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Laser-atom interaction simulator derived from quantum electrodynamics

Manish Patel , Matthew Harvey , and Andrew James Murray *

Photon Science Institute, Department of Physics and Astronomy, University of Manchester,
Manchester M13 9PL, United Kingdom

(Received 30 March 2022; accepted 10 May 2022; published 23 May 2022)

A laser-atom interaction simulator derived from quantum electrodynamics (LASED) is presented, which has
been developed in the PYTHON programming language. LASED allows a user to calculate the time evolution
of a laser-excited atomic system. The model allows for any laser polarization, a Gaussian laser beam profile, a
rotation of the reference frame chosen to define the states, and an averaging over the Doppler profile of an atomic
beam. Examples of simulations using LASED are presented for excitation of calcium from the 4 1S0 state to the
4 1P1 state, for excitation from the helium 3 1D2 state excited by electron impact to the 10 1P1 state, and for laser
excitation of caesium via the D2 line.
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I. INTRODUCTION

Laser excitation of atoms is an essential physical process
used in many experiments including spectroscopy [1,2], trap-
ping of atoms [3–6], collision physics [7–22], and atomic
interferometry [23]. To design experiments such as these,
modeling of the dynamics of the laser-atom interaction with
time is often required. The semiclassical approach to solving
the equations of motion of these systems has been used ex-
tensively, where the atom is quantized and the field is treated
classically [24–27]. In these models, the relaxation terms are
added phenomenologically. By contrast, models that treat both
the atom and field quantum mechanically can describe the re-
laxation terms more rigorously, particularly when the system
is complex with many substates involved in the interaction
[8]. Deriving the equations of motion (often called the optical
Bloch equations) by hand and solving the laser-atom inter-
action is time intensive, complex, and prone to mistakes. As
an example, for transitions with a hyperfine structure such as
excitation of the Cs 6 2S1/2 state to the 6 2P3/2 state, a total of
48 individual substates are involved in the interaction. There
are hence 2304 coupled differential equations that must be
generated and solved simultaneously to fully characterize the
dynamics of the system. A computational method of sys-
tematically generating and solving these equations is hence
advantageous so that the time evolution of the populations,
optical coherences, and atomic coherences can be obtained.

This paper presents an open-source PYTHON package that
solves this problem: a laser-atom interaction simulator derived
from quantum electrodynamics (LASED). LASED allows a
user to automatically set up a laser-atom system and generate
all the equations of motion for that system, which can be
printed out in LATEX. The package then solves the dynamics
of the system over a given time, outputting the evolution of
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all lower and upper state populations, their atomic coherences,
and the optical coherence terms that couple the states together.
LASED can also model the system using laser beams that have
different polarizations. It can model a rotation of the frame
of reference of the system, both prior to the interaction as
well as after the laser interaction has occurred. This rotation
technique can simplify the calculation, thereby reducing the
time required for generating an output. LASED can further
include integration over the Gaussian profile of the laser beam
(assuming a TEM00 beam) and also allows integration over the
Doppler profile of an atomic beam, should this be required for
the experiment that is being modeled. The angular “shape” of
the electron charge cloud for both excited and lower atomic
states can also be modeled and plotted as the system evolves
over time.

Other laser-atom interaction simulators exist that are used
to describe different processes. The simulator described in
[28] has been developed to model atoms that are laser cooled
in a magneto-optical trap, and includes the effect of the trap-
ping magnetic field as well as the laser field. LASED has
been developed in a similar way; however, it can also de-
scribe different experiments such as scattering experiments
that combine laser interactions with electron collisions and
that use an atomic beam [7–22]. LASED is designed to be
easy to use and has comprehensive online documentation
to aid users in creating the required laser-atom system they
wish to model. This documentation also demonstrates how
to run the simulations by solving examples of the differential
equations automatically generated by LASED [29]. Details on
how to install LASED can be found in this documentation and
in Appendix C.

In this paper, the derivation of the general equations of
motion which are adopted in LASED is briefly presented in
Sec. II. In Sec. III, the computational method for generating
the coupled differential equations to solve the time evolution
of the laser-atom system is discussed. This section also shows
how averaging over the Gaussian and Doppler profiles is
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approximated, and it details how the reference frame is ro-
tated. The method used to model a general polarization state
of the laser is also described.

Section IV demonstrates the outcome from the model for
three selected targets. In the first example, excitation of cal-
cium from the ground 4S state to the 4P state is discussed
since this is one of the simplest systems that can be solved.
These results are presented for both linear and elliptic excita-
tion, and includes integration over both Doppler and Gaussian
profiles. An example of the technique of rotating the frame
of reference is then discussed, with the calcium target again
being used. In the second example, laser excitation of helium
initially excited by electron impact to a D state is presented.
This is a considerably more complex problem to solve since
the lower state is then in a coherent superposition of substates
due to the collision. Both the populations and atomic coher-
ences are hence nonzero prior to laser excitation and these
must be included as initial conditions. Finally, a discussion of
laser excitation of the Cs atom from the ground state via the
D2 transition is presented for circular excitation, as would be
used in a magneto-optical trap (MOT).

II. GENERAL EQUATIONS OF MOTION

The general equations of motion using the QED approach
for continuous wave laser irradiation of atoms have been de-
tailed in [8,9,12,19], and so only a brief overview is presented
here. The equations are derived using the Heisenberg formu-
lation, where the operators are chosen to evolve in time. The
Hamiltonian of the laser-atom system is hence given by

H = HAtom + HField + HInt, (1)

where HAtom describes the atom evolving freely over time, so
that

HAtom =
∑

i

h̄ωi|i〉〈i|, (2)

where h̄ωi is the energy of the ith level. The Hamiltonian for
the field is represented quantum mechanically by

HField =
∑

q

h̄ωqa†
qaq, (3)

where a†
q, aq are the creation and annihilation operators for

the mode q of the field, with q representing both the wave
vector and its polarization. The interaction Hamiltonian [30]
is expressed in normal ordering [31] as

HInt = h̄
∑
e′g′q′

gq′
e′g′ σ̂e′g′aq′eikq′ z + gq′∗

e′g′a
†
q′e−ikq′ zσ̂g′e′ , (4)

where

gq′
e′g′ = i

√
ωq′

2ε0h̄V
êq′ · De′g′ (5)

is a coupling coefficient between the mode of the laser field
and the lower atomic state |g′〉 and upper state |e′〉. V is
the mode volume, De′g′ is the dipole moment, and êq′ is the
polarization unit vector. The atomic operators are defined by
the atomic states so that

σ̂eg = |e〉〈g|, (6)

where |g〉 represents the manifold of all lower states of the
system and |e〉 represents the manifold of upper states that are
coupled to |g〉 by the laser. The atomic operators evolve over
time using the Liouville equation [32],

d σ̂eg

dt
= − i

h̄
[σ̂eg, H]

= − i

h̄
[σ̂eg, HAtom] − i

h̄
[σ̂eg, HInt]. (7)

HField does not contribute here as it commutes with the atomic
operator. The first term in Eq. (7) can be simplified using
the orthonormality relations 〈e|e〉 = 〈g|g〉 = 1 and 〈e|g〉 =
〈g|e〉 = 0 so that

− i

h̄
[σ̂eg, HAtom] = −i(ωg − ωe)|e〉〈g|. (8)

The second term in Eq. (7) can be expanded using Eq. (4) so
that

− i

h̄
[σ̂eg, HInt] = −i

∑
e′q′

gq′∗
e′gaq′ (t )†e−ikq′ z ˆσee′

+ i
∑
g′q′

gq′∗
eg′ a†

qe−ikqzσ̂gg′ . (9)

As the time evolution of the annihilation and creation oper-
ators depends on the field coupling to the atomic states, an
explicit function in time is required. For a†

q, this is given by

a†
q′ (t ) = a†

q′ (0)eiωq′ t

+ i
∑
e′′g′′

gq′
e′′g′′eikq′ z

∫ t

0
σ̂e′′g′′ (t ′)eiωq′ (t−t ′ )dt, (10)

with aq given by the complex conjugate of this equation. In
Eq. (10), the atomic operator can be removed from the integral
using the harmonic approximation [33]. When combined with
Eq. (9), this then yields

− i

h̄
[σ̂eg, HInt] = −i

∑
q′e′

gq′∗
e′ga†

q′ (0)ei(ωq′ t−kq′ z)σ̂ee′

+
∑

q′e′e′′g′′

(
gq′∗

e′ggq′
e′′g′′ σ̂e′′g′′

×
∫ t

0
ei[ωq′−ωe′′ +ωg′′ (t−t ′ )]dt ′

)
σ̂ee′

+ i
∑
q′g′

gq′
eg′a

†
q′ (0)eiωq′ t−kq′z σ̂g′g

−
∑

q′g′e′′g′′

(
gq′∗

eg′ g
q′
e′′g′′ σ̂e′′g′′

×
∫ t

0
ei[ωq′−ωe′′ +ωg′′ (t−t ′ )]dt ′

)
σ̂g′g. (11)

When the laser frequency ωq′ is close to the transition fre-
quency ωe′′ − ωg′′ and for time periods much larger than the
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inverse of the oscillation frequency, the integrals in Eq. (11)
can be approximated to δ functions [31]. The time evolution
of the atomic operator can hence be written as

d σ̂eg

dt
= −i(ωg − ωe)σ̂eg

− i
∑
q′e′

gq′
e′ga†

q′ (0)ei(ωq′ t−kq′ z)σ̂ee′

+ i
∑
q′g

gq′∗
eg′ a

†
q′ (0)e

i(ωq′t−kq′ z )
σ̂g′g

−
∑
q′g′e′

gq′∗
eg′ g

q′
e′g′ σ̂e′gπδ(ωq′ − ωe′ + ωg′ ). (12)

Equation (12) contains rapidly oscillating terms at the fre-
quency of the driving radiation. In many experiments, these
cannot be measured, and so the rotating wave approxima-
tion (RWA) [33] is adopted. For a single-mode continuous
wave laser beam driving the transition, the RWA transforms
the atomic operators into slowly varying operators χ̂eg, by
setting

σ̂eg = χ̂egei(ωLt−kLz), (13)

ˆσgg′ = χ̂gg′ , (14)

ˆσee′ = χ̂ee′ , (15)

where ωL is the laser frequency and kL is the associated wave
vector. Equation (12) is hence transformed to slowly varying
operators using Eq. (13). Expectation values are then taken,
so that

〈 ˙̂χeg〉 = −i(ωL − kLż − ωeg)〈χ̂eg〉
− i

∑
Le′

gL∗
e′g〈a†

L(0)〉〈χ̂ee′ 〉

+ i
∑
Lg′

gL∗
eg′ 〈a†

L(0)〉〈χ̂g′g〉

−
∑
qg′e′

gq∗
eg′g

q
e′g′ 〈χ̂e′g〉πδ(ωL − ωe′ + ωg′ ). (16)

The slowly varying operators are directly related to the
density matrix elements ρeg that are commonly used to de-
scribe the populations and coherences of an atomic system
since

〈χ̂eg〉 = 〈ψ |e〉〈g|ψ〉 = (〈e|ψ〉〈ψ |g〉)∗ = (ρeg)∗ = ρge. (17)

The half-Rabi frequency is input to Eq. (16) using the relation
[8]


L
eg = gL∗

eg 〈â†
L(0)〉. (18)

This is set to be real by an appropriate choice of phase [8].
The time evolution of 〈 ˙̂χgg′′ 〉 and 〈 ˙̂χee′′ 〉 can be derived in

an identical way to that of 〈 ˙̂χeg〉 in Eq. (16). These can then
be written in the density matrix formalism using Eq. (17). The
general equations of motion for the populations, optical, and

atomic coherences as used in LASED are then given by

ρ̇gg′′ = −i�gg′′ρgg′′ + i
∑
Le

(

L

eg′′ρge − 
L
egρeg′′

)
+

∑
qe′e′′

gq
e′g′′g

q∗
e′′gπδ(ωq − �e′′g)ρe′′e′

+
∑
qe′e′′

gq
e′′g′′g

q∗
e′gπδ(ωq − �e′′g′′ )ρe′e′′ , (19)

ρ̇ee′′ = −i�ee′′ρee′′ + i
∑
Lg

(

L

e′′gρeg − 
L
egρge′′

)

−
∑
qg′e′

gq
eg′g

q∗
e′g′πδ(ωq − �e′g′ )ρe′e′′ )

−
∑
qg′e′

gq
e′g′g

q∗
e′′g′πδ(ωq − �e′g′ )ρee′ , (20)

ρ̇ge = −i�L,egρge − i
∑
Le′


L
e′gρe′e + i

∑
Lg′


L
eg′ρgg′

−
∑
qg′e′

gq
e′g′g

q∗
eg′πδ(ωq − �e′g′ )ρge′ , (21)

with ρ̇eg given by the complex conjugate of Eq. (21).
The population equations for the lower and upper states

are derived by setting g = g′ and e = e′, respectively, in
Eqs. (19) and (20). The atomic coherence equations (which
describe the phase relationship between substates in each
manifold) are formulated by setting g �= g′ and e �= e′ in these
equations. The optical and nonoptical terms between the lower
and upper states’ manifolds are described by Eq. (21). This
equation hence is used to derive both the optical coherence
terms generated directly by the laser, as well as the atomic
coherence terms generated between upper and lower states.
The term

�L,eg = ωL − 2πvz

λL
+ ωe − ωg (22)

is the detuning from resonance, where vz is the velocity
component of the atoms in the direction of the laser beam
(which gives rise to the Doppler shift). λL is the wavelength
of the laser mode L. The term �eg = ωe − ωg, whereas �gg′ =
ωg − ωg′ and �ee′ = ωe − ωe′ . The half-Rabi frequency can be
calculated in rad/s using the expression


q
eg = Cq

eg
 = Cq
eg

√
3λ3

LIL

8πhcτ
, (23)

where τ is the lifetime of the transition, IL is the laser intensity,
and Cq

eg is a coupling coefficient given by [34]

Cq
eg = (−1)

q(1+q)
2 +F ′+F+J ′+J+I ′+L′+S′−m′

F +1

×
√

(2F ′ + 1)(2F + 1)(2J ′ + 1)(2J + 1)(2L′ + 1)

×
(

F ′ 1 F
−m′

F q mF

){
J ′ F ′ I ′
F J 1

}(
L′ J ′ S′
J L 1

)
,

(24)

where L, S, J, I , and F are the quantum numbers describing
the lower states |g〉 and their primed equivalents are the quan-
tum numbers describing the upper states |e〉. q is set to be
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either +1, 0, or −1 for the laser polarization being right-hand
circularly polarized (RHC), linearly polarized, or left-hand
circularly polarized (LHC), respectively.

The triple summations in Eqs. (19)–(21) describe sponta-
neous emission. They produce decay of the atomic excitation
even if there is no driving laser field. These terms can be
calculated by relating them to the generalized decay rate given
in [8]

�ege′g′ =
∑

q

[
gq

eg′g
q∗
e′gπδ(ωq − �e′g′ )

+ gq
e′g′gq∗

egπδ(ωq − �eg)
]
. (25)

Equation (25) is then used to derive the decay rate between an
excited substate |e〉 to a lower substate |g〉 with

�eg = �egeg = 2
∑

q

|gq
eg|2πδ(ωq − �eg). (26)

The total decay rate of state |e〉 is then given by

�e =
∑

g

�eg. (27)

The transition probability for spontaneous emission is propor-
tional to the square of the dipole matrix element and so the
decay constants �eg can be calculated using

�eg = (
eg)2∑
g′ (
eg′ )2

�e =
∣∣Cq

eg

∣∣2

τ
∑

g′
∣∣Cq

eg′
∣∣2 , (28)

where the summation in the denominator is over all coupled
ground states and τ is the lifetime of the excited state. Here, q
is the required polarization for the decay from |e〉 to |g〉.

The equations presented above are then used to compute
the time evolution of the laser-atom system, as detailed in the
next section.

III. TIME EVOLUTION CALCULATIONS

The process of setting up a laser-atom system and finding
the solutions to the equations of motion is outlined in Fig. 1.
LASED enables a user to define an atomic system by creating
the states and substates of the atom that are coupled by the
laser. Their relative energy separation, angular momenta, and
the projection of the total angular momentum associated with
each state are also input to the model as initial parameters.
The substates are labeled as either an upper state |e〉 or a lower
state |g〉. The resonant transition laser wavelength between the
upper and lower states is defined as λ. The user then enters
the laser parameters by defining the laser polarization Q and
the intensity I . This sets up the initial laser-atom system to be
solved. The time steps ti over which the simulation is run are
also defined before the system evolves. At the initial time step
t = t0, the laser is turned on.

To solve the user-defined laser-atom system, Eqs. (19)–
(21) are used to automatically generate the complete set of
coupled differential equations which are solved numerically.
LASED uses a matrix method by writing the equations in the
form

ρ̇ = Aρ(t ), (29)

FIG. 1. The algorithm used in LASED to compute the time evo-
lution of a laser-atom system. For details, see the text in Sec. III.

where ρ is a column vector containing all the populations and
coherences defined within the density matrix for the coupled
system. The density matrix has n2 elements, where n is the
number of substates in the system. ρ is hence a column vector
of n2 elements. A is an n2 × n2 coupling matrix that contains
all of the coefficients of the interaction. This includes all
half-Rabi frequencies generated from Eq. (23), the detuning
terms, and all decay constants. The matrix A can become very
large, and so to reduce computation time, Eq. (29) is solved
by diagonalizing the matrix and calculating the eigenvectors
and eigenvalues. The solution of ρ using this technique then
gives

ρ(t ) = VeDtV −1ρ(t0), (30)

where A = V DV −1. D is the diagonalized form of A that
contains the complex eigenvalues and V is the matrix of eigen-
vectors of A. All real terms in the eigenvalues generated by
the calculation must be negative for the solutions to converge.
The initial condition ρ(t0) can be defined by the user when
setting up the laser-atom system. If the initial conditions are
not defined by the user, it is assumed that all lower substates
have equal populations and that all atomic coherences are
identically zero prior to the laser being turned on (as would
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occur if the atomic beam was generated from an oven or from
a gas jet).

Using this matrix method requires the populations and
coherences to be in a strict order within ρ. The user hence
has to define the substate with a number that labels it, e.g.,
|1〉, |2〉, and |3〉 for a lower P state with m = −1, 0,+1,
respectively. The convention used throughout LASED is that
the first element in the vector ρ is the element ρ11, which
is the lower state population with the lowest projection of
angular momentum, −mF . The labeling continues until the
excited substate population with the largest projection of total
angular momentum +mF is set to be the nth substate. The
vector would hence have the form [ρ11 ρ12...ρ1n, ρ21 ρ22...ρ2n,
ρn1 ρn2...ρnn]. The matrix A is then populated using the coeffi-
cients generated using Eqs. (19)–(21). These can be modified
to give a set of equations with computable variables,

ρ̇gg′′ = −
(

i�gg′′ + 1

τb

)
ρgg′′

+ i

∑

qe

(
Cq

eg′′ρge − Cq
egρeg′′

)

+ 1

2τ

∑
qe′e′′

γ
q
e′e′′ρe′′e′ + γ

q
e′′e′ρe′e′′ , (31)

ρ̇ee′′ = −
(

i�ee′′ + 1

τ
+ 1

τ f

)
ρee′′

+ i

∑

qg

(
Cq

e′′gρeg − Cq
egρge′′

)
, (32)

ρ̇ge = −i

(
�q

eg + δ + 1

2τ
+ 1

2τ f
+ 1

2τb

)
ρge

− i

∑
qe′

Cq
e′gρe′e + i


∑
qg′

Cq
eg′ρgg′ . (33)

The decay constants in ρ̇gg′′ are contained in the term

γ
q
e′e′′ =

{ |Cq
e′g′′C

q
e′′g|∑

g′ |Cq
e′′g′C

q
e′g′ |

if e′ = e′′

�e′ge′′g if e′ �= e′′ and
∑

q Cq
e′gC

q
e′′g �= 0,

(34)

where the sum over q is the sum of all values over which
spontaneous emission can occur: +1, 0, and −1. The second
case in Eq. (34) only appears when there is hyperfine splitting
leading to vertical coherences [8].

The calculation of the generalized decay constants and
their phase is shown in Appendix B. The coupling coefficients
are calculated using Eq. (5) and the maximum half-Rabi fre-
quency 
 is calculated using Eq. (23). The detuning term
is calculated using Eq. (22), as discussed in Sec. II. The
laser-atom system modeled using Eqs. (31)–(33) is more gen-
eral than the system modeled using Eqs. (19)–(21), as these
also include extra decay terms that describe the process of
relaxation to states which are not directly coupled by the
laser, as shown in Fig. 2. These include states that |e〉 and
|g〉 may decay to that are not included in Eqs. (19)–(21), as
well as any nonradiative decay routes that may occur. The
decay from a laser-excited state |e〉 to a noncoupled state | f 〉
is modeled by the lifetime τ f and the decay from a lower state
|g〉 to a noncoupled state |b〉 is modeled by the lifetime τb.

FIG. 2. The states of the atomic system used in LASED can also
include states | f 〉 and |b〉, which are not directly coupled by the laser
as shown. For details, see the text.

Equation (33) also includes a detuning term δ, which allows
the user to add a constant detuning from resonance if required
(e.g., for laser cooling of atoms).

While the matrix A is being generated, the equations of
motion can be printed out in a numeric or symbolic format
depending on the user’s preference. The SYMPY package [35]
is used to generate the symbolic equations, which can be
output as LATEX.

Once the matrix A has been generated, the NUMPY package
[36] is used to diagonalize the matrix to form D. NUMPY is
also used to perform all matrix multiplication in LASED.
The SCIPY package [37] is used to generate the matrix of
eigenvectors V from A and is also used in LASED to perform
matrix exponentials and the inversion of matrices. For every
element of the time array ti, the column vector ρ(t ) of the
laser-atom system is calculated numerically. Before looping
over every element in ti, V −1ρ(t0) is calculated to save compu-
tation time. During the loop over ti, the matrix exponential eDt

is calculated by taking the exponent of each diagonal element
of Dt . Finally, ρ(t ) is calculated using Eq. (30). Once the time
evolution is completed, the user can access any element of
ρ(t ) for analysis, and the data can be saved as a csv file or it
can be plotted.

A. Gaussian and Doppler averaging

When a laser-atom system is modeled in LASED, the de-
fault setting is that the spatial intensity profile of the laser
beam is uniform. The user can, however, also specify a
two-dimensional (2D) Gaussian laser beam profile, so as to
emulate a TEM00 mode [38]. For a Gaussian beam, the inten-
sity as a function of the radial distance from its beam axis r is
given by

I (r) = I0e
− r2

2r2
σ , (35)

where I0 is the intensity at the peak r = 0 and rσ is the radial
distance equivalent to the 2D standard deviation. To obtain the
total laser power Plas as measured by a power meter, Eq. (35)
is integrated so that

Plas =
∫ ∞

0
2πrI0e

− r2

2r2
σ dr

= 2πr2
σ I0. (36)
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The intensity at any given radius is hence given by

I (r) = Plas

2πr2
σ

e
− r2

2r2
σ , (37)

from which the equivalent Rabi frequency can be generated.
To model the effect of a Gaussian beam profile on the system,
the beam profile is divided into a series of radial rings with
the populations and coherences generated for each ring, then
summed incoherently to obtain the total density matrix for
the ensemble. LASED assumes that the atoms are uniformly
distributed throughout the laser beam profile with a density
given by ρA and that the atoms are stationary during the
interaction. Hence the number of atoms in any ring between r
and r + �r is given by

N�r
A = ρA(2πr�rh), (38)

where the laser beam is assumed to be parallel through the
interaction region, which has a height along the laser beam of
h. Equation (38) then provides a weighting term to calculate
the total number of atoms in the interaction region, up to a
given radius. The laser beam diameter is approximated as 6rσ

(±3rσ ) and so the total number of atoms in the interaction
volume is given by

N6rσ

total =
∫ 3rσ

0
2πρAhrdr = 9πρAhr2

σ . (39)

For nr equal rings and a beam diameter of 6rσ , the ring radius
will be �r = 3rσ /nr . The numerical calculation of the density
matrix elements can then be calculated for averaging over the
Gaussian laser profile by performing a discrete sum of all nr

rings and dividing by the total number of atoms:

ρav[I (rσ ), t] =
∑nr−1

j=0 ρA[(2 j + 1)π�r2h]ρ[I (r j, rσ ), t]

9πρAhr2
σ

=
∑nr−1

j=0 (2 j + 1)
( 9r2

σ

n2
r

)
ρ[I (r j, rσ ), t]

9r2
σ

= 1

n2
r

nr−1∑
j=0

(2 j + 1)ρ[I (r j, rσ ), t]

= 1

n2
r

nr−1∑
j=0

(2 j + 1)ρ[
(r j, rσ ), t]. (40)

The half-Rabi frequency is introduced in place of the intensity
in Eq. (40) since this is what is required when combining
Eqs. (23) and (37). To model a Gaussian beam profile in
LASED, the user must enter the number of rings nr as well as
the 2D standard deviation of the beam profile rσ in millime-
ters. When performing the time evolution, an array of ring
radii is created up to the maximum beam profile radius 3rσ .
For each r j in the array, the time evolution of the laser-atom
system is calculated and then averaged as given by Eq. (40).

LASED also includes a functionality to model the effect
of the Doppler profile of atoms within the interaction region,
as would occur in an atomic beam from an oven or gas jet.
The Doppler profile of the atoms is input to the model as a
detuning term δ in units of 109 rad/s. For numerical purposes,
the Doppler profile is again split up into discrete values across

the profile and the density matrix elements are calculated for
each detuning term. The results are then averaged in a similar
way to that adopted for representation of a TEM00 laser beam.
This Doppler averaging requires a weighting factor of the
atoms given by [39]

FDopp(δ) = 1√
2π�2

Dopp

e
− δ2

2�2
Dopp , (41)

where �Dopp is the Doppler width. The averaged density ma-
trix elements across the atomic Doppler profile are then given
by

ρav =
∑

i

ρ(δi )FDopp(δi )�δi

= 1√
2π�2

Dopp

∑
i

ρ(δi )e
− δ2

2�2
Dopp �δi, (42)

where �δi is the angular frequency spacing between the dis-
crete detunings that are used to represent the Doppler profile.
Hence, to model a Doppler profile using LASED, the user
must declare a value for the Doppler width and create an
array which contains discrete detuning values. Equation (42)
is then used to calculate the Doppler averaged density matrix
elements for the system.

B. Rotation of quantization reference frames

It is often advantageous to define an atomic system in a
particular reference frame that makes the calculation easier or
that decreases the computation time. As an example, excita-
tion by linearly polarized light can adopt a quantization z axis
(QA) along the direction of the electric field vector, so that
the change in mF values between upper and lower substates
is �mF = 0. An alternative and equally valid representation
for linear excitation may choose the quantization axis along
the direction of the laser beam, in which case simultaneous
�mF = 1 excitation occurs. In the former case, for an S to P
transition, this leads to n = 4 differential equations that must
be solved. By contrast, in the latter case, nine equations must
be generated and then solved. Both calculations lead to the
same results and can be related to each other using a suitable
rotation from one frame to the other. Since the computational
speed scales as n2, choosing the QA along the electric field
vector in this example hence produces results that are more
than five times faster than when the QA is chosen along
the beam.

An example where the rotation technique has been adopted
to simplify the calculation can be found in [11], where
electron-excited mercury atoms in the 6 1P1 state were further
excited by a laser beam to the 6 1D2 state using linearly po-
larized light. In this case, the atomic system in the collision
frame (QA along the direction of the electron beam) was
first rotated into the laser frame along the electric field of
the laser and the laser interaction was calculated in this new
frame. The resulting atomic system was then rotated back to
the collision frame to determine the evolved atomic structure
in that frame. This required 36 differential equations to be
solved for the laser interaction, compared to 64 equations that
would need to be generated and solved simultaneously if the
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calculation had been carried out directly in the collision frame.
A further advantage of moving to the laser frame was that
the 12 equations for the populations and optical coherences
decoupled from the 24 equations for the nonoptical and atomic
coherences, so that the matrix A was block diagonal. This lead
to a 5.7-fold increase in computational efficiency.

It is not, however, always possible to apply this technique
since there may be constraints on the system due to addi-
tional interactions. An example is found in [18–20], where
an external magnetic B field was imposed on the system. In
these experiments, the B field direction was colinear with the
direction of the laser beam, and so the QA was chosen along
this axis for excitation by both circular and linearly polarized
laser beams, with the linear beam being considered as a su-
perposition of right-hand and left-hand circularly polarized
beams.

LASED can incorporate rotation between reference frames
within its structure, so that these advantages can be exploited.
The rotation is performed by rotating the density matrix for
each atomic state using the Wigner rotation matrices [40], so
that

ρJm,J ′m′ =
+J∑

μ=−J

+J ′∑
μ′=−J ′

DJ∗
μm(ω)ρJμ,J ′μ′DJ ′

μ′m′ (ω), (43)

where ρJμ,J ′μ′ and ρJm,J ′m′ are the atomic state density matrix
elements in the new and old reference frame, respectively, J
is the total angular momentum of the state (which will be F
if there is nonzero isospin), m is the projection of angular
momentum onto the QA, and ω denotes the Euler angles
for the rotation (α, β, γ ). In LASED, the Euler angles are
defined as three angles of rotation performed in succession
from Cartesian reference frame Z to Z ′, and then to a final
Z ′′. α then rotates around the z axis, β rotates around the
new y′ axis, and γ finally rotates around the new z′′ axis. The
Wigner-D matrix is calculated using [41]

DJ
m′m(ω) = e−im′αdJ

m′m(β )e−imγ , (44)

where d is determined using

dJ
m′m(β ) =

√
(J + m′)!(J − m′!)(J + m)!(J − m)!

×
smax∑

s=smin

(−1)m′−m+s
( cosβ

2

)2J+m−m′−2s( sinβ

2

)m′−m+2s

(J + m − s)!s!(m′ − m + s)(J − m′ − s)!
.

(45)

The summation over s is constrained to smin = max(0,

m − m′) and smax = min(J + m, J − m′) so that the factorials
remain non-negative. Hence, if a rotation matrix is required to
rotate a state with angular momentum J , it will be a square
matrix of size 2J + 1. If required, LASED uses Eq. (43) to
rotate any density matrix set up by the user to a new reference
frame.

C. Modeling different laser polarizations

In many experiments, the laser beam interacting with the
atoms is chosen to have either circular or linearly polarization.
This makes the generation of the equations of motion and
subsequent computation of the dynamics relatively straight-
forward, as discussed above. It is also important for LASED

FIG. 3. Coordinate system for elliptically polarized light prop-
agating in the +z direction. The electric field vector E traces out
an ellipse with a major axis a and minor axis b. The major axis
is at an angle ψ with respect to the coordinate system shown. The
vector rotates in an anticlockwise direction in this example and so is
right-hand polarized.

to model the interaction using a laser which has elliptic polar-
ization since this is the most general form for any beam. An
elliptically polarized beam can be considered as one that has
its E-field vector tracing out an ellipse, as shown in Fig. 3.
The ellipse has major and minor axes, with the major axis
being rotated from the x axis at an angle ψ as shown. The
direction of rotation of the E-field also must be defined to fully
characterize the radiation.

Any elliptically polarized beam can be described as a su-
perposition of right-hand and left-hand circular components
with different complex amplitudes, the relative phase between
the amplitudes producing the rotation of the major axis from
the x axis. These amplitudes then feed into the Rabi frequen-
cies through Eqs. (5) and (23). Since the QED model has been
developed for the Rabi frequencies being real, it is necessary
to first rotate the QA through the angle ψ so that the new x axis
is aligned along the major axis of the ellipse. This rotation sets
the relative phase to zero and so the elliptically polarized light
can then be described using two real amplitudes, as given by
Eq. (46),

|P〉 = 1√
a2

−1 + a2
+1

(a−1|σ−1〉 + a+1|σ+1〉). (46)

Here, |σ−1〉 and |σ+1〉 are the LHC and RHC polarization
unit vectors and a−1 and a+1 are real amplitudes. The com-
putation then proceeds in the same way as described above;
however, two weighted Rabi frequencies are now required to
describe the interaction. From Eq. (46), it follows that the half-
Rabi frequency for elliptically polarized light in this frame is
given by


elliptic = 1√
a2

−1 + a2
+1

(a−1
−1 − a+1
+1), (47)

where the negative sign arises from the definition of the
dipole moment in a circular basis. Once the interaction has
been modeled in this frame, the QA can be rotated back
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FIG. 4. (a) A level diagram for the 4 1S0 to 4 1P1 excitation of calcium using linearly polarized light, with the QA colinear with the E-field
of the laser beam so that �mJ = 0. (b) The simulated time evolution of the population of substate |3〉, showing the effect of various simulation
parameters, including a Doppler profile for the atomic beam and a Gaussian laser profile (see Sec. IV A for details). (c),(d) The excited-state
populations using elliptically polarized light for different weightings a−1 and a+1. In this case, the atom is described with the QA along the
laser beam direction and so substate |3〉 remains unpopulated. All simulations used a laser intensity of 100 mW/mm2.

into the original frame to calculate the final density matrix
elements.

LASED uses the procedure detailed above to model exci-
tation by elliptically polarized light, if this is required. The
user can enter any polarization state into the model; however,
they must also include the normalization factor to ensure the
correct Rabi frequency is calculated. As an example, if the mi-
nor axis of the ellipse has b = 0, the ellipse represents linearly
polarized light and so the half-Rabi frequency in this frame is
represented by an equal weighting of the circular basis states.
In this case, a−1 = a+1 = 1 and so the normalization factor to
be input is 1/

√
2.

D. Visualising the shape of the charge cloud

In LASED, the three-dimensional angular shape of the
charge cloud for the lower and upper states can be visualized
as given in [16,19], using the expression

W (θ, φ, t ) =
∑
mm′

ρJm,Jm′ (t )YJm(θ, φ)Y ∗
Jm′ (θ, φ), (48)

where YJm are spherical harmonics, J is the total angular
momentum of the state, and m is the projection of J onto
the selected quantization axis. ρmm′ (t ) is the time-dependent
density matrix element for the atomic state that is being vi-
sualized. In LASED, the user can generate the angular shape
of the states W(θ, φ, t) in the laser-atom system as the system
evolves over time. Images of the charge cloud can then be
created using any plotting package. These images can then be
displayed sequentially as a function of time, using software
that creates a video from the image sequence. The generated
videos can be instructive to demonstrate how the states evolve

under different experimental conditions. Examples of the gen-
erated charge clouds at different times for both the lower and
upper states are shown in Fig. 6 in Sec. IV.

IV. EXAMPLES FROM LASED MODELING

In this section, the features of LASED are presented us-
ing examples from different laser-atom systems. For each
simulation, the time evolution of the populations of various
atomic substates is presented. The sum of the populations of
all substates is initially set to unity and so the populations
directly represent the probability of a particular atom in the
ensemble being in that substate at any given time. Additional
examples using LASED can be found in [29].

A. Calcium S to P excitation

The simplest system to simulate is from an S state to a P
state and so, as an example, laser excitation from the 4 1S0 to
the 4 1P1 state in calcium is considered. A level diagram is
shown in Fig. 4(a) for this transition. The lifetime and tran-
sition wavelength are taken from [42] and [43], respectively.
In Fig. 4(b), the time evolution of the upper state population
ρ33 is presented under different conditions. These include
a fixed laser detuning of δ = 300 MHz, a Doppler atomic
beam profile with �Dopp = 300 MHz, a Gaussian laser beam
profile with Plas = 100 mW and rσ = 0.75 mm, and when
both Doppler and Gaussian averaging processes are included
together. The simulation time was from 0 to 50 ns using
501 time steps. These simulations are in agreement with the
calculations presented in [17].

053117-8



LASER-ATOM INTERACTION SIMULATOR DERIVED FROM … PHYSICAL REVIEW A 105, 053117 (2022)

FIG. 5. Figure showing the use of rotations in LASED to check that the general equations of motion are consistent in all reference frames
using the calcium system described in Fig. 4(a). In (a), excitation occurs in the frame Z E-Field with the QA along the E-field of the linearly
polarized laser beam. An intensity of 100 mW/mm2 is used and the laser is detuned by 100 MHz from resonance. The populations of the states
|1〉 and |3〉 in the frame are shown. In (b), excitation is now using simultaneous σ− and σ+ radiation with the reference frame ZLas QA along
the laser beam direction. The populations ρ11, ρ22, and ρ44 are shown. (c) The real and imaginary components of the atomic coherence ρ24.
The data from (b) and (c) are then rotated back to Z E-Field in (d). This produces results identical to those in (a).

Results for the same system with elliptically polarized light
are shown in Figs. 4(c) and 4(d). In Fig. 4(c), the weightings
are set to a−1/a+1 = 3.0, whereas in Fig. 4(d), a−1/a+1 =
0.8. As expected, the population of the mJ = −1 state is much
larger in Fig. 4(c) due to the favored |σ−1〉 weighting. By
contrast, in Fig. 4(d), where the weighting for the |σ+1〉 basis
state is higher, the mJ = +1 substate population dominates.
The population of substate mJ = 0 is identically zero for the
entire simulation as the laser cannot couple to state |3〉 in this
frame with σ+ and σ− polarization.

An example of using rotations in LASED can be seen in
Fig. 5. To check that LASED is valid in all reference frames
the calcium system described in Fig. 4(a) is once again con-
sidered. This system is now excited using linearly polarized
light with the QA along the E-field of the laser, for a laser
intensity of 100 mW/mm2 and a detuning of 100 MHz. The
results from this simulation are shown in Fig. 5(a). Under
these conditions, four differential equations are required to
describe the populations of substates |1〉 and |3〉 as well as
the optical coherences generated between them. An equally
valid representation is to choose the QA along the direction
of the laser beam. In this frame, substates |2〉 and |4〉 are
excited using simultaneous σ− and σ+ radiation. Substate
|3〉 in this frame remains unpopulated. In this representa-
tion, nine equations must be generated and solved. Three
equations represent the populations of substates |1〉,
|2〉, and |4〉, four equations represent the optical co-
herences between them, and two equations represent
the atomic coherences generated between substates |2〉
and |4〉.

The results from this calculation are shown in Fig. 5(b) for
the populations ρ11, ρ22 and in Fig. 5(c) for the atomic coher-
ence ρ24. Note that Im(ρ24) = 0 here due to the choice of axes
in both reference frames. The results from this calculation
are then rotated back to the reference frame where the QA is
along the E-field of the laser in Fig. 5(d), which reproduces the
results in Fig. 5(a) exactly. This shows that LASED produces
the same result independent of the reference frame chosen, as
long as the initial conditions are rotated before excitation.

B. 3 1D2 to 10 1P1 excitation in helium following electron impact
from the 11S0 state

A more complex system to model using LASED is pre-
sented in this section, where laser excitation is from the
3 1D2 state to the 10 1P1 state, as shown in the inset in
Fig. 6. This transition is of interest as experiments are in
preparation in Manchester to study this stepwise excitation
process. Excitation from the 11S0 state to the 3 1D2 state is
via electron collision and so the system is presented in the
Natural Frame ZNat, where the QA is set orthogonal to the
scattering plane spanned by the ingoing electron momentum
k0 and the outgoing electron momentum k1. The laser beam
is then injected along the quantization axis and is linearly
polarized along the incident beam direction, with an inci-
dent intensity of 1500 mW/mm2. The beam is set to be
on-resonance with the transition at a vacuum wavelength of
899.75 205 nm.

In this frame, only the substates mJ = −2, 0, +2 in the
3 1D2 state are excited due to reflection symmetry in the
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FIG. 6. Example of stepwise electron and laser excitation from the 3 1D2 state of helium to the 10 1P1 state, represented in the Natural
Frame where the QA is orthogonal to the scattering plane. The 3 1D2 state is excited by electron impact and is stepwise excited to the 10 1P1

state, as shown in the inset. Both 3 1D2 and 10 1P1 states can decay to states that are not coupled by the laser, as discussed in the text. (a) The
time evolution of the 3 1D2 state populations and (b) that of the 10 1P1 state, both presented on a logarithmic scale. The structure of the
associated charge clouds has been calculated at various times during the evolution of the states as shown. This is given for the 10 1P1 state at
2 ns since this state is unpopulated at 0 ns when the laser is switched on. The incident electron direction k0 is also shown for reference. The
atomic coherences are not shown; however, they are calculated in LASED to allow the charge cloud models to be generated.

scattering plane [44]. Since the laser beam is linearly po-
larized, the interaction must be represented by simultaneous
σ+ and σ− excitation with equal weighting in this frame, as
discussed above.

The initial 3 1D2 substate populations and atomic coher-
ences at t = 0 ns are taken from the convergent close coupling
calculation of Bray at Curtin University [45], for an elec-
tron impact energy of 40 eV and a scattering angle of 45◦.
The collision excites the atom into a superposition of |J, m〉
eigenstates |2,−2〉 = |1〉, |2, 0〉 = |3〉, and |2,+2〉 = |5〉. The
states |2,−1〉 = |2〉 and |2,+1〉 = |4〉 are not initially pop-
ulated. Simultaneous σ+ and σ− laser excitation is used to
represent linear excitation in the Natural Frame, the 10 1P1

states being excited by �mJ = +1 and −1 radiation so as to
populate the eigenstates |1,−1〉 = |6〉 and |1,+1〉 = |8〉, with
the state |1, 0〉 = |7〉 remaining unpopulated. Both 3 1D2 and
10 1P1 states can decay to states that are not coupled by the
laser. The excited 3 1D2 state decays to lower states |b〉 with
a total lifetime of 15.7 ns. The upper 10 1P1 state decays to
states | f 〉 with a lifetime of 59.6 ns, whereas the lifetime for
decay back to the 3 1D2 state is 80.7 μs [46]. These decay
routes are not shown in the inset of Fig. 6 for clarity.

Since the decay routes to |b〉 and | f 〉 are relatively rapid,
the populations of the 3 1D2 and 10 1P1 states are presented
on a logarithmic scale in Fig. 6. The atomic and optical co-
herences are not shown; however, these are also calculated by
LASED. The decay routes to | f 〉 and |b〉 leak both populations
and atomic coherences away from the system. The population
ρ77 for the upper 10 1P1 state remains zero throughout the
simulation since the laser does not couple to this state in the
Natural Frame.

The full density matrices representing the 3 1D2 and 10 1P1

states are calculated by LASED, including the time evolution
of both populations and atomic coherences. This allows the
charge clouds associated with each state to be modeled as a
function of time, as discussed in Sec. III D. Examples of these
charge cloud models are shown at different times throughout
the evolution of the system in Fig. 6, for both the 3 1D2 state
and the 10 1P1 state. It is seen that both the angle and shape

of the D-state and P-state charge clouds evolve in a complex
way, and so must be considered carefully in the associated
experiments studying this system.

C. Caesium D2 line

LASED can also simulate the time evolution of systems
with a hyperfine structure, such as the caesium transition from
the 6 2S1/2 state to the 6 2P3/2 state, commonly called the D2

line. A level diagram for this system is shown in Fig. 7. In
this example, the laser is on-resonance between the F = 4 and
F ′ = 5 states and is set to have σ+ polarization. The lifetime
and wavelength of this transition are taken from [47] and [48],
respectively. The hyperfine splittings for the upper and lower
substates are taken from [49].

The time evolution of a subset of the populations in the
caesium manifold described in Fig. 7 is shown in Fig. 8.
This simulation was run with all ground states populated
equally at t = 0 ns and with no atomic coherences in the

FIG. 7. A level diagram of the 62S1/2 to 62P3/2 excitation in
caesium. σ+ exciting laser radiation is represented by a wiggly arrow
and is set to be on-resonance between the F = 4 lower state and the
F ′ = 5 upper state.
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FIG. 8. The time evolution of the populations of substates in the ground states (a) F = 3, (b) F = 4, and in the upper states (c) F ′ = 2,
(d) F ′ = 3, (e) F ′ = 4, and (f) F ′ = 5 for the system described in Fig. 7. The laser is σ+ polarized with an intensity of 50 mW/mm2.

initial state, as would be produced for atoms emitted from an
oven. Since the laser is tuned from the F = 4 state, selection
rules prohibit excitation from this state to the F ′ = 2 state,
which hence remains essentially unpopulated, as shown in
Fig. 8(c). The very small change in the population of these
states as seen in Fig. 8(c) arises due to pumping from the
F = 3 state by the laser radiation red-detuned by 9193 MHz.
Selection rules allow the states F ′ = 3 and F ′ = 4 to be pop-
ulated from the F = 4 state; however, since they are detuned
from resonance by 251 and 452.24 MHz, respectively, they
are excited with only a small probability as the interaction
proceeds.

In Fig. 8(a), the population evolution over time of the F =
3 ground state is shown. This is the lowest state in the system
and is not coupled directly by the laser beam. Since the F ′ = 4
and F ′ = 3 states can, however, decay to this state via spon-
taneous emission, its population slowly increases with time
as shown, until the substates reach a steady state at around
1500 ns. As the interaction progresses, the states to the left
of Fig. 7 decrease in population since spontaneous emission
feeds their population to the right, due to pumping with σ+
radiation. This feeding to the right and subsequent decrease in
population is seen in the substates of the F ′ = 3 and F ′ = 4
upper states in Figs. 8(d) and 8(e). Each of these states is

effectively emptied within around 1500 ns. By contrast, the
populations of the F ′ = 5, mF ′ = +5 and F = 4, mF = +4
substates shown in Figs. 8(b) and 8(f) are seen to rise steadily
after the Rabi oscillations have decayed, which occurs at
around 150 ns. The substate populations rise quickly until
they reach a steady state, after which they remain unchanged.
This is a direct consequence of the system evolving towards
the closed two-level system between substates |16〉 and |48〉.
After this time, the interaction can then be approximated to
a two-level system between these substates, with spontaneous
and stimulated emission from |48〉 always feeding back into
substate |16〉. This simplified system is often used to simulate
laser interactions in atom cooling and trapping experiments in
a magneto-optical trap (MOT).

LASED can easily simulate these large and complex sys-
tems and can generate all the equations of motion that are
required. As noted above, the computation time increases
considerably as the number of states increases. As an example,
simulation of the the calcium system in Fig. 4 required less
than 1 second of computing time. The model for the D to P
state transition in Fig. 6 took a few seconds to generate the
data. By contrast, the caesium system required around 9000
seconds of computing time to generate the results shown in
Fig. 8.
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V. CONCLUSION

LASED is an open-source package available to researchers
that is written in the PYTHON programming language. The
general equations of motion used in LASED have been
described in this paper. LASED allows the user to model
different aspects of the interaction, including the Doppler
profile of an atomic beam, the Gaussian profile of a TEM00

laser beam, an arbitrary polarization of the beam, any rota-
tion between different frames of reference, and the angular
shape of the atomic electron cloud. Examples of these tech-
niques have been described here, using different atomic
systems.

The purpose of LASED is to be a general, easy-to-use
laser-atom system simulator which can be used for any atomic
system excited by laser light. Later versions of the LASED
library aim to extend its usefulness by including modeling
of the interaction in magnetic fields, as well as including
excitation by multiple laser beams. Computation times can
be reduced by carefully considering the symmetry of the
system and by eliminating equations that represent density
matrix elements that remain zero throughout the simulation.
In future versions of LASED, computationally intensive tasks
such as generating matrix A will be implemented in the C++
programming language while still maintaining the PYTHON

programming interface. This will greatly increase speed. To
further extend the usefulness of LASED, the authors have
made this package freely accessible, so that other researchers
can contribute to its development and further extend its func-
tionality. The source code is hence available and can be edited
at [50].
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APPENDIX A: COMPUTING TIME

LASED aims to model an arbitrary atom-laser system as
defined by the user. By designing LASED to be as general
as possible, the computing time increases rapidly with the
number of substates in the system. At the same time, LASED
aims to be efficient and usable with low-powered machines
on any operating system. The PYTHON language was hence
chosen for its development as this is open source and can be
run on a wide range of different platforms.

To illustrate the computation time on a standard PC, Table I
shows the execution time for atomic systems that have dif-
ferent energy levels and substates. These computation times
were obtained using an Intel i5-3320M CPU operating at
2.60 GHz using a Linux operating system with 8 GB of
RAM.

TABLE I. The execution times using LASED to simulate the
time evolution of laser-atom systems with varying number of energy
levels. 501 time steps were simulated from 0 to 500 ns with a laser
intensity of 100 mW/mm2, π -polarized light, and no Gaussian or
Doppler averaging. For n � 24, the simulated systems have a hyper-
fine structure.

No. energy levels (n) Execution time (s)

4 0.833
6 0.855
8 2.50
24 283
36 2270
48 8570

APPENDIX B: CALCULATION OF THE GENERALIZED
DECAY CONSTANTS

The generalized decay constants need to be calculated
directly when there are vertical coherences in a laser-atom
system, i.e., when there is hyperfine splitting, as shown in
Eq. (34). For hyperfine states, the splitting between excited
energy levels is small, so ωe′ ≈ ωe′′ . Using Eq. (25), this
approximation hence leads to

�ege′g = 2
∑

q

gq
e′ggq∗

egπδ(ωq − �eg), (B1)

and from Eq. (26), the magnitude of the generalized decay
constant can be calculated by

|�ege′g| = √
�eg�e′g. (B2)

The sign of the generalized decay constant is calculated by
considering the coupling coefficients. The coupling coeffi-
cients are generally complex,

gq
e′g = ∣∣gq

e′g

∣∣eiα, (B3)

gq
eg = ∣∣gq

eg

∣∣eiζ , (B4)

and the half-Rabi frequency can be written in terms of phase
and amplitude terms, so that



q
e′g = gq

e′g〈aL(0)〉 = ∣∣gq
e′g

∣∣eiα〈aL(0)〉eiβ

= ∣∣gq
e′g

∣∣〈aL(0)〉ei(α+β ), (B5)

and, similarly,


q
eg = |gq

eg|〈aL(0)〉ei(ζ+β ). (B6)

Since the half-Rabi frequencies are defined here as being real,
it follows that

α + β = nπ, (B7)

ζ + β = mπ, (B8)

where n and m are integers. If Eq. (B7) is subtracted from
(B8), it is found that

ei(α−ζ ) = ei(n−m)π =
{+1 if n − m even
−1 if n − m odd.

(B9)
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Hence, if 

q
eg and 


q
e′g have the same sign, then (n − m) is

even, and if they have the opposite sign, then (n − m) is odd.
This can be related to the calculated coupling coefficients
using Eq. (23), so that

�ege′g =
{+|�ege′g if Cq

egC
q
e′g′ > 0

−|�ege′g| if Cq
egC

q
e′g′ < 0.

(B10)

APPENDIX C: INSTALLATION OF LASED

Installation of LASED requires the user to install the
PYTHON programming language, which can be found in [51].
It is recommended to download and install the latest source
release of PYTHON. Once PYTHON has been installed, the com-
mand “pip3 install LASED” must be input to the terminal and
run. This will install LASED and all dependencies.
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Vuletić, Phys. Rev. Lett. 122, 203202 (2019).

[7] I. Hertel and W. Stoll, Adv. At. Mol. Phys. 13, 113 (1978).
[8] P. M. Farrell, W. R. MacGillivray, and M. C. Standage, Phys.

Rev. A 37, 4240 (1988).
[9] W. MacGillivray and M. Standage, Phys. Rep. 168, 1 (1988).

[10] A. J. Murray, C. J. Webb, W. R. MacGillvray, and M. C.
Standage, Phys. Rev. Lett. 62, 411 (1989).

[11] A. Murray, W. MacGillivray, and M. Standage, J. Phys. B: At.,
Mol. Opt. Phys. 23, 3373 (1990).

[12] P. M. Farrell, W. R. MacGillivray, and M. C. Standage, Phys.
Rev. A 44, 1828 (1991).

[13] A. Murray, W. MacGillvray, and M. Standage, J. Mod. Opt. 38,
961 (1991).

[14] A. Murray, R. Pascual, W. MacGillivray, and M. Standage,
J. Phys. B: At., Mol. Opt. Phys. 25, 1915 (1992).

[15] A. J. Murray, W. R. MacGillivray, and M. C. Standage, Phys.
Rev. A 44, 3162 (1991).

[16] A. T. Masters, A. J. Murray, R. Pascual, and M. C. Standage,
Phys. Rev. A 53, 3884 (1996).

[17] A. J. Murray and D. Cvejanovic, J. Phys. B: At., Mol. Opt. Phys.
36, 4889 (2003).

[18] M. Hussey, A. J. Murray, W. MacGillivray, and G. C. King,
Phys. Rev. Lett. 99, 133202 (2007).

[19] A. J. Murray, W. MacGillivray, and M. Hussey, Phys. Rev. A
77, 013409 (2008).

[20] M. Hussey, A. Murray, W. MacGillivray, and G. King, J. Phys.
B: At., Mol. Opt. Phys. 41, 055202 (2008).

[21] K. L. Nixon and A. J. Murray, Phys. Rev. Lett. 106, 123201
(2011).

[22] K. L. Nixon and A. J. Murray, Phys. Rev. Lett. 112, 023202
(2014).

[23] J. Rudolph, T. Wilkason, M. Nantel, H. Swan, C. M. Holland,
Y. Jiang, B. E. Garber, S. P. Carman, and J. M. Hogan, Phys.
Rev. Lett. 124, 083604 (2020).

[24] J. J. McClelland and M. H. Kelley, Phys. Rev. A 31, 3704
(1985).
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