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Improved absolute clock stability by the joint interrogation of two atomic ensembles
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Improving the clock stability is of fundamental importance for the development of quantum-enhanced metrol-
ogy. One of the main limitations arises from the randomly fluctuating local oscillator (LO) frequency, which
introduces “phase slips” for long interrogation times and hence the failure of the frequency-feedback loop. Here
we propose a strategy to improve the stability of atomic clocks by interrogating two atomic ensembles sharing
the same LO. The two ensembles are prepared in coherent spin states pointing along orthogonal directions in the
Bloch sphere. While standard Ramsey interrogation can only determine phases unambiguously in the interval
[−π/2, π/2], the joint interrogation allows for an extension to [−π, π ], resulting in a relaxed restriction of the
Ramsey time and improvement of absolute clock stability. Theoretical predictions are supported by ab initio
numerical simulation for white and correlated LO noise. While our basic protocol uses uncorrelated atoms, we
further extended it to include spin-squeezing and further improving the scaling of clock stability with the number
of atoms. Our protocol can be readily tested in current state-of-the-art experiments.
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I. INTRODUCTION

The basic working principle of a passive atomic clock
[1–5] is to stabilize the frequency of a local oscillator (LO)
to an atomic resonance ω0. Many atomic clock schemes are
based on Ramsey interferometry [6]. In this case, the unavoid-
able frequency fluctuations of the LO accumulate during an
interrogation time T and result in an overall rotation of the
collective pseudospin of N two-level atoms by a stochastic
angle θ . This angle is estimated by measuring the population
imbalance of the two clock levels. The interferometer signal
is a sinusoidal function of θ and can be inverted only in a
restricted interval (also indicated as inversion region) where
the function is monotonic. The phase estimate is then con-
verted into a time-averaged frequency estimate that is used
to steer the LO frequency toward ω0. The frequency stability
can be improved by increasing the interrogation time as long
as θ remains within the inversion region. The stochastic oc-
currence of an accumulated phase shift outside the inversion
region is generally indicated as a “phase slip” (or “fringe
hop”) and prevents the unbiased correction of the LO fre-
quency. Within conventional phase-estimation methods, phase
slips occur when |θ | � π/2, see Fig. 1 and details below.
In current atomic clocks, such as those exploiting ultrastable
lasers [7–14], the LO decoherence dominates over the atomic
decoherence and thus sets the crucial limitation to the stability.

Methods to avoid phase slips and thus extend the interroga-
tion time have an immediate practical relevance and are thus
attracting increasing interest in the literature [15–25]. Some
proposals [16,17] considered the simultaneous use of mul-
tiple atomic ensembles characterized by different transition

frequencies, which are phase-locked via a frequency comb.
This method allows to extend the interrogation time of the
ensemble characterized by the higher atomic transition fre-
quency. In contrast, the authors of Refs. [16,18] considered
ensembles having the same transition frequency but probed
for different times. In this case, it is possible to extend the
interrogation of the ensemble probed for the shorter time.
However, both these methods do not allow to extend the in-
terrogation time of the ensemble characterized by the smaller
transition frequency or the ensemble probed for the longer
time [16–18]. Another possibility is to phase-lock (via suc-
cessive quantum nondemolition measurements) the LO to the
atomic ensemble and thus increase the Ramsey interrogation
time while avoiding phase slips [19–24].

In this paper, we propose a strategy to improve the fre-
quency stability by interrogating simultaneously two atomic
ensembles that share the same LO and the same atomic transi-
tion, see Fig. 1(a). The frequency-correction scheme is based
on two Ramsey interferometers having the same interrogation
time. The atomic ensembles are prepared in two coherent spin
states that points to two orthogonal axes in the Bloch sphere.
The two interferometers are thus characterized by Ramsey
fringes that are dephased by an angle π/2, see Fig. 1(b). By
combining the independent phase estimates obtained from the
two interferometers, it is possible to extend the inversion re-
gion from [−π/2, π/2] to [−π, π ]: this increases the optimal
Ramsey time and therefore also the absolute stability of the
clock. Taking into account basic models of LO decoherence,
we predict an improvement of the absolute stability by a
factor of 4 (2) for the case of white (flicker) LO noise, when
compared to the case of single-ensemble interrogation. Our
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FIG. 1. (a) Scheme of the joint interrogation method. Two atomic
ensembles are prepared in coherent spin states with mean spin direc-
tion pointing along orthogonal directions in the Bloch sphere (x axis
for the Ramsey interferometer A and y axis for B) and interrogate
the same LO. The accumulated phase θ is the same in both interfer-
ometers. The insets show Husimi distributions during the different
interferometer operations. (b) Ramsey signal 〈Jz(θ )〉out as a function
of θ for the two interferometers. Combining the two out-of-phase
signals (see text) it is possible to obtain an unbiased estimate of θ in
the full [−π, π ] interval.

protocol, differently from those of Refs. [19–21], does not re-
quire quantum nondemolition measurements and, differently
from that of Refs. [16–18], it allows to extend the overall
absolute stability. Our methods can be generalized to include
spin-squeezed atomic ensembles to overcome the standard
quantum limit.

The paper is organized as follows. In Sec. II, we intro-
duce the Ramsey interferometer of Fig. 1 and discuss in
detail its phase sensitivity. In Sec. III we review the basic
concepts of atomic clocks. In particular, we focus on the
detailed calculation of the optimal (Ramsey) interrogation
time by carefully evaluating the bending point of the Allan
variance. The optimal interrogation time defines the absolute
(long-term) stability of the clock. Our methods to calculate
the Allan variance avoid numerical instabilities that charac-
terize the standard protocols in the presence of phase slips.
Furthermore, in the case of white (correlated) LO noise, we
provide analytical (semi-analytical) predictions that are found
in excellent agreement with the results of ab initio Monte
Carlo simulations. In Sec. IV, we analyze the impact of possi-
ble experimental imperfections in the preparation of coherent

spin states, fluctuations of the atom number, and dead times.
Finally, in Sec. V, we exploit the joint-Ramsey protocol in
connection to a recent proposal of a hybrid quantum-classical
clock using coherent- and squeezed-spin states [26].

II. RAMSEY INTERFEROMETRY AND
PHASE SENSITIVITY

We consider N atoms, each modeled as a pseudospin-
1/2 particle and introduce collective spin operators Ĵx,y,z =∑N

j=1 σ̂
( j)
x,y,z/2, where σ̂x = | ↑〉〈↓ | + | ↓〉〈↑ |, σ̂y = i(| ↑〉〈↓

| − | ↓〉〈↑ |), and σ̂z = | ↑〉〈↑ | − | ↓〉〈↓ | are Pauli operators
[27]. Initially, we prepare the N atoms in different superpo-
sition states of two eigenstates | ↑〉 and | ↓〉 of the atomic
Hamiltonian (see discussion below). During the free evolution
following the state preparation, the collective atomic pseu-
dospin precesses around the z axis by an angle θ , which we
specify later. The Ramsey sequence terminates with a π/2
rotation around the x axis. We assume that the duration of
the π/2 pulse is short enough to neglect fluctuations of the
LO leading to imperfections in the pulse rotation angle. In
the noiseless case, the operations of both Ramsey interferom-
eters of Fig. 1(a) are described by the unitary transformation
Û (θ ) = e−i π

2 Ĵx e−iθ Ĵz . We have

Ĵz(θ ) = Û †(θ )ĴzÛ (θ ) = Ĵycosθ + Ĵxsinθ. (1)

A measurement of Ĵz(θ ), corresponding to counting the
relative number of particles between the two clock levels,
provides an estimate of θ , depending on the interferometer
scheme (single or joint, which we describe below).

A. Single-Ramsey interferometer

In the Ramsey interferometer A of Fig. 1(a), NA atoms are
prepared in the coherent-spin state [27,28]

|ψA〉 =
( | ↑〉 + | ↓〉√

2

)⊗NA

, (2)

with mean spin direction pointing along the x axis 〈Ĵx〉in =
〈ψA|Ĵx|ψA〉 = NA/2. Using Eq. (1) and 〈Ĵy〉in = 0, the Ramsey
signal is given by

〈
Ĵz(θ )

〉
out = 〈

ψA|Ĵz(θ )|ψA
〉 = NA

2
sin θ. (3)

Based on a single measurement of Ĵz with result μA = (N↑ −
N↓)/2, where N↑ (N↓) is the number of particles in | ↑〉 (| ↓〉),
we obtain the estimate

�A(μA) = arcsin
2μA

NA
(4)

of θ . Notice that �A(μA) is a value in the inversion region
[−π/2, π/2] where Eq. (3) is monotonic, see Fig. 1(b).

The estimator Eq. (4) is a random variable with statisti-
cal mean value �̄A(θ ) = EμA|θ {�A(μA)}, where EμA|θ {. . .} =∑

μA
P(μA|θ ) . . . indicates the statistical average over random

measurement results obtained for a fixed value of θ , and
P(μA|θ ) is the corresponding conditional probability to obtain
the result μA. The fluctuations of the estimator are quantified
by the variance [��A(θ )]

2 = EμA|θ {[�̄A(θ ) − �A(μA)]
2} that
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FIG. 2. (a) Estimator bias as a function of θ . The green dashed
line is |θ − �̄A(θ )| for the single-Ramsey interferometer with Eq. (2)
as input, while the black solid line is |θ − �̄AB(θ )| for the joint-
Ramsey scheme. The horizontal dotted line is 1/

√
Nt . (b) Mean

squared error (MSE) as a function of θ . The green dashed (black
solid) line is obtained for the single- (joint-) Ramsey interferometer.
The horizontal dotted line is 1/Nt . The inset is a zoom showing the
mean squared error multiplied by Nt as a function of θ

√
Nt around

θ = 0. In both panels, the single and joint protocols are compared
by fixing the total number of particles Nt = 2000, that is, NA = Nt

for the single-Ramsey interferometer and NA = NB = Nt/2 for the
joint-Ramsey scheme.

can be well approximated by the error propagation formula

[��A(θ )]2 ≈ [�Ĵz(θ )]2
out(

d
〈
Ĵz(θ )

〉
out/dθ

)2 = 1

Nt
, (5)

where Nt = NA is the total number of particles used in the
interferometer. The right-hand side of the above equation is
obtained using Eq. (1) and [�Ĵz(θ )]

2
out = 〈Ĵ2

z 〉out − 〈Ĵz〉2
out =

(NA/4) cos2 θ , which is due to (�Ĵx )2
in = 0, 〈Ĵx Ĵz + ĴzĴx〉in =

0 and (�Ĵz )2
in = NA/4, for the coherent state Eq. (2).

In Fig. 2(a) we show the estimator bias |θ − �̄A(θ )|
(green dashed line). For |θ | � π/2, we have |θ − �̄A(θ )| 	
��A(θ ). Instead, for |θ | � π/2, outside the inversion region,
the estimate (4) is characterized by a finite bias |θ − �̄A(θ )| ≈
2|θ | − π . In Fig. 2(b) we show the mean squared error of �A,

EμA|θ {[�A(μA) − θ ]2} = [��A(θ )]2 + [θ − �̄A(θ )]2. (6)

For |θ | � π/2 we have EμA|θ {[�A(μA) − θ ]2} ≈
[��A(θ )]2 ≈ 1/Nt , as predicted by Eq. (5). In particular,
[��A(θ )]2 does not depend on θ approximately in the full
[−π/2, π/2] interval. For |θ | � π/2, the bias dominates and
Eq. (6) is well approximated by 1/Nt + (2|θ | − π )2.

B. Joint-Ramsey interferometer

The joint interferometer scheme is shown in Fig. 1(a). The
first interferometer (indicated as Ramsey A) is a standard one,
as discussed above. The second interferometer (Ramsey B)
differs from the first one by the direction of the initial coherent
spin state

|ψB〉 =
( | ↑〉 + i| ↓〉√

2

)⊗NB

, (7)

which has a mean spin direction pointing along the y axis
〈Ĵy〉in = 〈ψB|Ĵy|ψB〉 = NB/2 and 〈Ĵx〉in = 0. The Ramsey sig-
nal for the interferometer B is thus

〈Ĵz(θ )〉out = 〈
ψB|Ĵz(θ )|ψB

〉 = NB

2
cosθ, (8)

with fluctuations (�Ĵz(θ ))2
out = (NB/4) sin2 θ . A measure-

ment of Ĵz with result μB, leads to an estimate

�B(μB) = arccos
2μB

NB
, (9)

obtained by inverting Eq. (8). Notice that Eq. (8) is charac-
terized by two inversion regions where the function of θ is
monotonic: [−π, 0] and [0, π ], see Fig. 1(b). Equation (8)
is dephased by π/2 with respect to Eq. (3) due to the dif-
ferent initial state. The total number of particles used in the
joint interferometer is Nt = NA + NB. In the following we will
consider the case NA = NB = N = Nt/2. We will relax this
assumption in Sec. IV.

The central idea of this work is to combine the two
estimates �A(μA) and �B(μB) to obtain a joint estimate
�AB(μA, μB) of θ . Specifically, we define

�AB(μA, μB)

=

⎧⎪⎪⎨
⎪⎪⎩

�A(μA )+�B (μB )
2 if μA > 0 and μB > 0,

π−�A(μA )+�B (μB )
2 if μA > 0 and μB < 0,

�A(μA )−�B (μB )
2 if μA < 0 and μB > 0,

−π−�A(μA )−�B (μB )
2 if μA < 0 and μB > 0,

(10)

and, when the measurement results are μA = 0 or μB = 0,

�AB(μA, μB) =

⎧⎪⎨
⎪⎩

0 if μA = 0 and μB > 0,

π if μA = 0 and μB < 0,

π/2 if μA > 0 and μB = 0,

−π/2 if μA < 0 and μB = 0.

(11)

For instance, if μA � 0 and μB � 0, the true phase is most
likely in the region [0, π/2] where 〈Ĵz〉out � 0 for both in-
terferometers, see Fig. 1(b). In this case, the joint estimate
�AB(μa, μB) is thus simply chosen as the sum of �A and
�B, divided by 2. Conversely, if μA � 0 and μB � 0, the
true phase is most likely in the region [−π/2, 0] where the
Ramsey signal 〈Ĵz〉out is negative for the interferometer A and
positive for the interferometer B, see Fig. 1(b). In this case,
�AB(μa, μB) is chosen as the difference between �A and �B

divided by 2, and so on. This explains the choice of linear
combination of �A and �B in Eq. (10).

In Fig. 2(a) we plot the bias |θ − �̄AB(θ )| as a function
of θ , where �̄AB(θ ) = EμA,μB|θ {�AB(μA, μB)} is the statis-
tical mean value of the estimator (10), and EμA,μB|θ {. . .} =∑

μA,μB
P(μA|θ )P(μB|θ ) . . . indicates statistical averaging

over random independent measurement results μA and
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μB. The bias is essentially negligible, |θ − �̄AB(θ )| 	
1/

√
Nt , in the full θ ∈ [−π, π ] interval except around θ =

0,±π/2,±π . For instance, for 0 � θ � 1/
√

NA, one would
expect to observe results μA � 0 [since 〈Ĵz(θ )〉out � 0 for
the interferometer A is positive for these values of θ , see
Fig. 1(b)], but results μA < 0 are also possible due to the finite
width of the relative number of particles distribution P(μA|θ ).
In this case, according to Eq. (10), we combine the two esti-
mates according to �AB = (�A − �B)/2, thus introducing a
bias approximately equal to 2θ . Similar considerations hold
in regions of width ≈1/

√
NB close to ±π/2. Close to ±π the

bias is much larger than around 0 and ±π/2, see Fig. 2(a).
Similarly as above, this bias is related to the finite width of
the relative number of the particles’ distribution. For instance,
for π − 1/

√
NA � θ � π , it may happen that the measurement

results give μA < 0 and μB < 0 (rather than the more likely
μA > 0 and μB < 0). According to Eq. (10), this relative rare
event leads to a large bias of approximately 2π . This qualita-
tively explains the increase of |θ − �̄AB(θ )| close to ±π , as
shown in Fig. 1(a).

In Fig. 2(b) we plot the mean square error around θ ,

EμA,μB|θ {[�AB(μa, μB) − θ ]2}
= [��AB(θ )]2 + [θ − �̄AB(θ )]2, (12)

where [��AB(θ )]2 = EμA,μB|θ {[�̄AB(θ ) − �AB(μA, μB)]2} is
the statistical variance of the joint estimator. Neglecting ef-
fects associated to the bias predicts

[��AB(θ )]2 = [��A(θ )]2 + [��B(θ )]2

4
= 1

Nt
. (13)

Equation (13) is numerically verified in the full θ ∈ [−π, π ]
interval except close to 0,±π/2,±π where the effect of the
bias is not negligible. For instance, at θ = 0, we find that
〈Ĵz〉out = NB/2 for the interferometer B, which implies μB =
NB/2 and �B(NB/2) = 0 [with vanishing statistical fluctua-
tions since (�Ĵz )2

out = 0]. The estimator �B is thus biased.
Therefore, according to Eq. (10), �AB(μA, μB) = �A(μA)/2,
which implies (��AB)2 = (��A)2/2 = 1/(2Nt ): the vari-
ance of the estimator �AB drops by a factor of 2 with respect to
Eq. (13) due to the bias of �B. The behavior of (��AB)2 close
to θ = 0 is shown in the inset of Fig. 2(b). A similar behavior
is observed close to θ = ±π/2, where 〈Ĵz〉out = ±N/2 for the
interferometer A with vanishing fluctuations (due to the bias
of �A).

III. CLOCK OPERATIONS AND FIGURE OF MERIT

The clock operations are described by introducing three
relevant quantities: (i) the atomic transition frequency ω0

between two atomic levels; (ii) the free running (unlocked)
LO frequency ω̃LO(t ); and (iii) the stabilized LO frequency
ωLO(t ) obtained from periodic feedback corrections on the
free-running LO.

The unlocked LO frequency ω̃LO(t ) is affected by stochas-
tic fluctuations that are characterized by a power spectral
density S( f ) = hLO/ f α , with α = 0 for white noise (also of-
ten indicated as frequency noise) and α = 1 for flicker (or
pink) noise, where hLO is a prefactor. The accumulated phase
during a time T is θ̃ (T ) = ∫

T dt δω̃LO(t ), where δω̃LO(t ) =

ω̃LO(t ) − ω0. The quantity θ̃ (T ) is a stochastic variable with
a Gaussian statistical distribution of zero mean, Eω̃[θ̃ (T )] =
0, and variance vα (T )2 = Eω̃[θ̃LO(T )2], where Eω̃ indicates
statistical averaging over LO fluctuations. For white noise,
we have v0(T )2 = γLOT , where the dephasing rate is related
to hLO as γLO/ω0 = hLOωLO/2. For flicker noise, we have
v1(T )2 = (γLOT )2, where γLO/ω0 = √

hLO2χ ln 2 and χ =
1.4 is determined numerically (see Appendix for details on
the numerical simulations of the LO signal).

To stabilize the LO frequency around ω0, one first
estimates the rotation angle that accumulates during the in-
terrogation time T ,

θ (T ) =
∫

T
dt δωLO(t ), (14)

where δωLO(t ) = ωLO(t ) − ω0. From the estimated �(μ),
depending on the measurement result μ (for the joint Ram-
sey interferometer described in Sec. II B we identify μ ≡
{μA, μB}), one obtains an estimate of the average LO fre-
quency fluctuations, �(μ)/T [29]. This value is subtracted
from the signal δω̃LO(t ), resulting in a feedback loop. The
estimation is repeated sequentially. In particular, during the
nth Ramsey cycle, namely for (n − 1)T � t � nT (with n =
2, . . . , nc), the stabilized LO frequency is

δωLO(t ) = δω̃LO(t ) −
n−1∑
j=1

�(μ j )

T
, (15)

where μ j is the result of the jth measurement ( j = 1, . . . , n −
1). Equation (15) provides the relation between the locked and
the unlocked LO frequencies. We point out that, in the joint
Ramsey scheme of Fig. 1(a), the two interferometers share
the same LO (and thus see the same LO fluctuations) and
are characterized by the same atomic transition, interrogation
time, and number of particles, such that the phase shift θ (T )
is common to both.

In the following, we evaluate the stability of the clock
using the Allan variance, which is a common figure of merit.
To compare the schemes based on single and joint Ramsey
interferometry, it is crucial to evaluate accurately the optimal
interrogation time. In particular, we introduce an expression
for the calculation of the average Allan variance that avoids
numerical instabilities due to phase slips and allows to obtain
analytical (for white LO noise) or semi-analytical (for corre-
lated LO noise) results. The clock schemes based on single
and joint Ramsey interferometry are discussed in Secs. III B
and III C, respectively. Notice that we neglect here the dead
times between Ramsey interrogations (the impact of the dead
times is discussed in Sec. IV C). We also assume that atomic
decoherence occurs on timescales much longer than LO de-
phasing, LO decoherence thus being the only relevant noise
source.

A. Allan variance and phase slips

1. Allan variance

We introduce the (dimensionless) fractional time-averaged
frequency offset

yn(T, μn) = θn(T ) − �(μn)

ω0T
, (16)

053116-4



IMPROVED ABSOLUTE CLOCK STABILITY BY THE … PHYSICAL REVIEW A 105, 053116 (2022)

given by the difference between the accumulated rotation an-
gle θn(T ) = ∫ nT

(n−1)T dt δωLO(t ) during the nth Ramsey cycle
and its estimate value �(μn) [29]. We quantify the stability of
the clock by the fluctuations of the average 1

nc

∑nc
n=1 yn(T, μn)

in nc Ramsey cycles. In particular, the two-points variance
(commonly indicated as the Allan variance [1–3,30])

σ 2
nc

= 1

2nc(nc − 1)

nc−1∑
n=1

(yn+1 − yn)2 (17)

is generally considered to estimate the stability due to stochas-
tic noise since constant systematic errors cancel in Eq. (17).

In the absence of strong constant biases (such as those in-
duced by phase slips), correlations between consecutive mea-
surements of yn can be generally neglected:

∑nc−1
n=1 yn+1yn 	∑nc−1

n=1 y2
n ≈ ∑nc−1

n=1 y2
n+1. Indeed, although the frequency noise

may be correlated, the phase estimations are uncorrelated,
which makes the correlations between yn and yn+1 negligible
when compared to their fluctuations. We thus have

σ 2
nc

= 1

(nc − 1)nc

nc−1∑
n=1

y2
n. (18)

For sufficiently large nc, we write Eq. (18) as a statistical
average, that we indicate as Eμ,θ , over both random frequency
fluctuations (or, equivalently, random values of θ ) and random
measurement results μ:

σ 2
nc

= 1

ω2
0T 2nc

Eμ,θ {[θ (T ) − �(μ)]2}. (19)

Introducing the joint probability distribution PT (μ, θ ), which
depends, in general, on the Ramsey time T , we can write
Eq. (19) as

σ 2
nc

= 1

ω2
0T 2nc

∫
dθ

∑
μ

PT (μ, θ )[θ − �(μ)]2. (20)

Finally, using the basic conditional probability relation
PT (μ, θ ) = P(μ|θ )PT (θ ) and

∑
μ P(μ|θ )[θ − �(μ)]2 =

[��(θ )]
2 + [θ − �̄(θ )]

2
, we arrive at the equation

σ 2
nc

= c2
T

ω2
0T 2nc

, (21)

where

c2
T =

∫
dθ PT (θ ) [[��(θ )]2 + [θ − �̄(θ )]2] (22)

is a weighted average of the mean square error. Equation (21)
links σ 2

nc
, the estimator variance (��)

2
and the bias |θ −

�̄(θ )|. In particular, c2
T fulfils the Cramér-Rao bound [31,32]

c2
T �

∫
dθ PT (θ )

[
1

F (θ )

(
d�̄

dθ

)2

+ [θ − �̄(θ )]2

]
, (23)

where F (θ ) = ∑
μ

1
P(μ|θ ) ( P(μ|θ )

dθ
)
2

is the Fisher information.
The bound (23) holds for any estimator �(μ). For unbi-
ased estimators, namely �̄(θ ) = θ , the bound (23) equals
the weighted average of the inverse Fisher information, c2

T �∫
dθ PT (θ )/F (θ ). By combining Eqs. (21) and (23) we obtain

a lower bound to the Allan variance, although its saturation is

not guaranteed, in general. The optimization of F (θ ) over all
possible positive operator-valued measure defines the quan-
tum Fisher information, F (θ ) � FQ(θ ) [33,34], that depends
only on the probe state and interferometer transformation. We
thus obtain c2

T �
∫

dθ PT (θ )/FQ(θ ) for unbiased estimators
although the saturation of the bound is not guaranteed since
the optimal measure for which the equality F (θ ) = FQ(θ )
holds depend, in general, on θ [35].

2. Phase slips

Equation (21) gives the Allan variance for a sequence of
nc Ramsey cycles in the absence of phase slips, namely if
|θn| �  for n = 1, . . . , nc, where 2 indicates the total width
of the inversion region (e.g.,  = π/2 for the single Ramsey
interferometer, see Sec. II A). If a phase slip occurs at the
nth Ramsey cycle, namely |θn| > , the estimation method
is biased. It is generally unlikely that the frequency can be
stabilized around ω0 if we further interrogate the LO. Instead,
additional phase slips may occur, which further increase the
estimation bias and make an analytical calculation of the
Allan variance cumbersome [36]. In the following, to avoid
numerical instabilities, the LO is stopped after the occurrence
of a single phase slip. In this case, the number of Ramsey
cycles nc during which no phase slip occurs is thus a stochastic
variable. Let us thus indicate as PT (nc) the probability that a
phase slip occurs at the ncth Ramsey cycle. This is given by

PT (nc) =
{

1 − 2
∫ 

0 dθPT (θ ) for nc = 1,

Pnc (T ) × ∏nc−1
n=1 (1 − Pn(T )) for nc > 1,

(24)
where Pn(T ) = 1 − 2

∫ 

−
dθnPT (θn) is the probability that

|θn(T )| > .
In the case of a LO with white-noise frequency fluctua-

tions, the values of θn are uncorrelated: the probability Pn(T )
is thus the same for all Ramsey cycles and it is given by
p(T ) = 1 − 2

∫ l
0 dθ PT (θ ). In this case, Eq. (24) becomes

PT (nc) = [1 − p(T )]nc−1 × p(T ). (25)

While the above equations hold for any probability distribu-
tion PT (θ ), a relevant case is the Gaussian

PT (θ ) = e
− θ2

2v2
T√

2πv2
T

, (26)

where the variance v2
T depends on the interrogation time, as

discussed above. In this case we have

p(T ) = 1 − Erf

(
√
2vT

)
, (27)

where Erf(. . .) is the error function.

3. General expression for the Allan variance in the presence of
phase slips

Let us introduce the total averaging time τ . The quantity
�τ/T  indicates the largest integer less than or equal to τ/T
and sets the maximum number of Ramsey cycles (neglecting
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dead times). Our general expression for the Allan variance is

σ 2 = QT (�τ/T )σ 2
�τ/T  +

�τ/T ∑
nc=2

PT (nc)σ 2
nc

. (28)

The first term corresponds to the case where no phase slip
happens in any of the �τ/T  Ramsey cycles: this occurs
with probability QT (�τ/T ) = ∏�τ/T 

n=1 [1 − Pn(T )]. The sec-
ond term in Eq. (28) corresponds to a statistical average of
σ 2

nc
with PT (nc) being the probability that a phase slip at

the ncth Ramsey cycle, as given in Eq. (27). The sum starts
from nc = 2 since at least two Ramsey cycles are required
to calculate the Allan variance according to Eq. (17). Finally,
using Eq. (21), we find

σ 2 = c2
T

ω2
0T 2

(
QT (�τ/T )

�τ/T  +
�τ/T ∑
nc=2

PT (nc)

nc

)
. (29)

This equation is characterized by two limits. If the interroga-
tion time T and the ratio τ/T are sufficiently short such that
PT (nc) ≈ 0 for nc = 1, . . . , �τ/T  and thus QT (�τ/T ) ≈ 1,
then the effect of phase slips is negligible and we obtain

σ 2 = c2
T

ω2
0T τ

, (30)

where we approximated T × �τ/T  ≈ τ . This equation re-
covers the characteristic scaling σ 2 ∼ 1/(T τ ). In the opposite
regime, when the term QT (�τ/T )/(�τ/T ) is negligible
(e.g., in the limit τ/T → ∞), we obtain

σ 2 = c2
T

ω2
0T 2

�τ/T ∑
nc=2

PT (nc)

nc
. (31)

In this case, phase slips dominate the calculation of the Allan
variance and we find that σ 2 does not scale with τ : changing
the total averaging time has no effect on the Allan variance
since there is a substantial probability that a phase slip occurs
for nc � �τ/T .

B. Allan variance and phase slips for the single-Ramsey
clock protocol

In Fig. 3 we plot the Allan variance for the clock protocol
based on a single Ramsey interferometer, as a function of
τ/T . Different symbols are results of ab initio numerical
simulations for different fixed values of Ramsey time T . For
values of θ inside the inversion region [−, ] ( = π/2 in this
case), we have |θ − �̄A| 	 ��A(θ ) = 1/

√
Nt , see Fig. 2(a),

and thus c2
T = 1/Nt . In particular, according to Eq. (30), for

sufficiently short values of τ/T , we recover the standard quan-
tum limit (SQL) [5,37,38]

σ 2 = 1

ω2
0Nt T τ

. (32)

For large values of τ/T , the Allan variance is characterized
by a saturation, as predicted by Eq. (31),

σ 2 = 1

ω2
0Nt T 2

�τ/T ∑
nc=2

PT (nc)

nc
. (33)

FIG. 3. Allan variance as a function of τ/T for white LO noise
and obtained with a clock based on a single Ramsey interferometer.
Symbols are results of ab initio numerical simulation for different
values of the Ramsey time: γLOT = 0.25 (blue circles), γLOT = 0.17
(green squares), and γLOT = 0.12 (red diamonds). Solid lines are
Eq. (34), the dashed line is the SQL, Eq. (32), while the dotted lines
are the asymptotic τ/T → +∞ prediction of Eq. (35). Here Nt =
1000

For white noise, Eq. (29) can be calculated using Eq. (25) and
c2

T = 1/Nt . This gives

σ 2 = 1

ω2
0T 2Nt

[
p(T )

1 − p(T )

�τ/T ∑
nc=2

[1 − p(T )]nc

nc

+ [1 − p(T )]�τ/T 

�τ/T 
]
, (34)

where we used QT (�τ/T ) = [1 − p(T )]
�τ/T 

and p(T ) is
calculated according to Eq. (27). In the limit τ/T → +∞,
Eq. (34) becomes

σ 2 = 1

ω2
0T 2Nt

[
p(T )

1 − p(T )
log

1

p(T )
− p(T )

]
. (35)

As shown in Fig. 3, the numerical results agree very well with
the analytical prediction [solid lines, given by Eq. (34)]. The
dotted lines is the asymptotic plateau Eq. (35).

To study the Allan variance as a function of the Ramsey
time T , we fix the total averaging time τ . In this case, by
increasing T , we find a transition between Eqs. (32) and (33):
while Eq. (32) predicts that the Allan variance decreases as
σ 2 ∼ 1/T , Eq. (33) increases as a function of T . The bending
knee of the Allan variance (that identifies the absolute stability
of the clock) is clearly shown in Figs. 4(a) and 4(b), obtained
for white and flicker LO noise, respectively. The green dia-
monds are results of ab initio numerical simulations. The solid
line in Fig. 4(a) is the analytical prediction Eq. (34) for white
noise, while for flicker noise [Fig. 4(b)] the solid green line
is obtained by calculating PT (nc) and QT (�τ/T ) numerically
(and independently from the numerical simulations of σ 2).
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FIG. 4. Allan variance (multiplied by ω2
0τNt/γLO) as a function of the Ramsey time γLOT for (a) white and (b) flicker LO noise,

respectively. Symbols are results of ab initio numerical simulations: green diamonds are obtained for a single-Ramsey clock with Nt = 2000
particles, while black circles are obtained for a joint-Ramsey clock with 1000 particles in each interferometer (Nt = 2000 is the total number
of particles used in both clocks). The dotted line in both panels is the SQL, σ 2 = 1/(ω2

0T τNt ). The solid and dashed lines in both panels are
expected results. For the white-noise case, the dashed green line is Eq. (34), while the solid black line is Eq. (38). For the flicker noise, the lines
are semi-analytical predictions given by Eq. (29) where the quantities QT (�τ/T ), PT (nc ) and c2

T are obtained numerically and independently
from the calculation of the Allan variance. The inset of panel (a) shows the gain G defined in Eq. (39) for the white-noise LO case, as a
function of the total averaging time γLOτ . The solid line is obtained analytically and shows that the gain in the noiseless case converges to
G = 4 (dashed line) for large τ . Panels (c) and (d) show the probability of phase slip, Eq. (36), as a function of γLOT , for white and flicker
noise, respectively. The solid lines in panel (c) is Eq. (37). In all panels, γLOτ = 100.

In Figs. 4(c) and 4(d) we show the overall probability that a
phase slip occurs in one of the �τ/T  Ramsey cycles, namely,

Pps
(
T, �τ/T ) =

�τ/T ∑
nc=1

PT (nc) = 1 − QT (�τ/T ), (36)

as a function of the Ramsey time. Figure 4(c) is obtained for
white noise, while in Fig. 4(d) for flicker noise. In the case of
white noise, Eq. (36) can be evaluated analytically as

Pps(T, �τ/T ) = 1 − [1 − p(T )]�τ/T , (37)

given by the solid line in Fig. 4(c). We observe that the bend-
ing of the Allan variance is obtained when Pps(T, �τ/T ) ≈
0.05 (and similarly for flicker noise). It should be noticed
that the optimal Ramsey time corresponding to the minimum
of the Allan variance has a slight dependence on the total
interrogation time τ (in particular, it decreases with τ ). This
is due to the fact that increasing τ , for a fixed Ramsey time T ,
the number of cycles increases and thus the probability to have

a phase slip increases as well, as shown in Eq. (37). In par-
ticular, in the limit τ/T → ∞, we have Pps(T, �τ/T ) → 1
whenever p(T ) > 0.

C. Allan variance and phase slips for the joint-Ramsey
clock protocol

The Allan variance for the joint-Ramsey clock can be
obtained following the discussion of Sec. III A. To be
explicit, our semi-analytical prediction is given by Eq. (29)
with c2

T = ∫
dθ PT (θ ) [[��(θ )]2

AB + (θ − �̄AB(θ ))2]. In par-
ticular, we consider here the case NA = NB = N . The major
difference with respect to the single-Ramsey clock is the
size of the inversion region [−, ] that is identified here
with  = π − 4/

√
N (rather than  = π/2 as in the case of

a single Ramsey interferometer). The factor of 4/
√

N guar-
antees a small probability of biased estimation close to the
θ = ±π , see Fig. 2(b). In particular, for the white-noise case,
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we have

σ 2 = c2
T

ω2
0T 2

[
p(T )

1 − p(T )

�τ/T ∑
nc=2

[1 − p(T )]nc

nc

+ [1 − p(T )]�τ/T 

�τ/T 
]
, (38)

with p(T ) given in Eq. (27) with  = π − 4/
√

N .
In Figs. 4(a) and 4(b) we show the results of numeri-

cal calculations of the Allan variance for the joint-Ramsey
clock, in the case of white and flicker LO noise, respectively.
In the figure, the single-Ramsey clock (green diamonds)
and the joint-Ramsey scheme (black circles) are compared for
the same total number of particles Nt (in the joint scheme the
total number of particles is Nt = 2N). Notice that the black
circles stay slightly above the dashed line, giving the
SQL σ 2

SQL = 1/(ω2
0T τNt ). This effect is due to the mean

square error (��AB)
2 + (θ − �̄AB(θ ))2, which is relevant to

calculate the quantity c2
T in Eq. (29), being slightly above 1/Nt

for θ close to 0 and ±π/2, see Fig. 2(b). This is a minor effect
that can nevertheless be seen in the numerical simulations. For
both white and flicker noise, the numerical results are well
reproduced by semi-analytical findings (solid lines) obtained
using Eq. (29).

As shown in Figs. 4(a) and 4(b), using the joint-Ramsey in-
terrogation, the minimum of the Allan variance is reached for
longer interrogation times, with respect to the single-Ramsey
clock. This corresponds to an increase of the absolute stability
that can be quantified by the gain factor

G = (minT σ 2)single

(minT σ 2)joint
, (39)

given by the ratio between the Allan variance for the single-
Ramsey clock (with Nt particles) and that of the joint protocol
(with N particles in each ensemble, Nt = 2N in total), each
optimized with respect to the Ramsey time. For while LO
noise we obtain that G ≈ 4. In particular, the inset of Fig. 4(a)
shows G as a function of γLOτ . For γLOτ = 100 correspond-
ing to the results shown in the main panel of Fig. 4(a), we
obtain G ≈ 4.5. For large values of τ we obtain that G con-
verges to the value 4. For flicker noise, we obtain G ≈ 2 with
a weak dependence on τ (not shown). The increase of stability
obtained with the joint clock is directly related to the smaller
probability of phase slips, as shown in Figs. 4(c) and 4(d).

IV. IMPACT OF POSSIBLE IMPERFECTIONS

In this section we consider the impact of possible
experimental imperfections in the implementation of the joint-
Ramsey scheme. Specifically, we release the assumption of
the perfect π/2 shift between the coherent spin states in the
two interferometers and also consider the impact of the num-
ber of particles’ fluctuations and dead time.

A. Imperfect alignment of the probe states

We study here the joint Ramsey scheme of Fig. 1(a) where
the probe state of the Ramsey B interferometer is given by the

FIG. 5. Absolute stability gain G, Eq. (39), as a function of the
parameter sε quantifying the imperfect alignment of the two probe
states of the joint-Ramsey clock. Panel (a) is obtained for white LO
noise, while panel (b) for flicker noise. In each panel, blue dots are
results of numerical simulations, the dashed line is a guide to the
eye. The inset of panel (b) shows the Allan variance as a function
of the Ramsey time γLOT . Different symbols are obtained for dif-
ferent values of ε: sε = 0 (circles), sε = 0.02 (squares), sε = 0.04
(downward-pointing triangle), and sε = 0.06 (upward-pointing tri-
angle). The solid line is Eq. (29), the dotted lines are a guide to the
eye, and the dashed line is the SQL. In all panels γLOτ = 100 and the
total number of particles is Nt = 2000.

statistical mixture

ρ̂B =
∫

dε P(ε) |ψB〉ε〈ψB|, (40)

where |ψB〉ε = (e−i(π/2−ε)/2| ↑〉 + ei(π/2−ε)/2| ↓〉)⊗NB/2NB/2,
and P(ε) = e−ε2/(2s2

ε )/
√

2πs2
ε . Here, ε is a stochastic value that

accounts for a misalignment of the probe state along the y
axis in the Bloch sphere. Equation (40) reduces to Eq. (7) for
sε = 0. The effect of an imperfect (stochastic) alignment is
equivalent to that of a stochastic relative phase shift between
the two interferometers due, for instance, to fluctuations of the
clocks’ atomic frequencies.

Figures 5(a) and 5(b) show the gain Eq. (39) as a function
of sε for white and flicker LO noise, respectively. As shown
in the inset of Fig. 5(b), the main effect of the imperfection
in the state preparation is to increase the Allan variance,
while the optimal Ramsey time remains approximately con-
stant. The gain factor G decreases while increasing sε . The
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FIG. 6. (a) Stability gain G, Eq. (39), as a function of NA/Nt .
Symbols are results of numerical simulations: squares (dots) are
obtained for white (flicker) LO noise. The lines are Eq. (41). Here
Nt = 2000. (b) Allan variance as a function of the Ramsey time in the
presence of the number of particles fluctuations. Symbols are results
of numerical simulations. Diamonds are obtained for a single Ram-
sey clock with N̄ = 2000 and �N =

√
N̄ . Circles corresponds to a

the joint clock scheme with N̄A = N̄B = 1000 and �NA,B =
√

N̄A,B.
The dotted line is the SQL, σ 2 = 1/(ω2

0T τ N̄t ) with N̄t = 2000. Here
γLOτ = 100.

condition to have values G > 1 is more stringent in the case
of flicker LO noise.

B. Number of particles fluctuations

When the number of particles in the two interferometers is
different, Eq. (13) predicts

G ∝ NA

Nt

(
1 − NA

Nt

)
, (41)

which has the optimal working point when NA = NB. Fig-
ure 6(a) reports the results of numerical simulations showing
the gain factor G as a function of NA/Nt . The different symbols
refer to white (squares) and flicker (dots) noise. They agree
well with the corresponding line given by Eq. (41).

We further investigate the situation where the number of
particles in each interferometer fluctuates from shot to shot.
In this case, we replace the coherent spin states (2) and (7)
by a Gaussian statistical distribution of coherent spin states of
NA,B particles, with mean N̄ and fluctuations �N (assumed
to be the same for the two interferometers). The number
of particles’ fluctuations have two main effects. First, they
increase the rate of estimation biases close to ±π . We take
into account this effect by identifying the half-size of the

inversion region as  = |π − 4/
√

N̄ + 4�N |, where the factor
of 4 is used to avoid biases around θ ≈ ±π (see discussion
above). Second, the number of particles in each interferometer
fluctuates from shot to shot, which decreases the sensitivity
according to Eqs. (13) and (41). Both effects are negligible for
�N 	 N̄ . This is confirmed in Fig. 6(b), where we show the
Allan variance as a function of γLOT , by taking �N =

√
N̄ .

We compare the single clock with N̄ = N̄t = 2000 (green dia-
monds) with the joint clock scheme with N̄A = N̄B = N̄t/2. As
we see, the Allan variance follows the behavior of Fig. 4(a):
still we obtain a gain factor G ∼ 4.

C. Dead times

In common experimental realizations of atomic clocks, the
interrogation of the atoms during a Ramsey time T is followed
by a dead time TD required for experimental operations such
as detection, loading, laser cooling, and state preparation.
During the dead time the LO is not interrogated by the atoms.
Nevertheless, the dead time can be completely eliminated
by antisynchronous interrogation of two atomic ensembles
[39–43], where the two ensembles essentially form one clock
with no dead time.

There are two main consequences associated to the dead
time. (i) The number of Ramsey cycles, for given Ramsey time
T and given total interrogation time τ , is now given by τ/TC

and decreases as TD increases, where TC = T + TD is the total
cycle time. The main effect associated to the decrease of the
number of Ramsey cycles is to replace �τ/T  in Eq. (28) by
�τ/TC. For instance, the SQL, Eq. (32), is now replaced by
[5,37]

σ 2
SQL = 1

ω2
0T 2N

TC

τ
. (42)

The smaller number of cycles is also associated to a slight
decrease of probability of phase slips, as discussed above.
This is however a minor effect. (ii) The other, more subtle,
phenomenon is the so-called Dick effect [44]. In the presence
of a dead time, Eq. (16) is replaced by

yn(T, μn) = θn(T ) + θ̃n(TD) − �(μn)

ω0T
, (43)

where θn(T ) = ∫ (n−1)TC+T
(n−1)TC

dt δωLO(t ), is the phase accumu-
lated during the interrogation time T at the nth Ramsey cycle
and θ̃n(TD) = ∫ nTC

(n−1)TC+T dt δωLO(t ) is the phase that accumu-
lates during the dead time. The quantity �(μn) is an estimate
of θn(T ) only. In other words, the average phase θn(TD) that
accumulates during the dead time TC is not estimated by the
inteferometer. Effectively, the dead time results in the lack
of information about the frequency spectrum of the LO due
to the sampling process [44–48]. According to the authors of
Refs. [44,45], the Dick effect alone is associated to an Allan
variance

σ 2
D = 1

τ

+∞∑
k=1

S(k/TC )

(
sin(kπd )

kπd

)2

, (44)

depending on the power spectral density of the free-running
LO taken at Fourier frequencies k/TC , where d = T/TC . More
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FIG. 7. Allan variance as a function of the total cycle time time TC = T + TD for (a) white and (b) flicker noise, respectively. Here the
Ramsey time T is set to that minimizing the Allan variance for TD = 0, see Fig. 4. In each panel, diamonds (circles) refer to results of
numerical simulations for the single (joint) Ramsey clock scheme. Lines are the corresponding analytical behavior (see text). The inset shows
the stability gain factor Eq. (39), calculated from the analytical functions. Here the total number of particles is Nt = 2000, the averaging time
is τ/TC = 100.

explicitly, for white LO noise, Eq. (44) becomes

σ 2
D = γLO

ω2
0τ

2

d2

+∞∑
k=1

sin2(kπd )

π2k2
, (45)

while for flicker noise, we have

σ 2
D = γLO

ω2
0τ

γLO

2χ log 2

T

d2

+∞∑
k=1

sin2(kπd )

π2k3
. (46)

Following Ref. [49], we assume that the Allan variance as-
sociated to the Dick effect adds to the Allan variance due
to the atomic interrogation. More explicitly, Eq. (29), is now
replaced by the sum of the two contributions:

σ 2 = c2
T

ω2
0T 2

(
QT (�τ/TC)

�τ/TC +
�τ/TC∑
nc=2

PT (nc)

nc

)
+ σ 2

D, (47)

which, as discussed above, can be adapted for the single- or
the joint-Ramsey interrogation.

In Fig. 7 we show the results of numerical simulations of
the different clock protocols in the presence of a dead time TD.
The main panels show the Allan variance of the joint-Ramsey
clock as a function of TC/T . Here T is the optimal Ramsey
time minimizing the Allan variance in the case TD = 0, as
shown in Fig. 4. The symbols are results of numerical sim-
ulations, the lines are analytical predictions, e.g., Eqs. (47)
and (44) for the joint protocol. The insets show the gain factor
Eq. (39) as calculated from the analytical behavior. The Allan
variance rapidly increases with TD. As a direct consequence,
the gain factor decreases to values G < 1 for TD/T ∼ 10−2 for
white LO noise [Fig. 4(a)] and TD/T ∼ 5 × 10−2 for flicker
noise [Fig. 4(b)].

V. JOINT-RAMSEY INTERROGATION COMBINED WITH
SPIN SQUEEZING

In the following, we combine the joint interrogation
method discussed above with the approach proposed in
Ref. [26] (see also Ref. [50]). The overall clock scheme is
shown in Fig. 8. It consists of three Ramsey interferometers
operating in parallel with the LO now interrogating three
atomic ensembles. We assume that the three ensembles have
the same number of particles N : this is relevant for atomic
clocks where, to increase the stability, one wants to use atomic
ensembles that have maximum possible number of atoms,
eventually limited by spatial constraints or the onset of de-
coherence affects associated to the large density. The input of
Ramsey A is given by Eq. (2), the input of Ramsey B is given
by Eq. (7), while the input of Ramsey C is

|ψC〉 = N
N/2∑

μ=−N/2

e−μ2/(s2N )|μ〉y, (48)

where |μ〉y are the eigenstates of Ĵy with eigenvalues μ =
−N/2,−N/2 + 1, . . . , N/2, N provides the normalization
and the parameter s sets the variance (�Ĵy)2 = s2N/4. For s <

1 the Eq. (48) is spin squeezed [27,51–55], with metrologi-
cal squeezing coefficient ξ 2 = N (�Ĵy)2/〈Ĵx〉 ≈ s2e1/(s2N ) < 1
[26,50].

In the scheme of Fig. 8, the accumulated phase rotation
angle θ is the same for all probe states. The joint interrogation
of the first two ensembles (using the method discussed in
Sec. III C) provides a first estimate, �AB(μA, μB), of the true
value θ ∈ [−π, π ], depending on the measurement results μA

and μB, see Eqs. (10) and (11). The phase feedback consists
of a rotation of the spin-squeezed state around the y axis by
an angle �AB(μA, μB). Overall, the spin-squeezed state (48)
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FIG. 8. Clock scheme combining joint-Ramsey interrogation and
spin squeezing. It consists of three Ramsey interferometers. The first
two interferometers (Ramsey A and Ramsey B) use the coherent
spin states (2) and (7), respectively. The two estimates �A and �B

are combined according to the discussion in Sec. III C (green dotted
square and lines). The joint estimate �AB, Eq. (10) is used, via a
phase feedback (red dashed square and lines), to bring the spin-
squeezed state toward its optimal working point, on the equator of
the Bloch sphere. The sum of �AB and �C giving �ABC , Eq. (51), is
used to steer the LO frequency via a frequency feedback (blue line).

is rotated by an angle θC (μA, μB) = θ − �AB(μA, μB) around
the y axis, before the final readout. The feedback rotation
aligns the spin-squeezed state along the equator of the gener-
alized Bloch sphere, see Fig. 8, where the state is maximally
sensitive [26,56–58]. The Ramsey signal for the third clock is

〈Ĵz(θC )〉out = 〈Ĵx〉in sin θC . (49)

A measurement of the relative number of particles in the third
clock (with result μC) leads to the estimate

�C (μC ) = arcsin
μC

〈Ĵx〉in
(50)

of θC . This value is added to �AB(μA, μB) giving the
estimate

�ABC (μ) = �AB(μA, μB) + �C (μC ) (51)

of θ , where μ ≡ {μA, μB, μC}.
In Fig. 9(a) we plot the bias, |θ − �̄ABC (θ )| as a

function of θ , where �̄ABC (θ ) = Eμ|θ {�ABC (μ}, Eμ|θ {. . .} =∑
μ �ABC (μ)P(μ|θ ) . . . indicates the statistical averaging,

and P(μ|θ ) = P(μA|θ )P(μB|θ )P[μC |θ − �AB(μA, μB)]. In
Fig. 9(b) we plot the mean squared error Eμ|θ {[�ABC (μ) −
θ ]2}, of �ABC . Taking into account Eq. (51), we
obtain

Eμ|θ {[�ABC (μ) − θ ]2} =
∑

μA,μB

P(μA|θ )P(μB|θ )

×EμC |θ {[�C (μC ) − θC (μA, μB)]2}.
(52)

The rotation angle θC is a stochastic variable, depending on
the measurement results μA and μB. We can thus introduce

FIG. 9. (a) Bias |θ − �̄ABC (θ )| and (b) mean squared error as a
function of θ (solid red lines). Results are obtained for the squeezing
parameter s2

opt = 1/(2N2)1/3 and N = 1000. The inset shows Eq. (56)
as a function of the squeezing parameter. In panel (b) and in the inset,
the dotted line is Eq. (58). In panel (a), the dotted line is the square
root of Eq. (58).

the distribution P(θC |θ ) = ∑
μA,μB

P(μA|θ )P[μB|θ )δ(θC −
θC (μA, μB)], where δ is the Dirac delta function, and write

Eμ|θ {[�ABC (μ) − θ ]2}

=
∫

dθCP(θC |θ )EμC |θC {[�C (μC ) − θC]2}, (53)

The mean squared error of �ABC is thus given by a weighted
average of the mean squared error of �C . Equation (53) can be
decreased thanks to the spin squeezing of |ψC〉, provided that
P(θC |θ ) is sufficiently narrow. To quantify this effect we first
write EμC |θC [[�C (μC ) − θC]2] = (��C )2 + (θC − �̄C (θC ))2,
where �̄C (θC ) and (��C )2 are, respectively, the statistical
mean value and variance of the estimator �C . We then cal-
culate the estimator variance (��C )2 via error propagation,
obtaining

(��C
)2 ≈ (�Ĵz(θC ))2

out

(d〈Ĵz(θC )〉out )/dθC )2

= (�Ĵy)2
in

〈Ĵx〉2
in

+ (�Ĵx )2
in

〈Ĵx〉2
in

tan2 θC . (54)
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FIG. 10. Panel (a) shows the Allan variance for (i) a single Ramsey clock using a coherent state and Nt = 3000 atoms (green diamonds);
(ii) a joint Ramsey clocks using two coherent spin states with Nt/2 = 1500 atoms each (black circles); (iii) a hybrid clock using two coherent
spin states and one optimized spin-squeezed state, each with Nt/3 = 1000 atoms each (red squares). Symbols are results of ab initio numerical
simulations, while the solid lines are semi-analytical predictions (see text). The dashed line is σ 2

SQL = 1/(ω2
0T τNt ). The dotted line is Eq. (59).

(b) Scaling of the Allan variance (minimized over the Ramsey time) as a function of Nt for the different clock protocols (i) the single-Ramsey
(green diamonds); (ii) the joint-Ramsey (black circles); (iii) the hybrid-Ramsey (red squares). Lines are fits: the dashed and dotted lines are
σ 2 = O(1/Nt ), while the solid line is σ 2 = O(1/N5/3

t ). The numerical results in both panels are obtained for flicker LO noise and γLOτ = 100.

Neglecting the bias, namely taking |θC − �̄C (θC )| 	 ��C ,
which is verified numerically, see Fig. 9(a), we obtain

Eμ|θ {[�ABC (μ) − θ ]2}

= (�Ĵy)2
in

〈Ĵx〉2
in

+ (�Ĵx )2
in

〈Ĵx〉2
in

∫
dθC P(θC |θ ) θ2

C, (55)

where we used tan2 θC ≈ θ2
C . Finally, P(θC |θ ) can be taken as

a Gaussian distribution with width given by the mean squared
error of �AB, Eq. (12). As discussed above, Eq. (12) is essen-
tially constant and given by 1/(2N ) with a slight dependence
on θ around 0,±π/2, as shown by the black line in Fig. 2(b).

Replacing P(θC |θ ) =
√

N
π

e−Nθ2
C into Eq. (55), we thus obtain

Eμ|θ {[�ABC (μ) − θ ]2} = (�Ĵy)2
in

〈Ĵx〉2
in

+ (�Ĵx )2
in

〈Ĵx〉2
in

1

2N
. (56)

Notice that the average spin moments and variances
of the Eq. (48) be calculated analytically for N �
1 and s2N � 1 [26]: 〈Ĵx〉in = (N/2)e−1/(2s2N ), (�Ĵx )2

in =
(N2/8)(1 − e−1/(s2N ) )2. These analytical expressions can be
replaced into Eq. (56), giving

Eμ|θ {[�ABC (μ) − θ ]2} = 4s2 + (1 − e−1/(s2N ) )2

4Ne−1/(2s2N )
. (57)

A minimization as a function of the squeezing parameter s
gives

min
s
Eμ|θ {[�ABC (μ) − θ ]2} ≈ 3

24/3

1

N5/3
, (58)

for the optimal value s2
opt = 1/(2N2)1/3, where the last equal-

ity holds under the condition s2N � 1 and is obtained by
keeping the leading orders in the Taylor expansion of e−s2N .

A plot of Eq. (56) as a function of the squeezing parameter is
shown in the inset of Fig. 9(b). The existence of an optimal
squeezing parameter is a direct consequence of the bend-
ing of the squeezed state in the Bloch sphere. The bending,
quantified by (�Ĵx )2

in, increases the output relative number of
particles fluctuations for relatively large θC , when compared
to the single coherent spin-state case [which has (�Ĵx )2 = 0].
This increase of measurement uncertainty corresponds to an
increase of phase uncertainty ��C , according to Eq. (54). The
squeezed state bends more and more in the Bloch sphere as s
decreases. The dashed line in both the main panel and in the
inset of Fig. 9(b) is Eq. (58): the agreement with the numerical
calculation of the mean square error is excellent apart from the
expected wiggles around θ = 0 and ±π/2, and the increase
close to ±π due to the strong bias of �ABC (which, in turn, is
due to the bias of �AB, as discussed in Sec. II).

Figure 10(a) shows the Allan variance as a function of the
interrogation time for three strategies: (i) a single-Ramsey
clock in a coherent spin state of N = 3000 atoms (green
diamonds); (ii) the joint-Ramsey clock strategy using two
coherent spin states of N = 1500 atoms each (black circles);
and (iii) the approach combining joint-Ramsey interrogation
and spin squeezing (red squares), using three ensembles of
N = 1000 atoms each, maximized over s. The symbols are re-
sults of ab initio numerical simulation of the Ramsey scheme
(without using any of the theoretical assumptions considered
above). The solid lines are the semi-analytical prediction of
Eq. (29). In particular, The dotted red line is the analytical
prediction

σ 2 =
(

9

2

)4/3 1

ω2
0T τN5/3

t

, (59)

that is obtained by neglecting phase slip effects, where Nt =
3N . In Fig. 9(d) we show the scaling of the optimal Allan
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variance (minimized over Ramsey time T ) as a function of
the number of particles. The solid line is the numerical fit
that confirms the predicted σ 2 = O(1/N5/3

t ) behavior. Fur-
thermore, following Ref. [26], it is possible to extend the
scheme of Fig. 8 to a cascade of k squeezed states with de-
creasing optimal squeezing parameter s and reach a scaling of

absolute clock stability σ 2 = O(N−2+1/3k

t ). The optimization
of the number of particles in each ensemble [50] leads to
analogous scaling but with improved prefactors.

VI. CONCLUSION

In this paper, we have proposed a joint-Ramsey interro-
gation method where two coherent spin states initially point
along the x and y axes of the generalized Bloch sphere, respec-
tively, and interrogate the same LO. The joint interrogation
allows to extend the inversion region for the unbiased estima-
tion of a collective rotation angle θ from [−π/2, π/2] (that is
the case of a single Ramsey clock) to [−π, π ]. This effectively
extends the optimal Ramsey interrogation time (identified as
the minimum of the Allan variance) and thus increases the
absolute stability. We have demonstrated an improvement in
the long-term stability of a factor of 2 for 1/ f (flicker) noise
and of a factor of 4 for white noise. The joint interrogation
method is reminiscent of a protocol first introduced in the
context of quantum phase estimation with single qubits [59]
and also explored experimentally in gravity gradiometry with
two atomic clouds [60]. The idea is here extended to coherent
spin states of a large number of qubits and adapted to the
context of atomic clocks.

It is important to clarify the significance of the figure of
merit considered in this work. We have calculated the Allan
variance of the stochastic variable Eq. (16), given by the dif-
ference between the true value of the accumulated phase and
the estimated one at each Ramsey interrogation. Furthermore,
the interrogation is stopped when the true value of the phase
shift a properly defined inversion region. Experimentally, the
true value of the phase is inaccessible. The significance of our
study is to give a “safe” maximum Ramsey time where phase
slips are negligible. Our paper thus shows that this safe maxi-
mum interrogation time can be extended when using the joint
interrogation method. Finally, we have shown how the joint
protocol can be combined with a recent proposal using spin-
squeezed states to obtain a scaling of the stability faster than
the SQL σ 2

SQL = O(1/Nt ). Our proposal can be readily real-
ized in state-of-the-art experimental implementations and ad-
dresses one of the major problems for current atomic clocks.
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APPENDIX

We give here details on the numerical simulations per-
formed in this paper. We numerically generate the correlated-
noise LO signal following the discrete incremental method
outlined in Ref. [61]. In Fig. 11 we show results of numer-
ical simulations of the flicker noise generated numerically.
The numerical code generates a vector δω̃LO(t )/ω0 at dis-
crete times. In Fig. 11(a) we show the phase variance
v1(t )2 = Eω̃[θ̃LO(t )2], where Eω̃ indicates statistical averaging
over LO fluctuations (obtained from 104 numerical realiza-
tions, the vector size being n = 103) and θ̃ (t ) = ∫ t

0 dt̃ ω̃LO(t̃ ).
In Fig. 11(b) we plot the power spectral density S( f ) =
Eω̃[|δω̃LO( f )|2], where δω̃LO( f ) is the Fourier transform of
the noise signal δω̃LO(t ). The numerical results follows very
well the expected behavior v1(t )2 = (γLOt )2 and S( f ) ∼ 1/ f
except for short times and large frequencies where there are
some deviations.

In Figs. 11(c) and 11(d) we show examples of PT (nc)
for flicker noise, obtained for γLOT = 0.3 and γLOT = 0.45,
respectively. Here and in the numerics shown in the main text,
PT (nc) are calculated from 5 × 104 noise realizations.

In the numerical simulations of the clock protocols the
time step of the numerical noise generation is set equal
to the Ramsey time T . In the simulations including dead
time, the time step is set to TD and T is taken as a mul-
tiple of TD. Measurement results are generated numerically
using P(μ|θ ) = |〈μ|Û (θ )|ψ〉|2, depending on the interferom-
eter input |ψ〉 and transformation Û (θ ). For the large number
of particles N , P(μ|θ ) is replaced by a Gaussian distribu-
tion centered at 〈Ĵz(θ )〉out and of width (�Ĵz(θ ))

2
out: the two

approaches give the same results for small N . Statistical aver-
aging in all plots shown in this paper is typically obtained for
2 × 104 realizations.

FIG. 11. (a) Phase variance as a function of γLOt (dots). The solid
line is v1(t )2 = (γLOt )2. (b) Power spectral density as a function
of γLOt (dots). The solid line is a fit S( f ) = hLO/ f giving hLO =
1/(2χ log 2) × (γLO/ω0)2 with χ = 1.4. Panels (c) and (d) show
PT (nc ) for γLOT = 0.3 and γLOT = 0.45, respectively.
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