffraction order
in the Bragg regime only appears in a resonant configuration,
where the diffracted particle and the absorbed and emitted
laser photons need to fulfill the conservation of energy and
momentum in the interpretation of a semiclassical interaction
picture [13–15]. Subsequently, also Kapitza-Dirac scattering
for electrons was observed in a high-intensity interaction with
many diffraction orders in 1988 [16]. At the beginning of
this century, in 2001, a rather precise setup for electrons with
only a few diffraction orders has been carried out [17]. This
demonstration was followed by a refinement with only one
diffraction order [18], accordingly in the Bragg regime, which
matches most the initial idea from Kapitza and Dirac.

With the experimental observation of the Kapitza-Dirac
effect, the question arose about whether Kapitza-Dirac scat-
tering can also access the electron spin [19], where spin effects
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could not be reported for the considered scenario in Ref. [19],
in an investigation based on classical particle trajectories.
This motivated a quantum investigation on spin effects in
the Kapitza-Dirac effect, which was based on perturbative
solutions of the Pauli equation in the diffraction regime, which
also was not able to find pronounced spin effects [20]. Ten
years later, in 2012, a theoretical demonstration of significant
spin effects in the Kapitza-Dirac effect was discussed within
the context of a relativistic investigation of the Kapitza-Dirac
effect [13,14], where the change of the electron spin appears
in resonant Rabi oscillations in the Bragg regime. The identi-
fication of resonant Rabi oscillations was inspired by similar
resonances in the process electron positron pair creation in
counterpropagating laser beams [21,22]. Note that one expects
to approach the relativistic regime of the Kapitza-Dirac effect
for electron momenta and also laser photon momenta larger
than 1mc, where for photon energies on the order of or larger
than 1mc2 may also cause pair-creation processes. One may
also expect relativistic effects for amplitudes of the vector
potential qA/(mc) > 1, as the electron may reach classical
momenta larger than 1mc. Nevertheless, one can show that
spin dynamics are possible even in the nonrelativistic regime,
which can only be accounted for by relativistic corrections
beyond the Pauli equation [23,24], i.e., beyond the first-order
Foldy-Wouthuysen transformations [25,26].

With indications for the possibility of spin interaction
in the Kapitza-Dirac effect, further theoretical investigations
in bichromatic standing light waves with frequency ratio
2:1 were carried out by using the Pauli equation [1,27,28].
We mention that the authors in Ref. [27] also looked
at classical electron trajectories based on the Bargmann-
Michel-Telegdi (BMT) equations, but found only vanishingly
small spin-flip probabilities in the classical treatment. Also
relativistic quantum calculations were made for bichro-
matic setups with the frequency ratio 2:1 [2] and also
for higher frequency ratios [29,30]. The capability of spin-
dependent diffraction, in which the diffraction probability
depends on the initial electron spin state, appears as a
novel property among most of the theoretical calculations
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of the bichromatic scenarios [1,2,27,29,30], and Ref. [1]
demonstrates that this spin-dependent effect can also be
achieved by using an interferometric setup.

Spin-dependent electron diffraction can also take place
in monochromatic scenarios, in particular two-photon in-
teractions for low electron momenta along the laser beam
propagation direction [3,4]. While the spin-dependent effect
in Ref. [3] emerges only after the evolution of multiple Rabi
cycles, Ref. [4] facilitates this effect already in the rise of
the Bragg peak of the diffracted electron, which is beneficial
for a possible experimental implementation with x-ray lasers.
In the context of spin manipulations in laser-electron interac-
tions, as discussed here, we also point out that the occurrence
of electron spin polarization is discussed for ultrarelativistic
laser-electron interactions [31–37].

The computation of the quantum dynamics in the Kapitza-
Dirac effect is commonly carried out by assuming a plane-
wave laser field in most of the theoretical descriptions, where
a final beam width and also a longitudinal polarization com-
ponent from beam focusing of the laser are neglected. The
question arises of whether the predicted spin effects are influ-
enced by a beam with finite width or whether they are indeed
negligible. We pick up this question in our article and com-
pute the quantum dynamics of the Kapitza-Dirac effect with
accounting for a small longitudinal polarization component
from a Gaussian beam focus in a standing wave configuration.
This longitudinal component would average to zero along
the beam’s transverse direction, such that we implement an
additional transverse momentum degree of freedom in the
electron wave function for the description of the diffraction
process. A decomposition of the Gaussian laser field into
an approximating superposition of plane waves allows us to
still solve the problem analytically, within the framework of
time-dependent perturbation theory.

Our article is organized as follows. In Sec. II, we discuss
the vector potential of the Gaussian beam and apply simpli-
fying approximations to it for later calculations. After that,
we introduce the Dirac equation in Sec. III and use it to
establish a relativistic momentum space formulation of the
quantum equations of motion, which are subsequently solved
by time-dependent perturbation theory. The resulting propa-
gation equation is then evaluated numerically in Sec. IV, from
which we deduce a scaling behavior, which depends on the
photon energy and the laser beam focusing angle. Finally, we
discuss the influence of the longitudinal polarization compo-
nent of the Gaussian beam on the electron spin dynamics in
Sec. V and list problems and potential future improvements
of our description in the outlook in Sec. VI.

II. SETUP AND THE VECTOR POTENTIAL
OF A GAUSSIAN BEAM

A. Geometry of the investigated Kapitza-Dirac effect

The considered setup of our investigation is sketched in
Fig. 1, in which the two counterpropagating laser beams of
the standing light wave are propagating along the x direction.
Both beams are linearly polarized and the field of the vector
potential is pointing in the z direction. The laser beam has the
wavelength λ with corresponding wave number kL = 2π/λ,
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FIG. 1. Geometric setup of the electron beam and the Gaussian
standing wave laser beam. The Gaussian beam with wavelength
λ = 2π/kL , beam focus w0, Rayleigh length xr , and beam divergence
2ε is propagating along the x axis. The electron beam is mainly
propagating along the z axis with k0 = m � kL , where the electron
momentum along the standing light wave is getting reversed on in-
teraction with the laser in our investigated setup of the Kapitza-Dirac
effect. To account also for the longitudinal beam polarization com-
ponent, we consider a transverse momentum transfer in our approach
with final diffraction orders a ∈ {−2, −1, 0, 1, 2}. The transverse
momentum change in terms of multiples of momenta kz is smaller
than the longitudinal momentum change, as implied by Eq. (12) and
small beam divergences 2ε.

beam waist w0 at its focus, and the Rayleigh length xR =
kLw2

0/2. The quantity

ε = 1

kLw0
, (1)

as introduced in Ref. [38], implies the ratio w0/xR = 2ε and
corresponds to the diffraction angle of the beam. For the
momentum configuration of the electron, we follow previous
investigations of such a laser setup [4,14,39], in which spin
effects occur for the transverse electron momentum k0 = m.
Note that we are using a Gaussian unit system with h̄ = c = 1
in this article. Also, we use the words transverse (z direction)
and longitudinal (x direction) with respect to the laser beam,
if not stated differently. We also assume the system to be
in the Bragg regime, which occurs for low field amplitudes,
and thus justifies the use of a perturbative technique for solv-
ing the quantum propagation of the electron. As mentioned in
the introduction, the electron and the absorbed and emitted
photons need to obey energy and momentum conservation
in the Bragg regime [11,12]. From kinematic considerations
[13–15], we know that this is only possible for initial and
final electron momenta ±kLex along the x axis, for the case
of the monochromatic standing light wave which is consid-
ered here. In order to incorporate the longitudinal component
of the Gaussian beam, it will also be necessary to extend
the plane-wave expansion from a purely longitudinal degree
of freedom for the electron momenta along the x axis by
adding a momentum degree of freedom along the transverse
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z axis by multiples of momenta kz. This becomes necessary
for describing the non-negligible spatial z dependence of the
longitudinal potential (15) with the corresponding momentum
space form (29b). In summary, the possible set of different
electron momenta, which will appear in the extended plane
wave ansatz (26), are

kn,a = (n − 1)kLex + (akz + k0)ez. (2)

The Bragg condition, i.e., the absorption and emission of one
photon from each of the counterpropagating beams, implies
that the electron is initially in a n = 0 momentum state and
finally in a n = 2 momentum state. When transitioning from
the n = 0 to the n = 2 state, a set of Kronecker deltas (37)
will cause the initial transverse momentum state a = 0 to be
diffracted into a coherent superposition of momentum states
a ∈ {−2,−1, 0, 1, 2} in our description. We have illustrated
this form of superposition by five slightly diverging arrows,
which are pointing from the origin toward the upper right in
Fig. 1.

B. Introduction of the vector potential of the Gaussian beam

For the vector potential of the Gaussian beam, we use
a solution based on an angular spectrum representation of
plane waves [38], which we write down in the Appendix,
for completeness. After adjusting the solution to the desired
geometry of our work, with a laser beam propagating along
the x axis, we obtain

Az,d = − A0
w0

w
exp

(
− r2

w2

)
sin (φG,d ) (3a)

for the transverse polarization component and

Ax,d = − 2dA0
w0

w
ε

z

w
exp

(
− r2

w2

)
cos

(
φ

(1)
G,d

)
(3b)

for the longitudinal polarization component of the vector po-
tential of the Gaussian beam in Coulomb gauge. Equations (3)
contain the two phases

φG,d = ωt − dkLx + tan−1

(
dx

xR

)
− dxr2

xRw2
− φ0,d , (4a)

φ
(1)
G,d = φG,d + tan−1

(
dx

xR

)
. (4b)

The symbol A0 is the vector field amplitude and

r =
√

y2 + z2 (5)

is the transverse distance from the beam propagation axis
beam with y = 0. We use the index d to represent the direction
of the beam, where d ∈ {−1, 1} corresponds to the left- or
right-moving direction, respectively. The symbol w is the x-
dependent beam waist

w(x) = w0

√
1 + x2

x2
R

, (6)

as illustrated in Fig. 1. Note that Ax in Eq. (3a) is the addi-
tional longitudinal correction from beam focusing, which is
of particular interest in this work. Since Ax is proportional to
ε, it is vanishingly small for the case of arbitrary small beam
foci.

FIG. 2. Illustration of the transverse beam dependence of the
longitudinal polarization component (9) (solid black line) and its
approximating sine function (dashed red line). The sine function is
inspired by two extrema of opposite sign at opposite locations around
the origin in momentum space, as can be seen from the Fourier trans-
form of Eq. (9); see main text. In position space, the sine function is
chosen to match Eq. (9) over the half period −π/2 < z′ < π/2. The
plot has been carried out over the reduced z coordinate z′ = z/w.

C. Application of approximations

In order to carry out the perturbative calculation in Sec. III,
it is necessary to simplify the potentials (3), such that the
expressions can be solved and written down. The longitu-
dinal potential component (3b) would vanish, when simply
averaged along the transverse direction. Therefore, the pure
plane-wave ansatz as in previous calculations will not be ca-
pable of representing the influence of the longitudinal beam
component. Instead, we attempt the next possible increase of
complexity of the description within a desired plane-wave-like
ansatz, which is capable of accounting for the longitudinal
component. For the transverse component (3a), we desire the
common plane-wave approximation

Az,d = −A0 sin (φG,d ) (7)

with the phase

φG,d = ωt − dkLx − φ0,d , (8)

in place of Eq. (4a). We desire a similarly simple form for
the longitudinal component (3b), where now we have to pay
special attention to the odd (antisymmetric) factor z/w, which
causes the otherwise even (symmetric) function (3b) to vanish
on average along the z direction. On adopting the same phase
in Eq. (8) also for φ

(1)
G,d in Eq. (4b), we see that the only z

dependence in Eq. (3b) is given by

z

w
exp

(
− z2

w2

)
. (9)

The Fourier transform and therewith functional form in mo-
mentum space of Eq. (9) is ipzzw exp[−(pzw/2)2]/

√
8, with

the conjugate pz of the z variable. In the context of a simple
approximation, the complex maximum at 0 < pz and complex
minimum at pz < 0 can be represented by two spikes of δ

functions with opposite signs, which constitute a sine function
in position space. We display Eq. (9) in Fig. 2, with the
reduced z coordinate z′ = z/w. The height of the extrema
in position space is 1/

√
2e and with the argument 2z′, the

approximating sine function matches Eq. (9) over the range
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−π/2 < z′ < π/2. Therefore, by imposing similar approxi-
mations as for the plane wave (7) of the transverse polarization
component also for the longitudinal polarization component
(3b), but also accounting for the odd z dependence in Eq. (9),
we simplify the longitudinal polarization component (3b) into

Ax,d = −2dA0
ε√
2e

cos (φG,d ) sin(zkz ), (10)

where we introduce the transverse momentum displacement

kz = 2

w0
. (11)

We mention that the definition for ε in Eq. (1) and the specifi-
cation for kz in Eq. (11) imply the relation

kz = 2εkL. (12)

We also set φ0,d = π , to be consistent with the approach in
Ref. [14], resulting finally in

Az,d = A0 sin (ωt − dkLx), (13a)

Ax,d = 2dA0
ε√
2e

cos (ωt − dkLx) sin(zkz ). (13b)

In this form, the approximated vector potential of the
Gaussian beam is now suitable for conversion into a momen-
tum space description with a manageable number of terms
in Sec. III B and carrying out the perturbative calculation in
Sec. III C. For ease of notion in subsequent calculations, we
expand the trigonometric functions in Eq. (13): The sine part
in Eq. (13a) allows us to decompose the function Az,d into a
sum of the exponential functions

Az,d,o = − o
i

2
A0eoi(ωt−dkLx) (14)

where the index o ∈ {−1, 1} corresponds to either emission or
absorption of a laser photon by the electron.

Correspondingly, the sine and cosine parts in Eq. (13b)
allow us to decompose the function Ax,d into a sum of the
exponential functions

Ax,d,o, f = − df
i

2
A0

ε
2
√

2e
eoi(ωt−dkLx)e f izkz , (15)

with o, f ∈ {−1, 1}, where f corresponds to forward and
backward motion of the electron along its propagation direc-
tion. We can therefore write Eqs. (13a) and (13b) as

Az,d =
∑

o

Az,d,o, (16a)

Ax,d =
∑
o, f

Ax,d,o, f . (16b)

III. THEORETICAL DESCRIPTION

The approximated potentials (14)–(16) consist of plane
waves, which will turn into Kronecker deltas when transform-
ing them into the momentum space formulation (29). This
implies that only the subset of expansion coefficients cγ ,σ

n,a (t )
of the wave function’s plane-wave expansion (26) with the
already introduced discrete momenta (2) are coupled to each
other. Such a set of coefficients is suitable for applying the
time-dependent perturbation theory calculation of Sec. III C,

such that the result can be written down in a compact form. In
order to see the emergence of the discrete Kronecker deltas in
momentum space, one first needs to introduce the relativistic
quantum description, on which the calculation is based. We
therefore introduce the Dirac equation, which is done in the
following section.

A. The Dirac equation

In quantum mechanics, the time evolution of an electron
with mass m and charge q = −e is governed by

i
∂�(x)

∂t
= H�(x), (17)

where we aspire a relativistic quantum description with the
Hamiltonian of the Dirac equation

H = α(p − qA) + qA0 + βm. (18)

Here, we have introduced the 4 × 4 Dirac matrices

αi =
(

0 σi

σi 0

)
, β =

(
1 0
0 −1

)
(19)

which contain the Pauli matrices

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
(20)

and the 2 × 2 identity

1 =
(

1 0
0 1

)
. (21)

B. Momentum space formulation of the relativistic
quantum theory

The wave function � of the electron can be decomposed
into a set of momentum and energy eigenfunctions

ψγ,σ
n,a (x) =

√
2π

kL

√
2π

kz
uγ ,σ

kn,a
eix·kn,a , (22)

with the bispinors uγ ,σ

kn,a
defined as

u+,σ
k =

√
Ek + m

2m

(
χσ

σ·k
Ek+m χσ

)
, (23a)

u−,σ
k =

√
Ek + m

2m

(− σ·k
Ek+m χσ

χσ

)
. (23b)

In Eqs. (22) and (23), the index γ ∈ {+,−} denotes
whether the electron is in a positive- or negative-energy eigen-
state and the index σ ∈ {0, 1} denotes whether the electron
is in a spin-up (0) or spin-down (1) state. The n ∈ Z index
denotes the longitudinal momentum (n − 1)kL of the electron
beam in terms of laser photon momenta. The index a denotes
the transverse momentum akz which is transferred from the
transverse variation of the Gaussian beam’s longitudinal com-
ponent to the electron. Correspondingly, in Eq. (22) we are
using the electron momentum (2), resulting in the phase

x · kn,a = (n − 1)kLx + (akz + k0)z (24)
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of the electron plane-wave solution. The expression Ek is the
relativistic energy-momentum relation

Ek =
√

m2 + k2, (25a)

where we write

En,a =
√

m2 + k2
n,a (25b)

in place of Ek when using the discrete momenta kn,a. The
variable k0 parameterizes an initial transverse momentum of
the electron along the z axis.

With Eqs. (22)–(25), we can write the wave function of the
Dirac equation in momentum space as

�(x, t ) =
∑

γ ,n,σ,a

cγ ,σ
n,a (t )ψγ,σ

n,a (x). (26)

From this wave function expansion, we denote the time prop-
agation of the initial expansion coefficients cγ ,σ

n,a (t0) into the
the final expansion coefficients cγ ′,σ ′

n′,a′ (t ) for the plane-wave
eigensolutions of the Dirac equation by

cγ ′,σ ′
n′,a′ (t ) =

∑
γ ,σ ;n,a

U γ ′,σ ′;γ ,σ

n′,a′;n,a (t, t0)cγ ,σ
n,a (t0). (27)

The approach in Eqs. (22)–(27) extends similar formulations
of the Dirac equation in momentum space [3,4,13,14,23,24]
by also introducing a transverse degree of freedom for the
momentum of the electron wave function.

For the description of the quantum system by time-
dependent perturbation theory, we need a momentum space
formulation of the interaction potentials. For this, we denote
the Dirac bra-ket notion

〈φa|Q|φb〉 =
∫

d3x φ†
a (x)Q(x)φb(x) (28)

of the matrix element 〈φa|Q|φb〉 for the operator Q. Based on
this notion, we substitute the momentum eigenfunctions (22)
into the two quantum states |φa〉 and |φb〉 and obtain the matrix
elements

V γ ′,σ ′;γ ,σ

S;z,d,o,n′,a′;n,a = 〈
ψ

γ ′,σ ′
n′,a′

∣∣−qAz,d,oα3

∣∣ψγ,σ
n,a

〉
= q

2
oiA0eoiωt Lγ ′,σ ′;γ ,σ

n′,a′;n,a,3δa′,aδn′,n−do, (29a)

V γ ′,σ ′;γ ,σ

S;x,d,o, f ,n′,a′;n,a = 〈
ψ

γ ′,σ ′
n′,a′

∣∣−qAx,d,o, f α1

∣∣ψγ,σ
n,a

〉
= q

2
df iA0eoiωt ε√

2e
Lγ ′,σ ′;γ ,σ

n′,a′;n,a,1δa′,a+ f δn′,n−do

(29b)

for the potentials −qAz,d,oα3 and −qAx,d,o, f α1, which include
the expressions (14) and (15). In Eqs. (29) we have introduced
the abbreviation

Lγ ′,σ ′;γ ,σ

n′,a′;n,a;b = (
uγ ′,σ ′

kn′ ,a′

)†
αb

(
uγ ,σ

kn,a

)
. (30)

The result in the second lines in Eqs. (29) is obtained by
carrying out the space integration

∫
d3x from the matrix el-

ement expression (28). For this integration, we denote all
space-dependent terms, which are the exponentials

exp {−i[(n′ − n + do)kLx + (a′ − a)kzz]} (31a)

for Eq. (29a) and

exp {−i[(n′ − n + do)kLx + (a′ − a − f )kzz]} (31b)

for Eq. (29b). When carrying out the three-dimensional
integration, the phases collapse into the Kronecker deltas
δa′,aδn′,n−do [in Eq. (29a), originating from Eq. (31a)] and
δa′,a+ f δn′,n−do [in Eq. (29b), originating from Eq. (31b)].

One can similarly obtain the momentum space formulation
of the Dirac equation

ih̄
∂

∂t
c = Ec +

∑
Vs,zc +

∑
Vs,xc (32)

by projecting the adjoint plane wave solutions (22) from the
left on the time-evolution equation (17), as done already in
Refs. [3,4,13,14]. Note that in Eq. (32), we have omitted the
indices and time dependence for the expansion coefficients
cγ ,σ

n,a (t ) and the potentials (29) in favor of a compact notion.
Still, the sums in Eq. (32) run over the unprimed indices,
as they appear in Eqs. (29). The expansion coefficients on
the left-hand side and the first term on the right-hand side
of Eq. (32) have primed indices, i.e., cγ ′,σ ′

n′,a′ (t ). The symbol
E denotes the relativistic energy-momentum relation (25),
which can be positive and negative, corresponding to the ex-
pansion coefficients cγ ′,σ ′

n′,a′ of the positive and negative-energy
eigensolutions. We will make use of the shortened notion in
Eq. (32) with omitted indices and omitted time dependence
also in subsequent expressions of similar complexity in the
remaining text of this article.

C. Time-dependent perturbation theory

In order to calculate the time evolution of the quantum
state, we are making use of second-order time-dependent per-
turbation theory [40]

U (t, t0) = (−i)2
∫ t

t0

dt2

∫ t2

t0

dt1VI (t2)VI (t1), (33)

where we follow the convention to carry out our calculation in
the interaction picture, with operators related by

VI = eiH0tVSe−iH0t . (34)

Here, VS and VI are the operators in the Schrödinger and inter-
action picture, respectively. With the matrix elements γ Ekn,a

of the free Hamiltonian H0 in momentum space, relation (34)
becomes

V γ ′,σ ′;γ ,σ

I;n′,a′;n,a = V γ ′,σ ′;γ ,σ

S;n′,a′;n,a ei(γ ′En′,a′ −γ En,a )t (35)

in explicit index notation. By inserting the potentials (29) of
the interaction picture (35) into the perturbation expression
(33), we obtain

U (t, t0) = −
∑

�
q2A2

0

4
D�

∫ t

t0

dt2

∫ t2

t0

dt1ϒ. (36)

In Eq. (36), the expression D is a collection of Kronecker
deltas

Dz,z = δn′′,n′−d ′o′δn′,n−doδa′′,a′δa′,a, (37a)

Dx,z = δn′′,n′−d ′o′δn′,n−doδa′′,a′+ f ′δa′,a, (37b)

Dz,x = δn′′,n′−d ′o′δn′,n−doδa′′,a′δa′,a+ f , (37c)

Dx,x = δn′′,n′−d ′o′δn′,n−doδa′′,a′+ f ′δa′,a+ f , (37d)
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which originates from the potentials (29). The expression �

is the corresponding collection of the spin-dependent terms

�
γ ′′,σ ′′;γ ′,σ ′;γ ,σ

n′′,a′′;n′,a′;n,a;r,t = Lγ ′′,σ ′′;γ ′,σ ′
n′′,a′′;n′,a′;rLγ ′,σ ′;γ ,σ

n′,a′;n,a;t . (38)

All time-dependent expressions have been absorbed in the
time-dependent phase

ϒ
γ ′′,γ ′,γ ;o′,o
n′′,a′′;n′,a′,n,a(t2, t1)

= ei(γ ′′En′′ ,a′′−γ ′En′,a′ +o′ω)t2 ei(γ ′En′ ,a′−γ En,a+oω)t1 (39)

behind the final, double-time integral
∫ t

t0
dt2

∫ t2
t0

dt1. All other
prefactors, which cannot be summarized in a simple way, are
combined in the prefactor � as

�z,z = oo′, (40a)

�x,z = d ′ f ′oE, (40b)

�z,x = df o′E, (40c)

�x,x = d ′df ′ f E2, (40d)

where the calligraphically written E is an abbreviation for the
scaled diffraction angle ε

E = ε√
2e

. (41)

The index pairs {(z, z); (x, z); (z, x); (x, x)}, which we have
attached to D and � are accounting on whether Vz [Eq. (29a)]
or Vx [Eq. (29b)] have been used for the potential VI (t2) in
Eq. (33) (first index t2) and on whether Vz or Vx have been
used for VI (t1) (second index t1).

Note that in Eq. (36) we have omitted the indices for the
expansion coefficients U γ ′′,σ ′′;γ ,σ

n′′,a′′;n,a in a similar way as we have
done it for Eq. (32). Correspondingly, the sum in Eq. (36) runs
over the indices γ ′, σ ′, n′, and a′ as part of the matrix product
between the potentials (29). Additionally, the sum also runs
over the possible configurations o, o′, d , and d ′.

D. The resonance condition in the Bragg regime
of the Kapitza-Dirac effect

We proceed the computation of the perturbative expression
(36) by solving the double time integral

∫ t
t0

dt2
∫ t2

t0
dt1ϒ . The

integral
∫ t2

t0
dt1 over the t1-dependent exponential in (39) re-

sults in∫ t2

t0

dt1ei(γ ′En′,a′ −γ En,a+oω)t1 = iFei(γ ′En′,a′ −γ En,a+oω)t1 |t2t0 , (42)

where we have introduced the abbreviation

F = (γ En,a − γ ′En′,a′ − oω)−1. (43)

For the upper integration limit t2 in Eq. (42), we obtain

iF
∫ t

t0

dt2ei(γ ′′En′′ ,a′′ −γ En,a+o′ω+oω)t2 (44)

in the double integral
∫ t

t0
dt2

∫ t2
t0

dt1ϒ . The argument in the
exponent, which we abbreviate by

�E = γ ′′En′′,a′′ − γ En,a + o′ω + oω, (45)

corresponds to the net energy transfer of the two interacting
laser photons with the electron. With Eq. (45) the solution of
(44) can be written as

iF
∫ t

t0

dt2ei�Et2 = F

�E
(ei�Et − ei�Et0 ) (46a)

= iF
∞∑

g=0

(i�E )g

(g + 1)!

(
t g+1 − t g+1

0

)
(46b)

= iF

[
t − t0 + i�E

2

(
t2 − t2

0

) + · · ·
]
. (46c)

As explained in the introduction, Kapitza-Dirac scattering
takes place for

n = 0, n = 2, (47)

for the positive particle solutions

γ = γ ′′ = +1, (48)

with one absorbed and one emitted photon, corresponding to

o = −o′ ∈ {−1, 1}, (49)

see Refs. [13–15] for details. In the case of no transverse
momentum transfer, i.e., a = a′′ = 0, one sees that �E in
Eq. (45) vanishes, such that the solution (46c) of the upper
limit of the integral over t1 in the double time integral of
Eq. (36) simplifies to∫ t

t0

dt2

∫ t2

dt1ϒ(t2, t1) = iF (t − t0). (50)

In this resonant situation, in which the phase of the incoming
and outgoing mode of the electron wave function are in res-
onance with the phase oscillations of the interacting photons,
the amplitude of the diffracted mode can grow unlimited in
time. In the case of a perfect resonant situation with �E = 0,
this growth would be unbound and only constrained by the
unitary property of the Dirac equation, where this unitary
property in turn would manifest itself only in higher order
perturbative contributions (as an example see the calcula-
tion of the Kapitza-Dirac effect based on the Schrödinger
equation in Ref. [41]). One can see in Eq. (46) that the
resonant mode, which grows linear with the interaction time
�t = t − t0, can outgrow the oscillating solution (46a), when
the product �E�t is approximately smaller than one. This
recovers the energy-time uncertainty condition, which is used
to distinguish between diffraction regime (�E�t larger one)
and Bragg regime (�E�t smaller one), according to Batelaan
[11,12] (see also the discussion in Sec. I). Corresponding
resonance peaks of the diffraction amplitude which illus-
trate this energy-time uncertainty are shown, for example, in
Refs. [14,15,28].

For our investigation, we will assume the dynamics to be
on resonance, with �E = 0 in (45), as the integration result
(50) will outgrow all other oscillatory contributions in the
integral

∫ t
t0

dt2
∫ t2

t0
dt1ϒ . Also, since according to Eq. (12) the

transverse momentum transfer kz is smaller than the longi-
tudinal momentum transfer kL by the factor 2ε, where ε is
usually much smaller than one, we also assume that diffraction
into the final states with a′′ ∈ {−2,−1, 0, 1, 2} are also on
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resonance, i.e., En′′,a′′ being very close to En,a. We thus assume
to obtain the result (50), independent of the value of a′′.

We also point out that the absolute value of the momen-
tum transfer kLex ± kzez which is implied by the longitudinal
potential (29b) is larger than the absolute value of the corre-
sponding momentum transfer kLex of the transverse potential
(29a), as a result of the approximation in Sec. II C. We are
therefore using the vacuum dispersion relation of light

ωn,a;n′,a′ = |kn,a − kn′,a′ | (51a)

for the prefactor in Eq. (43), which we explicitly write as

F = (γ En,a − γ ′En′,a′ − oωn,a;n′,a′ )−1. (51b)

Using a only a constant dispersion ω = kL would result in
situations in which the bracket on the right-hand side of (51b)
goes to zero and causes the diffraction amplitude to diverge.
Such a divergence only takes place for unphysically large the
beam divergence angles, at which kz � kL. For this reason, we
consider the implementation of the vacuum dispersion (51) as
appropriate.

We finally can write the expression for the perturbative
calculation as

U (t, t0) = −i
∑

�F
q2A2

0

4
�(t − t0), (52)

where we have substituted the solution of the double time
integral (50) with the prefactor (51) from the integration into
the intermediate perturbative expression (36).

E. Momentum conservation

In order to complete the perturbative calculation, the elec-
tron momenta in Eq. (52) need to be specified still. For that,
we make use of the momentum conservation, which is im-
plied by the Kronecker deltas in Eq. (37). The x-dependent
Kronecker deltas with dependence of n, n′, and n′′ imply the
conditions

n′ = n − do, (53a)

n′′ = n′ − d ′o′. (53b)

To resolve this, we refer back to the initial and final x-
momentum constraints (47) and the photon absorption and
emission condition (49). We first note that reaching from n =
0 to n′′ = 2 is only possible for n′ = 1. Second, combining the
two conditions in (53) results in

n′′ = n − d ′o′ − do. (54)

For the defined range of the parameters o, o′, d, d ′ ∈ {−1, 1},
the conditions (47), (49), and (54) impose the condition

d = −o = o′ = −d ′. (55)

For the transverse direction (z direction), we require the elec-
tron to move with momentum k0, corresponding to a = 0,
as implied by the approach for the electron momentum in
Eq. (2). The z-dependent Kronecker deltas in Eq. (37) with
dependence of a, a′, and a′′ imply the conditions

a′ = a + f , (56a)

a′′ = a′ + f ′, (56b)

TABLE I. Specific values of the polarization-dependent � pref-
actor (40), as it appears in the perturbative expression (52). The
electron quantum state propagation happens on different quantum
trajectories in momentum space, where the electron can be subject
to different polarization components when interacting with the laser
[see main text below Eq. (41)]. The index pair (z, z) scales with zero
power in E , the index pairs (x, z) and (z, x) scale with one power in E ,
and (z, z) scales with two powers in E . We have separated the differ-
ent powers of E with double lines. We also have separated different
diffraction orders a′′ of the electron’s final momentum a′′kz + k0

along the transverse laser direction by additional single lines:

a′′ a′ �

0 0 �z,z = −1

1 0 �x,z = +E
1 1 �z,x = +E
−1 0 �x,z = −E
−1 −1 �z,x = −E

2 1 �x,x = −E2

0 1 �x,x = +E2

0 −1 �x,x = +E2

−2 −1 �x,x = −E2

where occurrences of δa′,a and δa′′,a′ can be accounted for,
in the form (56), by setting f = 0 and f ′ = 0, respectively.
With Eqs. (56) we can determine the � factors in Eq. (40)
for different values of a′ and a′′, if we additionally make use
of the implications oo′ = dd ′ = −1 and od ′ = do′ = 1 from
Eq. (55). All possible combinations for � are listed in Table I.

The role of all indices in the final perturbative expression
(52) are determined with the above considerations and they
can be classified into four different categories.

(1) Indices with fixed values:
n = 0, n′ = 1, n′′ = 2, a = 0, γ = 1, γ ′′ = 1;

(2) Indices which still appear in the sum of Eq. (52):
a′, σ ′, γ ′, o;

(3) Indices which are implied by Eqs. (55) and (56):
o′, d , d ′, f , f ′;

(4) Indices, which are not determined yet:
a′′ ∈ {−2,−1, 0, 1, 2}, σ , σ ′′.

IV. RESULTING MODIFICATION OF SPIN-PRESERVING
AND SPIN-CHANGING TERMS

A. Investigation procedure

In this section, we want to quantify the influence of the
longitudinal polarization component from the Gaussian beam
on the spin dynamics in the Kapitza-Dirac effect. Since the
perturbative expression (52) in Sec. III has a complicated
structure, we want to investigate its dependence on the photon
energy kL and the transverse momentum transfer kz numer-
ically. To do that, we start in Sec. IV B with first denoting
a formalism for decomposing the quantum state propagation
into spin-preserving and spin-changing components, which
can be seen in Eqs. (60a) and (60b). This makes it easier
to identify the influence of the longitudinal beam component
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on the spin dynamics. The formalism also has the advantage
that it is independent of the initial and final electron spin
configuration. We then want to numerically extract simple
power law scaling relations for (60), in the form of Eq. (71).
We do that by first plotting the functional dependence of (60)
as a function of kL and/or kz in Figs. 3–6 in Sec. IV C. The
figures are carried out as double logarithmic plots, such that
power law scalings appear as a straight lines, which can be
fitted to linear functions to obtain the coefficients of the power
law functions (71). This is done in Sec. IV D and results
in the scaling functions (73) and (74). Finally, the obtained
scaling relations are then compared with the corresponding
expression in which no longitudinal polarization component
has been used, to obtain relation (82), from which one can
see for what parameters kL and ε the longitudinal polarization
component from beam focusing becomes relevant.

B. Spin propagation

The initial electron spin configuration c1,σ
0,0 (t0) is diffracted

by the laser interaction into the final electron spin configura-
tion c1,σ ′′

2,a′′ (t ) by

c1,σ ′′
2,a′′ (t ) =

∑
σ

U 1,σ ′′;1,σ
2,a′′;0,0 (t, t0)c1,σ

0,0 (t0) (57)

in terms of the general quantum state propagation equa-
tion (27). The entries of

U 1,σ ′′;1,σ
2,a′′;0,0 (t, t0) =

(
u00 u01

u10 u11

)
(58)

for a specific value of a′′ are then the entries of a complex
2 × 2 matrix with column index σ ′′ and row index σ . In the
abstract 4-component vector space (u00, u01, u10, u11)T ∈ C4

of complex 2 × 2 matrices, one can define the scaled inner
product

〈M |U 〉 = 1

η
(m∗

00u00 + m∗
01u01 + m∗

10u10 + m∗
11u11), (59)

with u, m ∈ C2×2 being the matrix entries of the correspond-
ing 2 × 2 matrices U and M, respectively. A scale parameter
η appears in (59) which will be specified soon in Eq. (61).
The space of complex 2 × 2 matrices can be spanned by
the 2 × 2 identity matrix 1 and the three Pauli matrices σx,
σy, σz. Projecting the numerically evaluated expressions of
U 1,σ ′′;1,σ

2,a′′;0,0 (t, t0) in the form of Eq. (52) on these four orthog-
onal components yields only nonvanishing contributions for
〈1 |U 〉 and 〈σy |U 〉 for the field configuration of the combined
fields (13a) and (13b). In terms of the inner product notion
(59), we therefore set

〈1 |U 〉a′′ = 1

η

[
U 1,0;1,0

2,a′′;0,0(t, t0) + U 1,1;1,1
2,a′′;0,0(t, t0)

]
(60a)

〈σy |U 〉a′′ = i

η

[
U 1,0;1,1

2,a′′;0,0(t, t0) − U 1,1;1,0
2,a′′;0,0(t, t0)

]
, (60b)

where we factor out the value

η = 2

[
−i �

q2A2
0

4
(t − t0)

]
. (61)

In this way, U appears in the form(
U 1,0;1,0

2,a′′;0,0 U 1,0;1,1
2,a′′;0,0

U 1,1;1,0
2,a′′;0,0 U 1,1;1,1

2,a′′;0,0

)
= η

2

( 〈1 |U 〉a′′ −i〈σy |U 〉a′′
i〈σy |U 〉a′′ 〈1 |U 〉a′′

)
.

(62)
We also find numerically that 〈1 |U 〉 is purely real and
〈σy |U 〉 is purely imaginary, i.e.,

Im(〈1 |U 〉) = 0, (63a)

Re(〈σy |U 〉) = 0, (63b)

for each index a′′. In the following, we want to give a more
intuitive picture of the spin decomposition in this subsection,
regarding the physical point of view of our description.

Based on the property (63), one can further substitute

〈1 |U 〉 = ξ cos
φ

2
, (64a)

〈σy |U 〉 = −iξ sin
φ

2
, (64b)

with an amplitude ξ and an angle φ, for each index a′′. In
this form, Eq. (62) turns into a SU (2) matrix times an am-
plitude ηξ/2 and acts at the quantum state as a spin rotation,
combined with a diffraction probability. This can be seen by
assuming the initial electron quantum state c1,σ

0,0 (t0) in the spin
propagation equation (57) to be in the spin state

ψi(α) =
(

cos α
2

sin α
2

)
=

(
c1,0

0,0(t0)

c1,1
0,0(t0)

)
. (65)

The form (65) corresponds to a state on the Bloch sphere
which points at some direction in the x-z plane. On interaction
of the laser with the electron, this quantum state gets diffracted
by virtue of (57), in our description. The resulting quantum
state c1,σ ′′

2,a′′ (t ) would be then of the form (ηξ/2)ψi(α + φ),
i.e., rotated by the angle φ around the y axis, with a reduced
normalization, given by the factor ηξ/2. This rotation and
change of normalization of the quantum space takes place for
each index a′′ with different values. The reader is reminded
that the index a′′ corresponds to the five different arrow di-
rections of the diffracted wave packet, as illustrated in Fig. 1.
Further details about spin rotations in the Kapitza-Dirac effect
can be found in Refs. [14,15] and generalizing concepts about
possible other spin dynamics beyond a pure spin rotation are
discussed in Refs. [3,4].

While the rotation of the initial spin state ψi by the spin
propagation (57) with explicit form (62) is the description of
the physical process, one may assign an even simpler picture
to it, in the context of experimental detection. Assume that the
electron was initially polarized along the z axis:

c1,0
0,0(t0) = 1, c1,1

0,0(t0) = 0. (66)

This initial state corresponds to setting α = 0 in ψi of
Eq. (65). Then, with the spin propagation (57) and (62), we
can write the absolute square of the diffracted state as∣∣c1,0

2,a′′ (t )
∣∣2 = η2

4
|〈1 |U 〉a′′ |2 = η2ξ 2

4
cos2 φ

2
, (67a)

∣∣c1,1
2,a′′ (t )

∣∣2 = η2

4
|〈σy |U 〉a′′ |2 = η2ξ 2

4
sin2 φ

2
. (67b)
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FIG. 3. Amplitude of the functions |〈1 |U 〉±1| and |〈σy |U 〉±1| as
simultaneous functions of qL and qz. The left (right) panels display
the |〈1 |U 〉| (|〈σy |U 〉|) as implied by Eqs. (60), respectively. The
upper (lower) panels correspond to a′′ = 1 (a′′ = −1), respectively.
The red dotted line marks the location where qL = qz, at which
ε = 1/2. Above ε = 1/2 (i.e., in the upper left corner), the Gaussian
beam approximation may be be considered as invalid.

In essence, the coefficients 〈1 |U 〉a′′ and 〈σy |U 〉a′′ can be
associated with a diffraction probability (ηξ/2)2 and a cor-
responding spin-flip probability (67b) and no-flip probability
(67a). The probabilities are caused by a spin rotation around
the y axis during diffraction for each subdiffraction order a′′,
i.e., for each of the five arrows in Fig. 1.

C. Numeric evaluation

Now we are ready for a numeric analysis of the quantum
state propagation matrix U in Eq. (52), which we have cast
into the form (60). To give an orientation for the reader, we
first emphasize how our work with an additional longitudinal
polarization component from the Gaussian beam is extending
previous calculations: The spin effect of the Kapitza-Dirac
scattering in Ref. [14], which is extended in this article, shows
a flip of the electron spin. This spin flip is caused by a σy

expression of the electron spin propagation, as shown in (62)
and corresponds to the (z, z) index pair contribution in the per-
turbative propagation expression (52). This (z, z) contribution
corresponds to a joint interaction of the transverse polarization
component (29a) for the potentials VI (t2) and, at the same
time, VI (t1).

We are extending this term in our calculation by contribu-
tions which contain the action of the longitudinal polarization
component (29b) once [terms with index pairs (x, z) or (z, x)]
or even twice [terms with index pair (x, x)]. For viewing
modifications from the longitudinal beam component, we plot
the amplitude of the spin-preserving terms 〈1 |U 〉a′′ and spin-
altering terms 〈σy |U 〉a′′ in Figs. 3 and 4 for different values
of the final longitudinal electron momentum index a′′, as a

FIG. 4. Amplitude of the functions |〈1 |U 〉a′′ | and |〈σy |U 〉a′′ |
for a′′ ∈ {2, 0, −2} as simultaneous functions of qL and qz. This
figure is similar to Fig. 3, except that the upper panels correspond
to a′′ = 2, the middle panels correspond to a′′ = 0, and the lower
panels correspond to a′′ = −2. The red dotted line marks the location
at which ε = 1/2; see description in Fig. 3 and in the main text.

function of kL and kz. Note that according to our approach in
(2) the z component of the electron momentum of the final
wave function is a′′kz + k0, where we set the z momentum
offset k0 to the value m, consistent with previously considered
scenarios in Refs. [4,39].

It is more suitable to discuss the results in terms of the
dimensionless variables

qL = kL

m
, (68)

qz = kz

m
, (69)

which are used in the following text and also in Figs. 3 and 4.
Note that in Fig. 3 terms with one longitudinal interaction are
shown, which correspond to the index pairs (x, z) or (z, x),
for which a′′ ∈ {1,−1}, according to Table I. In contrast, in
Fig. 4 terms with two longitudinal interactions are shown, cor-
responding to the index pair (x, x), for which a′′ ∈ {2, 0,−2}.
Note that the solution for the Gaussian beam assumes that
the diffraction angle ε is small. Therefore, we have marked
the location in Figs. 3 and 4 with a red dotted line, at which
ε = 1/2. Everything in the upper left corner above this red
dotted line corresponds to an aphysically large diffraction
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FIG. 5. Amplitude of the functions |〈1 |U 〉±1| and |〈σy |U 〉±1| as
either a function of qL or qz. The left panels show plots with varying
qL , where qz has the fixed value 10−5. Accordingly, the right panels
show plots with varying qz, where qL has the fixed value 2 × 10−2.
The colored dashed lines are fits with the linear functions hqL + g
(left panels) or hqz + g (right panels) to the linearly growing or
dropping regions of the displayed functions, respectively. The slopes
h of the functions are listed in Table II.

angle, at which the Gaussian beam approximation in powers
of ε might be considered as invalid. In order to investigate the
functional behavior of 〈1 |U 〉 and 〈σy |U 〉 more accurately,
we plot them again in Figs. 5 and 6 as a function of either qL

or qz in a line plot, instead of the density plot of both variables
in Figs. 3 and 4. We set the fixed value of qz = 10−5 in Fig. 5
and qL = 2 × 10−2 Fig. 6.

D. Analysis of results

We see in Figs. 5 and 6 a linear behavior of the functions
〈1 |U 〉 and 〈σy |U 〉 over a vast area of the parameter range,
which we approximate with linear fitting functions in the
double-logarithmic plot. The linear function

log10(| 〈M|U 〉 (λ)|) = hλ + g (70)

with λ = log10(q) (q is either qL or qz and M is either 1 or σy)
can be written as power law

| 〈M|U 〉 (q)| = qh10g, (71)

where q = 10λ, such that the slope h determines at which
power 〈M |U 〉 is growing in q. We are listing the different
slopes h in Table II.

FIG. 6. Amplitude of the functions |〈1 |U 〉a′′ | and |〈σy |U 〉a′′ |,
with a′′ ∈ {2, 0, −2} as either a function of qL or qz. Similarly to
Fig. 5, the left panels vary in qL with qz = 10−5 and the right panel
vary in qz with qL = 2 × 10−2. Also corresponding to Fig. 5, the
colored dashed lines in the lower left panel are linear fitting functions
hqL + g of the linearly growing regions of the 〈σy |U 〉, with the
slopes h displayed in Table II.

In order to obtain a simple scaling behavior of the functions
〈M |U 〉 on their linear range in the double-logarithmic plot,
we denote them as

〈M |U 〉 = Cqζ
Lqθ

z , (72)

where we take the approximated integer numbers in Table II
as the values for the corresponding powers ζ and θ of qL

and qz, respectively. The constant C we obtain by probing the
functions 〈M |U 〉 at specific value pairs qL and qz which we
show in Table III and by solving Eq. (72) for C. We obtain

〈1 |U 〉±1 = 0.707q−1
L qz, (73a)

〈σy |U 〉1 = i 0.280qz, (73b)

〈σy |U 〉−1 = i 0.305qz, (73c)

〈σy |U 〉′1 = −i 0.460q−2
L q2

z , (73d)

〈σy |U 〉′−1 = i 0.497q−2
L q2

z , (73e)

for the expressions with a single longitudinal interaction,
corresponding to the index pairs (x, z) and (z, x) and cor-
responding to Figs. 3 and 5. Expressions with a double
longitudinal interaction, corresponding to the index pair (x, x)
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TABLE II. Slopes h of the fitting functions in Figs. 5 and 6.
We show the parameter h of the linear fitting functions hλ + g in
Eq. (70), which are used in the double logarithmic plots of Fig. 5
(above the break) and Fig. 6 (below the break). The linear functions
of the double logarithmic plots correspond to the power law qh10g,
corresponding to Eq. (71). For simplicity, we round the fitted slopes
to integer numbers in the “approximation” column and use these
simplified values for the exponents ζ and θ of the general functional
form of 〈M|U 〉 in Eq. (72). As a result, we obtain the specific
functions (73), (74), (76), and (77), according to the procedure as
explained in the main text.

Function Slope h Approximation

〈1 |U 〉−1(qL ) −1.0014 −1
〈1 |U 〉−1(qz ) 0.998 1
〈σy |U 〉′

−1(qL ) −1.96 −2
〈σy |U 〉−1(qz ) 1.015 1
〈σy |U 〉′

−1(qz ) 1.88 2

〈σy |U 〉−2(qL ) 1.0027 1
〈σy |U 〉0(qL ) 1.0031 1

and Figs. 4 and 6, result in

〈1 |U 〉±2 = 1.414, (74a)

〈1 |U 〉0 = − 2.828, (74b)

〈σy |U 〉±2 = −i 0.415qL, (74c)

〈σy |U 〉0 = i 0.829qL. (74d)

We can further recast the expressions (73) and (74) by insert-
ing relation (12), written in the form

qz = 2εqL. (75)

TABLE III. Specific function values of 〈1 |U 〉 and 〈σy |U 〉 for
the prefactor determination of the scaling approximation (72). The
functions 〈1 |U 〉 and 〈σy |U 〉 are evaluated at the parameter value
pair qL and qz, resulting in the column “value.” The values above the
double lines correspond to Figs. 3 and 5 and below the double lines
they correspond to Figs. 4 and 6. Different types of functions are
separated by single lines. The determined function values are used to
solve the power law Eq. (72) for the prefactor C, with corresponding
values for ζ and θ from Table II. The resulting functions are dis-
played in Eqs. (73), (74), (76), and (77).

Function qL qz Value

〈1 |U 〉1 2 × 10−2 1 × 10−5 3.535 × 10−4

〈1 |U 〉−1 2 × 10−2 1 × 10−5 3.535 × 10−4

〈σy |U 〉1 2 × 10−2 1 × 10−5 i2.804 × 10−6

〈σy |U 〉−1 2 × 10−2 1 × 10−5 i3.054 × 10−6

〈σy |U 〉′
1 2 × 10−2 6 × 10−3 −i4.140 × 10−2

〈σy |U 〉′
−1 2 × 10−2 6 × 10−3 i4.474 × 10−2

〈1 |U 〉2 1 × 10−3 1 × 10−5 1.414 × 100

〈1 |U 〉−2 1 × 10−3 1 × 10−5 1.414 × 100

〈1 |U 〉0 1 × 10−3 1 × 10−5 − 2.828 × 100

〈σy |U 〉2 2 × 10−2 1 × 10−5 −i8.285 × 10−3

〈σy |U 〉−2 2 × 10−2 1 × 10−5 −i8.285 × 10−3

〈σy |U 〉0 2 × 10−2 1 × 10−5 i1.657 × 10−2

and by multiplying with the � factor from Table I, resulting in

�±1〈1 |U 〉±1 = ± 0.606ε2, (76a)

�1〈σy |U 〉1 = i 0.240ε2qL, (76b)

�−1〈σy |U 〉−1 = −i 0.262ε2qL, (76c)

�1〈σy |U 〉′1 = −i 0.789ε3, (76d)

�−1〈σy |U 〉′−1 = −i 0.853ε3, (76e)

for the expressions which contain one longitudinal interaction.
Here, we have substituted Eq. (41) for the terms E , which
appear in the � factor (40) of Table I. For expressions with
two longitudinal interactions, in Eq. (74) we obtain

�±2〈1 |U 〉±2 = −i 0.260ε2, (77a)

�0〈1 |U 〉0 = −i 0.520ε2, (77b)

�±2〈σy |U 〉±2 = 0.077ε2qL, (77c)

�0〈σy |U 〉0 = 0.153ε2qL. (77d)

Note that we are using the final longitudinal diffraction
order a′′ as subindex for the � factors in Eqs. (76) and (77).

V. DISCUSSION AND CONCLUSION

The resulting values in Tables II and III and expressions
in Eqs. (73)–(77) are correction terms for the interaction of
the longitudinal laser polarization component with the elec-
tron. In the introduction, the question was posed about how
a longitudinal polarization component from beam focusing
is influencing the spin dynamics of the Kapitza-Dirac effect.
To answer this question, the expressions (73)–(77) need to be
compared with the purely transverse polarization component
interaction, which corresponds to the (z, z) index pair. For
this index pair, we find a linear scaling of 〈σy |U 〉 of qL with
power ζ = 1 and the value 〈σy |U 〉 at qL = 2.0 × 10−2 has the
value i2 × 10−2, consistent with our previous expressions in
Refs. [4,42]. The laser-electron interaction can be constructed
such that 〈1 |U 〉 can vanish completely for the (z, z) index
pair; see footnote 89 in Ref. [39] and the statement around
Eq. (15) in Ref. [4]. Since the (z, z) contribution does not
contain any beam waist dependent longitudinal interaction
components, 〈1 |U 〉 and 〈σy |U 〉 are independent of qz. There-
fore, for the form in Eq. (72) we have ζ = 1 and θ = 0 for
〈σy |U 〉, and in analogy to Eqs. (73) and (74) we obtain

〈1 |U 〉0 = 0, (78a)

〈σy |U 〉0 = i qL, (78b)

and correspondingly with �z,z = −1

�0〈1 |U 〉0 = 0, (79a)

�0〈σy |U 〉0 = −i qL, (79b)

in analogy to Eqs. (76) and (77), where we again substituted
a′′ = 0 for the index pair (z, z) in the subindex of �.

The spin-changing electron-laser interaction without longi-
tudinal contribution in Eq. (79b) corresponds to the situation,
in which beam focusing is completely neglected. It therefore
is independent of the diffraction angle ε. In contrast to that,
interaction contributions with a longitudinal component in
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Eqs. (76) and (77) all scale at least with power 2 in ε. In other
words, the influence of longitudinal field components from
laser beam focusing on the investigated, spin-dependent effect
in Kapitza-Dirac scattering gets arbitrarily low for arbitrarily
low beam foci, within the approximations which have been
made in this article.

Besides these general considerations, it is also interesting
to give an estimate at what values of the interaction parame-
ters qL and ε the influence from the longitudinal polarization
component begins to matter for the spin dynamics. Since there
are multiple subdiffraction orders a′′ with spin-preserving and
spin-flipping contributions [nine different terms in Eqs. (76)
and (77)], which have a partially different scaling behavior,
it is reasonable to concentrate on contributions which scale
with the smallest power in the small quantities qL and ε

for an estimation. Most notably might be the contribution
in Eq. (77b), which is proportional to the spin-preserving
2 × 2 identity and has the final longitudinal diffraction order
a′′ = 0. With a′′ = 0, this contribution is located in the same
point in momentum space as the interaction term (79) of an
interaction without longitudinal contribution. Therefore, both
terms are physically indistinguishable after the interaction by
any means. Furthermore, (77b) only scales with ε2 and is
therefore one of the largest contributions from the longitudinal
interactions. Equation (77b) is therefore our candidate for es-
timating the longitudinal influence on the spin dynamics in the
following calculation. More specifically, we use the equivalent
form (74b) of Eq. (77b) for clarity of the calculation in the
following. Similar to the considerations in Sec. IV B, one
obtains the approximate probability for observing a diffraction
without spin flip

∣∣c1,0
2,a′′ (t )

∣∣2 =
[

ε

2

2.828

e

q2A2
0

4
(t − t0)

]2

≈
[

ε

2

q2A2
0

4
(t − t0)

]2

(80)
from Eq. (74b), when inserted into (62) with initial condition
(66). Equation (80) stems from an interaction of the electron
with a longitudinal polarization component and needs to be
compared with the terms (78), which do not involve interac-
tions with the longitudinal component. The spin-preserving
term (78a) is zero and is therefore not of relevance for an
estimation for the leading interaction contribution. The re-
maining spin-flipping term (78b) inserted in Eq. (62) with
initial condition (66) gives the spin-flip probability

∣∣c1,1
2,a′′ (t )

∣∣2 =
[

qL
q2A2

0

4
(t − t0)

]2

. (81)

According to our explanations from above, spin dynamics
in the Kapitza-Dirac effect are influenced by a longitudinal
polarization component, when the diffraction probability (80)
is getting on the order of magnitude of the probability (81).
Thus, setting both probabilities equal results in the scaling law

qL = h̄kL

mc
= λC

λ
= ε2

2
, (82)

which tells at which wavelengths λ and diffraction angles ε the
contributions from longitudinal interaction components are
turning into non-negligible amplitudes. The reduced Planck
constant h̄, the vacuum speed of light c, the Compton wave-

length λC , and the wavelength of the laser light λ = 2π/kL are
written out explicitly in Eq. (82) for clearness.

There are two interesting light frequencies (photon en-
ergies) for possible applications. One photon energy is the
hard x-ray regime where 10 keV roughly correspond to qL =
2 × 10−2, which is the value which is mainly under study in
this paper. For this photon energy, we obtain ε = 0.2, which
implies beam foci on the order of

w0 = λ

2πε
= 96 pm. (83)

The other interesting photon energy is 2 eV of red light with
620 nm, corresponding approximately to qL = 4 × 10−6. For
this parameter we have ε = 2.8 × 10−3 and Eq. (83) yields
35 μm for the corresponding laser beam focus. We therefore
conclude that longitudinal fields from beam focusing are not
expected to have significant influence on the spin dynamics
of the investigated scenario of a spin-altering Kapitza-Dirac
effect with a hard x-ray standing light wave. In the optical
regime, however, the influence of longitudinal fields might be
of relevance for the electron spin dynamics.

VI. OUTLOOK

The main motivation for our study was to answer whether a
longitudinal polarization component from beam focusing has
an influence on spin dynamics in the Kapitza-Dirac effect. In
this context, we have only accounted for the transverse spacial
dependence of the longitudinal component but did not account
for the transverse spacial dependence of the transverse po-
larization component, which, however, one would expect to
scale with at least ε2. In other words, this first investigation
could still be improved into a study which is consistent up to
order ε2, within our plane-wave approximation of the poten-
tials. Along this line, one might raise the question of whether
the rough approximation of the potentials in Eqs. (13a) and
(13b) are sufficiently accurate for solid statements at all. It
is possible to solve the relativistic quantum dynamics of the
Dirac equation by exact numeric solutions, for example, with
the Fourier-transform split-operator method [43,44]. With this
type of more exact solution approach, a systematic parameter
study as it is done in this article would be more difficult, but
there would be less doubts about a possible oversimplification
of the problem.

One interesting detail which is not accounted for in the
spin-changing electron dynamics of this work is the investiga-
tion of spin-dependent diffraction [1–4,27,29,30]. While the
diffraction pattern in spin-dependent scattering would depend
on the initial electron spin state, the diffraction pattern would
be completely independent of the initial spin for the case of
spin-changing dynamics. In other words, spin-dependent dy-
namics allows for the implementation of a Stern-Gerlach type
of experiment, while spin-changing dynamics does not have
this capability. However, until now, there is no purely linear
field configuration known for implementing spin-dependent
diffraction for the interaction with a single laser pulse and
with only a two-photon-interaction in the Bragg regime. This
implies complications for theoretical investigations, because
the transverse spacial dependence of the longitudinal laser
polarization component turns two-dimensional for any type of
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elliptical polarization, resulting in the necessity of a quantum
simulation in three dimensions. Three-dimensional solutions
of the Dirac equation, in turn, are challenging, though not
impossible [45], because one needs to numerically resolve the
fast oscillations of the electron wave function in the complex
plane which are implied by the mass term of the Dirac equa-
tion. One could of course think of solving the Schrödinger
equation plus spin coupling terms for this problem, but beside
the necessity of numerical time propagation techniques of
operators which are neither diagonal in position space nor
diagonal in momentum space, one would also encounter the
question about which relativistic corrections from the Foldy-
Wouthuysen transformations of the Dirac equation are of
relevance for the electron spin dynamics. Configurations are
known for which the plain Pauli equation is not enough for
describing the system correctly [23,24].
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APPENDIX: FIELD OF GAUSSIAN BEAM FROM REF. [38]

Reference [38] presents the Gaussian beam in form of the
electric fields

Ex = E0
w0

w
exp

(
− r2

w2

)
sin (φG), (A1a)

Ez = 2E0ε
xw0

w2
exp

(
− r2

w2

)
cos

(
φ

(1)
G

)
, (A1b)

with phases

φG = ω0t − k0z + tan−1
( z

zR

)
− zr2

zRw2
− φ0, (A2a)

φ
(1)
G = φG + tan−1

( z

zR

)
, (A2b)

and beam waist along the z direction

w(z) = w0

√
1 + z2

z2
R

. (A3)

Though the Gaussian beam is given as electric field, we
follow the argument in Ref. [38], where the electric field
components are recast to the vector field components. This
procedure is justified by pointing out that (A1) is obtained
from the Maxwell-Poisson equation ∇ · E = 0 and the scalar
wave equation in vacuum(

� − 1

c2

∂2

∂t2

)
ψ = 0. (A4)

One can see a formal equivalence to the Coulomb gauge con-
dition ∇ · A = 0 in combination with (A4) and therefore, in
accordance with Ref. [38], we apply the substitution Ei → Ai,
i ∈ {x, y, z} for the field components and E0 → A0 for the
field amplitude in the Gaussian beam (A1). Furthermore, we
already use k0 for the electron momentum but kL for the laser’s
wave number and also a plain omega ω for the laser frequency
in this article. Correspondingly, we also substitute k0 → kL

and ω0 → ω in Eq. (A2a). Additionally, since we desire a
beam propagating along the x axis, we perform a space ro-
tation on the potential (A1) and phase (A2) by applying the
coordinate substitution z → x, x → −z, y → y for the vecto-
rial quantities. Also, since the Kapitza-Dirac effect is based
on the interaction with two beams, which are propagating in
opposite directions, we denote a second, counterpropagating
beam configuration from a subsequent rotation by 180◦, by
imposing the coordinate substitution x → −x, y → −y, z →
z. Applying the mentioned substitutions to (A1) and (A2)
results in Eqs. (3) and (4) in Sec. II B.
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