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We investigate theoretically the photoelectron momentum distribution (PMD) of ionized atoms irradiated by
a linearly polarized intense laser, focusing on the holography interference patterns in PMD that carry important
information of the initial wavefunction of a tunneled electron and its experienced atomic potential in rescattering.
With the help of Dyson series and a semiclassical propagator, we calculate the scattering amplitudes in the
cylindrical coordinate representation. In contrast to conventional recognitions that photoelectron holography
is the interference of two branches of electron trajectories, however, we find strikingly that infinitely many
semiclassical trajectories can be deflected by the combined Coulomb potential and laser field into the same final
momentum. The initial momenta are found to be distributed on a ring-shaped curve in the transverse momentum
plane and the initial positions of these trajectories are perpendicular to their initial momentum vectors. For
the zero final transverse momentum, the above ring-source trajectories degenerate into the point-source axial
caustic trajectories (or glory trajectories) and the quantum interference of these trajectories will dramatically alter
the scattering amplitudes, which is termed the glory rescattering effect. By following Berry’s spirit of uniform
approximation for glory scattering in optics, we can finally derive a uniform formulation of the rescattering
amplitude in the Bessel functions for the strong-field photoelectron holography patterns. Our results are in good
agreement with solutions of the time-dependent Schrödinger equation and can account for recent photoelectron
holography experiments. Important applications of our theory are also discussed.
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I. INTRODUCTION

Strong-field photoelectron holography (SFPH) provides a
powerful tool for investigating the structure and dynamics
of atoms and molecules [1–14]. The physics behind SFPH
is that in analogy to conventional optical holography, the
modulation patterns in photoelectron momentum distribution
(PMD) are the phase interference of diverse electron trajecto-
ries and therefore carry important information about the initial
states of tunneled electrons and their experienced rescatter-
ing potentials [15–17]. Nevertheless, to correctly extract the
information contained in the holographic patterns of PMDs,
sophisticated nonperturbative theories for the photoionization
and rescattering in combined Coulombic and intense laser
fields are required.

Semiclassical dynamics can provide intuitive pictures for
the strong-field ionization and has successfully explained the
physical mechanisms behind many striking structures in PMD
spectroscopy [18–22]. In the semiclassical description, the
photoelectron experiences tunneling through the electromag-
netic field suppressed Coulomb barrier and is then accelerated
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in the combined laser field and the Coulomb potential of its
parent ion. The latter process is known as rescattering or
recollision. SFPH is tightly related to the quantum interfer-
ence in the rescattering process [23–27]. Numerically, PMDs
can be obtained by directly integrating the time-dependent
Schrödinger equation (TDSE) [3,8,28,29] in full dimension-
ality (three dimensions). Theoretically, quantum scattering
theory based on strong-field approximation (SFA) [30–32]
as well as the Coulomb corrected strong field approxima-
tion (CCSFA) [33–36] has been successfully exploited to
understand many interesting structures of PMDs. More re-
cently, Gouy’s phase anomaly [37] and Maslov’s phase [38]
in strong-field rescattering trajectories are addressed [39]. In
the above discussions, two branches of trajectories, the di-
rectly ionized trajectory and the the rescattering trajectory,
are considered. However, due to the existence of caustic sin-
gularity [40,41], the scattering theories that coherently sum
over two trajectories for each asymptotic momentum fail to
analyze the glory effect, in which the contribution of infinitely
many trajectories can dramatically modulate the scattering
amplitude. In order to resolve this caustic singularity, glory
rescattering theory (GRT) has been developed [42]. According
to the GRT, infinitely many semiclassical trajectories are inte-
grated to give rise to a pattern of Bessel function distribution.
The results of the GRT are also certificated by recent two-step
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model calculations [27]. Nevertheless, the GRT focuses on
caustic singularity, i.e., the near-zero final transverse momen-
tum region in PMDs. To extend the GRT to the nonzero final
transverse momentum region and give a uniform description
of PMDs from the semiclassical trajectory perspective is ur-
gently needed for practical SFPH applications.

On the other hand, Berry in the 1960s applied a uniform
approximation theory to solve the glory scattering problems in
optics and developed a scattering amplitude formula that can
be continually applied from small-angle scattering to large-
angle scattering or even backscattering [43,44]. Following the
concept of the uniform approximation, in the present work we
extend the GRT by exploiting a semiclassical path integral to
deduce a uniform formulation for all angles of forward and
backward rescattering in PMDs. Our results are compared
with TDSE calculations, the existing theories as well as the
holography experiments.

The paper is organized as follows. In Sec. II, we present our
theoretical formulation. Section III contains our results and
discussions. Atomic units are used unless otherwise specified.

II. THEORETICAL FORMULISM

A. Scattering amplitude from the semiclassical
trajectory perspective

We start with the Hamiltonian for the atom-field interac-
tion problem in the length gauge, which takes the following
form of H[�r(t ), �p(t )] = p2(t )

2 + �F (t ) · �r(t ) − 1
r(t ) . By exploit-

ing the Dyson series [45], we have U (t, 0) = U0(t, 0) −
i
∫ t

0 dt0U (t, t0)VL(t0)U0(t0, 0), where U denotes the complete
evolution operator in the combined Coulomb potential and
laser field; U0 represents the evolution operators under pure
Coulomb potential, and has the property of U0(t0, 0)|ψ (0)〉 =
|ψ (0)〉eiIpt0 . Here Ip is the ionization potential and |ψ (0)〉
denotes the initial wavefunction; VL = �F (t ) · �r and �F (t ) is the
electric field.

With the help of Dyson’s series, we thus have the
time-dependent wavefunction |ψ (t )〉 = U0(t, 0)|ψ (0)〉 −
i
∫ t

0 dt0U (t, t0)VL(t0)U0(t0, 0)|ψ (0)〉. The scattering
amplitude of a continuum state with asymptotic
momentum �p f can be written as M �p f = 〈�p f |ψ (t f )〉 =
−i

∫
dt0〈 �p f |U (t f , t0)VL(t0)U0(t0, 0)|ψ (0)〉 with t f → ∞.

With inserting an identity
∫

d �p0| �p0〉〈 �p0| ≡ 1, we have

M �p f = −i
∫∫

dt0d �p0G( �p f , t f ; �p0, t0)D( �p0, t0)eiIpt0 . (1)

Here D( �p0, t0) = 〈�p0|VL(t0)|ψ (0)〉 represents the dipole ma-
trix element and the momentum-to-momentum propagator
G( �p f , t f ; �p0, t0) = 〈�p f |U (t f , t0)| �p0〉.

In semiclassical approximation [38,46,47], the propaga-
tor G( �p f , t f ; �p0, t0) = F ( �p f , t f ; �p0, t0)eiS( �p f ,t f ; �p0,t0 ), where the
semiclassical phase S ( �p f , t f ; �p0, t0) = ∫ t f

t0
dt (−�r(t ) · �̇p(t ) −

H[�r(t ), �p(t )]). We neglect the Maslov phase in holography
patterns, and the reason is discussed in Sec. II C. The prefactor
F = [ 1

(2π i)3 det( ∂2S
∂ p0∂ p f

)]
1
2 .

The semiclassical operator only contains the leading term
in an h̄n expansion. The semiclassical approximation is ex-
pected to be valid when the scale of the particle wavepacket is

much smaller than the typical spatial scale or for the motion
with continuous energy spectrums. This is the case for the
electron rescattering processes including the hard rescattering.
However, it is difficult to precisely elucidate the validity range
of the semiclassical propagator in strong-field physics. Some
detailed discussions on the topic can be found in Refs. [47,56].

Considering the case of a linearized laser field that is polar-
ized along the z axis, the problem intrinsically has rotational
symmetry about the axial coordinate. We therefore introduce
the cylindrical coordinates instead of Cartesian coordinates.
Thus, Eq. (1) can be rewritten as

M �p f =
∫∫∫∫

dt0d pz0d pρ0dφpρ0F · D · eiA( �p f ,t f ; �p0,t0 ). (2)

Here, A = S + Ipt0. Because F and D are slowly varying
functions, we treat Eq. (2) with the steepest descent method
for the time integration as well as the momentum integrations.
The saddle-point condition for the time variable gives

∂A
∂t0

∣∣∣∣
ts

= 0. (3)

By applying the steepest-descent method to treat the integra-
tion on pz0 and pρ0, we obtain the coordinates of the saddle
points satisfying

z(ts) = 0, �ρs · �pρs = 0. (4)

In the above deductions, we use the relation ∂A
∂ pρ

=
x cos φ + y sin φ = �ρ · �pρ/|pρ |. In contrast to the conven-
tional steepest-descent method implemented in the Cartesian
coordinates, in which the saddle-point conditions give that the
positions of the saddle points are located at the origin, in our
cylindrical coordinate representation, the saddle points might
even not be on the symmetric z axis. The second formula
in Eq. (4) gives a constraint on the initial coordinates and
momenta.

Then the scattering amplitude here becomes

M �p f ≈
∫

dφpρs

(
(2π i)3

det
(

∂2A
∂ (t0,pz0,pρ0 )

∣∣
s

)
) 1

2

FsDse
iAs , (5)

where As, Fs, and Ds represent the values at the saddle point
( �ps, ts).

In the above integration, the phase As is the implicit
function of the azimuthal angle φ. To treat this scattering am-
plitude integration, we closely follow Berry’s spirit of uniform
approximation [43,44] with renormalizing the angular vari-
able. Let us introduce a new angular variable ϕ, which satisfies
φ = 0 ↔ ϕ = 0, φ = π ↔ ϕ = π , and As(φ) = Ās(ϕ) ≡
A0 + A1 cos(ϕ), where A0 = (As(φ = 0) + As(φ = π ))/2
corresponds to the sum of the phases of the φ = 0 and φ = π

semiclassical photoelectron trajectories, and A1 = (As(φ =
0) − As(φ = π ))/2 corresponds to the phase difference be-
tween the φ = 0 and φ = π trajectories.

With the variable transformation, the scattering amplitude
of Eq. (5) turns out to be (see Appendix A for details)

M �p f ≈
∫ 2π

0
dϕC(ϕ)ei(A0+A1 cos ϕ). (6)
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The prefactor C(ϕ) takes the form

C(ϕ) ∝ Ds√
d2As
dt2

s

(A1 cos ϕ)
1
2

pρs

pρ f
det

(
∂ (pzs, pρs)

∂ (pz f , pρ f )

)
. (7)

We can approximate the above function in the follow-
ing form: C(ϕ) ≈ 1

2 (C(0) + C(π )) + 1
2 (C(0) − C(π )) cos ϕ.

Finally, the scattering amplitude integration can be evaluated
by the Bessel functions in the following explicit forms, which
is termed the uniform glory rescattering theory (UGRT):

M �p f ≈ 1

2

∫ 2π

0
dϕ[(C(0) + C(π )) + (C(0)

− C(π )) cos ϕ]eiA1 cos ϕ

= 1

2
(C(0) + C(π ))J0(A1) − 1

2
i(C(0) − C(π ))J1(A1).

(8)

Let us now analyze the physics behind the above deduc-
tions. From the expression of Eq. (5), we see that for a given
final photoelectron momentum, in contrast to conventional
recognition of the two-trajectory interference, we find that
infinitely many semiclassical trajectories can be deflected
by the combined Coulomb potential and laser field into the
same final momentum. This phenomenon was mentioned very
recently only for the case of zero final transverse momen-
tum [42], where the infinitely many trajectories of tunneling
electrons at moment Re(ts) on the z axis with equal transverse
momentum are rescattered to the final states with zero trans-
verse momentum, leading to so-called caustic singularity [48].
A similar phenomenon is termed the glory scattering, first
discussed in optics and then extended to particle scattering
by Wheeler [41,49,50]. The quantum interference of the in-
finitely many glory trajectories will manipulate the scattering
amplitude, showing a bright fringe around the zero angle in
SFPH. This picture is apparent and can be readily imagined
by considering the cylindrical symmetry of the geometric
configuration of the problem.

Our above deductions explicitly indicate that the infinite-
trajectory interference can emerge also for nonzero final
transverse momenta. According to Eq. (4) and from our
detailed calculations of these semiclassical trajectories (see
Figs. 1 and 2 in the following section), we find that the initial
positions of these trajectories are no longer on the symmet-
ric z axis and are found to be distributed on a ring-shaped
curve in the transverse coordinate plane. The initial transverse
momenta are perpendicular to the initial position vectors ac-
cording to the constraint of Eq. (4).

Moreover, the expression of Eq. (8) shows that the scatter-
ing amplitude can be expressed in the sum of zero-order and
first-order Bessel functions in uniform approximation. The
variable A1 in the Bessel functions represents the phase differ-
ence of two distinct semiclassical trajectories corresponding
to φ = 0 and φ = π , respectively. When the final transverse
momentum tends to zero, C(0) equals C(π ), and Eq. (8) will
reduce to the formulation of GRT in Ref. [42]. In GRT, M �p can
be written in the form |M �p|2 ∼ � p⊥gbgJ2

0 (p⊥bg) in which p⊥g

is the initial transverse momentum of the glory trajectory at
the tunneling exit, bg is the emergent impact parameter of the
glory trajectory, and � is the weight of the glory trajectory.

FIG. 1. Photoelectron semiclassical trajectories in (a) coordi-
nate space and (b) momentum space for the final state of pz f =
0.66 a.u., px f = 0.12 a.u., py f = 0. (c) The initial positions on the
projected x-y plane and (d) the initial transverse momenta on the pro-
jected px-py plane. The laser parameters are λ = 1200 nm and I =
8.7 × 1013 W/cm2.

In this situation, we note that the phase difference of A1

in Eq. (8) approximately equals p⊥bg; here p⊥ is the final
transverse momentum.

Note that various alternative semianalytical methods have
been used in strong-field ionization, such as the improved SFA
(ISFA), various versions of the CCSFA, and the analytical
R matrix (ARM) [13]. In the semiclassical framework, we
exploit the semiclassical evolution operator G in Eq. (1) which
includes all the interactions that photoelectrons undergo in the
ionization and rescattering processes, while in ISFA, Dyson’s
series is iterated by using an approximate evolution operator
that usually only contains the laser field. In particular, we
find that infinitely many semiclassical paths can approach the
same final momentum, and the quantum interference of these
trajectories will dominate the holographic fringe structure. In
contrast to CCSFA, our theory properly takes into account the
contributions of these infinitely many paths by using uniform
approximation. Our semiclassical approach differs from the
ARM method [51,52] that splits the space into an inner and
outer region and only in the outer region the concept of quan-
tum trajectories is employed.

B. Calculations of semiclassical trajectories
and associated phase accumulations

States at some typical times that an electron experiences
in its ionization process are listed in Table I, in which Re(ts)
is the real part of saddle-point time ts. The condition of
the saddle point according to Eq. (3) is obtained by solving
the saddle-point equation within the strong-field approxima-
tion (see, e.g., Refs. [53,54]) 1

2 ( p̃2
ρs + [ p̃zs + A(ts)]2) + Ip =

0, where p̃ is the canonical momentum. The corresponding
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ρ

φ0φ0

ρ 0

FIG. 2. For pz f = 0.6 a.u., py f = 0, and px f varied from 0 to
0.2 a.u., we present (a) the calculated initial transverse momentum
of pρ0 depending on azimuthal angle of φ0, and (b) the initial dis-
placement of ρ0 to the z axis depending on azimuthal angle of φ0.
(c) For px f = 0 corresponding to the glory caustic singularity, the
initial positions are exactly at the origin of the projected x-y plane;
the initial transverse momenta are schematically shown by arrows.
(d) The same as (c) but px f = 0.03 a.u. (e) The initial transverse
momenta of photoelectron trajectories when px f = 0.2 a.u., and (f)
the corresponding initial positions on the projected x-y plane. The
black areas in (a) and (b) represent the classical trajectory forbidden
regions. The dashed lines in (e) and (f) are the analytical extensions
of the solutions to the forbidden regions. The laser parameters are
λ = 1200 nm and I = 8.7 × 1013 W/cm2.

kinetic momenta at the saddle point are then given by pzs =
p̃zs + A(ts) and pρs = p̃ρs.

Under the constraint of the saddle-point condition of
Eq. (4), for a given final momentum, we can use shoot-
ing method [55] to obtain the initial conditions of semi-
classical trajectories by solving the following Newton
equations of motion numerically using the Runge-Kutta-
Fehlberg method: �̇p = − �F (t ) − �∇V (�r(t )), where V (�r(t )) is
the atomic potential. The asymptotic condition is that t →
∞, �p → �p f . In semiclassical treatment, the phase of each
trajectory is divided into two parts: An ionization pro-
cess phase and an acceleration process phase. The phase

TABLE I. States of an electron in ionization process.

Time State description Position and/or momentum

ts Saddle point zs = 0, �ρs · �pρs = 0, �pzs, �pρs

Re(ts ) Tunneling exit �r0 = Re
∫ Re(ts )

ts
( �̃p + A(t ))dt, �ps

t f = ∞ Final state �pf , �̇p = − �F (t ) − �∇V ( �r(t ))

accumulated during the ionization process is given by A(ts →
Re(ts)) = − 1

2

∫ Re(ts )
ts

( p̃2
ρs + [ p̃zs + A(t )]2) dt . The phase accu-

mulated during the acceleration process can be expressed as
A(t f ; Re(ts)) = − ∫ t f

Re(ts ) dt{ �̇p(t ) · �r(t ) + H[�r(t ), �p(t )]} [56].
With these semiclassical trajectories and corresponding

phases, we can reconstruct the photoelectron momentum
spectrum according to Eq. (8).

C. Some remarks

In conventional treatments, one directly treats the integral
of Eq. (1) with the steepest-descent method for all momen-
tum variables in Cartesian coordinates; the initial positions of
a tunneled electron will locate on the z axis. Then, within
half a laser cycle there are usually two trajectories (one is
the directly ionized trajectory, the other is the rescattering
trajectory) that can reach the same final momentum. The two-
trajectory interference is used to explain the SFPH where the
modulation fringe can be expressed in the cosine function of
the phase difference between the two trajectories. Recently,
the Gouy phase [37] was introduced to the two-trajectory
strong-field interference picture in a three-dimensional (3D)
model to compensate for the divergence of the preexponential
factors of the semiclassical propagator at focal points [39].
As a result, the phase difference in the cosine function will
be modified by a νπ/2 phase, where ν is the Maslov in-
dex [57–60]. In fact, due to the cylindrical symmetry of the
problem, infinitely many ring-source trajectories can converge
to the same final momentum state. The quantum interference
of the ring-source trajectories will give rise to the pattern
in PMDs of Bessel functions instead of cosine functions.
Within the framework of UGRT, the Maslov phases of differ-
ent trajectories vanish. This is because in the representation
of cylindrical coordinates, due to the cylindrical symmetry,
the system is essentially reduced to a two-dimensional (2D)
problem under the uniform approximation, in which the pre-
exponential factors of the semiclassical propagator keep finite
along the rescattering trajectories (i.e., no focal points) ac-
cording to our detailed calculations.

III. APPLICATIONS

A. Hydrogen atom in linearly polarized laser fields

As a demonstration, we consider a hydrogen atom irradi-
ated by a few-cycle linearly polarized infrared laser pulse. The
vector potential of the laser field is

A = −A0

ω
sin2

(
πt

tp

)
sin(ωt )�ez, (9)

053115-4



SEMICLASSICAL TRAJECTORY PERSPECTIVE OF GLORY … PHYSICAL REVIEW A 105, 053115 (2022)

where tp = 4π
ω

. The laser field is present between t = 0 and
t = tp, and �ez is the unit vector pointing in the polarization
direction. The electric field is obtained by �F = − 1

c
∂A
∂ (t ) .

1. Ring-source semiclassical trajectories

We use the shooting method to obtain semiclassical tra-
jectories for a given final momentum under the constraint
of saddle-point conditions given by Eq. (4). Our numerical
results show that there are infinitely many semiclassical trajec-
tories deflected by the combined Coulomb potential and laser
field into the same final momentum. In Figs. 1(a) and 1(b),
we draw some typical trajectories of the electron in coor-
dinate space as well as momentum space, and all of these
trajectories reach the same final momenta of pz f = 0.66 a.u.,
px f = 0.12 a.u., and py f = 0 when t f → ∞. From Figs. 1(c)
and 1(d), we see interestingly that the initial momenta of
these semiclassical trajectories are distributed in a ring, and
the initial coordinates are no longer on the z axis and show a
symmetric double-ring structure. After the acceleration of the
laser field and the scattering of the nuclear Coulomb potential,
these photoelectrons are finally scattered into the same final
momentum [see Fig. 1(b)].

Figures 2(a) and 2(b) show the initial transverse momen-
tum pρ0, position ρ0, and azimuthal angle φ0 with respect to
final transverse momentum px f for the fixed final momenta
pz f = 0.6 a.u., py f = 0. When final transverse momenta px f

tend to zero, the initial transverse momentum becomes in-
dependent on φ0, and the initial positions ρ0 tend to zero.
This corresponds to a glory rescattering trajectory as shown
in Fig. 2(c). For small px f of 0.03 a.u., in Fig. 2(d), we also
draw the joint distribution of the initial positions and initial
momenta of photoelectron trajectories, which forms a ring
source similar to that of Fig. 1.

Interestingly, with increasing the transverse final momen-
tum more (>0.16 a.u.), our calculations show some classical
trajectory forbidden regions denoted by the black areas in
Figs. 2(a) and 2(b). For instance, we plot, for the case of
px f = 0.2 a.u., the initial transverse momenta of photoelec-
tron trajectories in Fig. 2(e) and the initial positions on the
x-y plane Fig. 2(f). In our calculations, we confine our initial
positions of tunneling electrons within 16 a.u. distance to the
z axis. To apply our UGRT to these situations, we need to
make the analytical extension of the solutions to the forbidden
regions, as indicated by the dashed lines in Figs. 2(e) and 2(f).

2. Calculations of PMDs

To validate our theory, we also solve the time-dependent
Schrödinger equation of a hydrogen atom in an infrared
few-cycle linearly polarized laser field with a generalized
pseudospectral method [61]. The corresponding Hamiltonian
is H[�r(t ), �p(t )] = p2(t )

2 + �F (t ) · �r(t ) − 1
r(t ) .

In Fig. 3, we compare our theoretical results with the TDSE
for varied laser wavelengths. From Figs. 3(a) and 3(b) we
can clearly see that the fringes calculated using UGRT are
highly consistent with the results of the TDSE. UGRT can
precisely predict the positions of interference fringes even for
the large scattering angles. In the present numerical simula-
tion, we focus on holographic interference. Therefore, we use

FIG. 3. [(a) and (b)] The PMDs for the hydrogen ionized by
laser pulses with 8.7 × 1013 W/cm2 intensity calculated by TDSE,
and the interference fringes predicted by our UGRT (black lines).
[(c) and (d)] The momentum distributions corresponding to fixed
final momenta p = 0.6 a.u. from calculations of TDSE (solid black
lines), UGRT (solid red lines), and GRT (dashed blue lines), respec-
tively. The wavelength of laser pulses are [(a) and (c)] λ = 1600 nm
and [(b) and (d)] λ = 1200 nm . In (c) and (d), scattering angle
θ = arctan(

pρ f

pz f
).

a few-cycle laser pulse to reduce intercycle interference. The
soft recollision is also prohibited in this case, and the low-
energy structure [62] is not apparent. The one-dimensional
(1D) slices of PMDs at the fixed final momenta p in Figs. 3(c)
and 3(d) show that the results of UGRT can also quantitatively
predict the scattering amplitudes. As a comparison, the GRT
can only give a good prediction inside the first scattering min-
imum but fails to predict both fringe positions and scattering
amplitudes for the higher-order fringes.

For the small scattering angle, the scattering amplitude
predicted by the two-trajectory interference models (even with
Gouy’s phase modification) diverges because the prefactor
det( ∂ �ps

∂ �p f
) there tends to infinity [39]. In our UGRT and GRT,

the presence of the term of the square root of the phase
difference in the prefactor [see Eq. (7)] will eliminate this sin-
gularity. When the final transverse momentum is large, i.e., for
the large scattering angles, the phase differences increase. The
Bessel functions then reduce to the simple cosine functions
in the asymptotical forms of Jα (x) →

√
2

πx cos(x − απ
2 − π

4 ),
where α is the order of the Bessel function.

B. Application to experiment of xenon

We now apply our theory to the experiment of xenon [the
red lines in Fig. 4(a) and black squares in Fig. 4(b)]. The
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FIG. 4. Experimental holographic pattern and positions of the
dark fringes calculated by UGRT [red lines in (a)], GRT (dashed
black lines), and CCSFA (purple triangles). Positions of the bright
fringes calculated by UGRT [black squares in (b)]. The experimental
data are extracted from Ref. [8], where the metastable (6s) Xe atoms
with ionization potential of 0.14 a.u. are ionized with linearly polar-
ized mid-infrared laser pulses with duration of 5 to 20 cycles. The
laser parameters are λ = 7 μm and I = 7.1 × 1011 W/cm2.

experiments of metastable (6s) Xe atoms in this figure are
using mid-IR laser pulses with the wavelength of 7000 nm [8].
We calculated cases with pulse duration varied from 5 to 20
cycles. No significant changes of fringe spacing are observed
when the pulse duration is varied. In Fig. 4 we show the
theoretical results of a five-cycle laser pulse. The positions
of bright and dark fringes predicted by our theory are in good
agreement with the experimental results. As a comparison, we
also plot the results predicted by other theories such as GRT
(black dash) and CCSFA (purple solid triangles). According
to CCSFA, the coherent summation of the two paths leads
to cos �S-type oscillations in holography patterns. However,
infinitely many semiclassical paths can approach the same
final momentum, and the quantum interference of these tra-
jectories will dominate the holographic fringe structure. Our
UGRT takes into account the contributions of these infinitely
many trajectories by properly dealing with the integration over
the azimuthal angle using uniform approximation. We can
see that CCSFA even fails to predict the position of the first
dark fringe, while GRT and UGRT are in perfect agreement
with the experiment in this region. However, the discrepancy
between the GRT and UGRT becomes more apparent for the
third- or higher-order fringes. We hope that these theoretical
predictions can be calibrated in the future by SFPH experi-
ments with higher resolution.

IV. CONCLUSIONS

We investigate the PMDs of the ionized atoms irradi-
ated by a linearly polarized strong laser field and provide a
semiclassical trajectory perspective of glory rescattering in
SFPH. We calculate the scattering amplitudes in the cylin-
drical coordinate representation and finally derive a uniform
formulation in the Bessel functions for the SFPH patterns.
Our results are also in good agreement with solutions of the
TDSE calculations and can give explanations for recent pho-
toelectron holography experiments of Xe atoms. Compared
with existing theories (see Table II), our UGRT provides a
distinct ring-source infinite-trajectory interference description
for photoelectron holograph patterns analogous to ring-source
diffraction in optics. Our results of uniform approximation
can also be applied to molecule and nondipole situations. Our
further calculations show that the theory can be generalized to
initial states other than s states; related works are ongoing. Our
work therefore has important implications in both theoretical
aspects and the practical applications of SFPH.
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APPENDIX A: UNIFORM APPROXIMATION

From Eq. (5) we can see that the phase As is the implicit
function of the azimuthal angle φ. To treat this scattering am-
plitude integration, we closely follow Berry’s spirit of uniform
approximation [43,44] with renormalizing the angular vari-
able. Let us introduce a new angular variable ϕ, which satisfies
φ = 0 ↔ ϕ = 0, φ = π ↔ ϕ = π , and As(φ) = Ās(ϕ) ≡
A0 + A1 cos(ϕ), where A0 = (As(φ = 0) + As(φ = π ))/2
corresponds to the sum of the phases of the φ = 0 and φ = π

semiclassical photoelectron trajectories, and A1 = (As(φ =
0) − As(φ = π ))/2 corresponds to the phase difference be-
tween the φ = 0 and φ = π trajectories. Further, we can get

dφ

dϕ
= dĀs

dϕ

/
dAs

dφ
= A1 sin ϕ

Lφ

, (A1)

where Lφ = − dA
dφ

is the photoelectron angular momentum
along the polarization direction. For a linearly polarized laser
field, the mirror symmetry will lead to dAs

dφ
= 0 at φ = 0 and

TABLE II. Optical analogs of SFPH theories (�S denotes the phase difference of semiclassical trajectories).

Theory Interference picture Interference formula Optical analogs

Conventional models Two-trajectory interference cos(�S) Double slit interference
UGRT Ring-source infinitely many trajectories C0J0(�S) + C1J1(�S) Ring-source diffraction
GRT Point-source infinitely many trajectories J0(�S) Point-source diffraction
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π . Both the denominator and numerator in Eq. (A1) become
zeros when φ = 0 and π . Using L’Hospital’s rule, we have

dφ

dϕ
= d (A1 sin ϕ)/dφ

dLφ/dφ
= d (A1 sin ϕ)/dϕ

dLφ/dφ

/(
dφ

dϕ

)
, (A2)

dφ

dϕ
=

(
A1 cos ϕ

/
dLφ

dφ

) 1
2

. (A3)

With the variable transformation, the scattering amplitude
of Eq. (5) turns out to be

M �p f ≈
∫ 2π

0
dϕC(ϕ)ei(A0+A1 cos ϕ), (A4)

where C(ϕ) is the prefactor in the scattering amplitude integral
which takes the following form:

C(ϕ) = eiA0FsDs pρs

(
∂2As

∂t2
s

)− 1
2

⎛
⎝ (2π i)3A1 cos ϕ

dLφ

dφ
det

(
∂2As

∂ (pzs,pρs )

)
⎞
⎠

1
2

,

(A5)
where dLφ

dφ
= − d2As

dφ2
0

. When ϕ = 0 and ϕ = π , we can prove
the property that (proved in Appendix B)

d2As

dφ2
0

det
∂2As

∂ (pρs, pzs)
= det

(
∂2As

∂ (pzs, pρs, φ0)

)
. (A6)

Furthermore,

p2
ρs/ det

(
∂2As

∂ (pzs, pρs, φ0)

)
=

(
det

(
∂2As

∂ �p2
s

))−1

. (A7)

In the semiclassical model, the prefactor Fs ∝
(det( ∂2As

∂ �ps∂ �p f
))

1
2 . We can combine the two determinants in

Eq. (A5), det( ∂2As
∂ �ps∂ �p f

))
1
2 (det( ∂2As

∂ �p2
s

))−1 = det( ∂ �ps

∂ �p f
).

Under the cylindrical symmetry of linearly polarized fields,
we have

det

(
∂ �ps

∂ �p f

)
= pρs

pρ f
det

(
∂ (pzs, pρs)

∂ (pz f , pρ f )

)
. (A8)

Substituting Eq. (A8) into Eq. (A5), we get the prefactor of
the following form:

C(ϕ) ∝ Ds√
d2As
dt2

s

(A1 cos ϕ)
1
2

pρs

pρ f
det

(
∂ (pzs, pρs)

∂ (pz f , pρ f )

)
. (A9)

Based on the above derivation, we can approximate the
scattering amplitude integral in cylindrical coordinates to the
form expressed by Bessel functions, and finally get Eq. (8).

APPENDIX B: DERIVATION OF EQ. (A6)

Under the saddle-point condition of our derivation,

∂As

∂ pz0
= 0,

∂As

∂ pρ0
= 0. (B1)

Differentiating the above equations, we get

d

(
∂As

∂ pz0

)
= ∂2As

∂ p2
z0

d pz0 + ∂2As

∂ pz0∂ pρ0
d pρ0 + ∂2As

∂ pz0∂φ0
dφ0

= 0,

d

(
∂As

∂ pρ0

)
= ∂2As

∂ p2
ρ0

d pρ0 + ∂2As

∂ pz0∂ pρ0
d pz0 + ∂2As

∂ pρ0∂φ0
dφ0

= 0. (B2)

According to the total differential formula, we have the fol-
lowing properties:

d2As = ∂2As

∂ p2
z0

d p2
z0 + ∂2As

∂ p2
ρ0

d p2
ρ0 + ∂2As

∂φ2
0

dφ2
0

+ 2
∂2As

∂ pz0∂ pρ0
d pz0d pρ0 + 2

∂2As

∂ pρ0∂φ0
d pρ0dφ0

+ 2
∂2As

∂φ0∂ pz0
dφ0d pz0. (B3)

Using the above properties we can get the property of
Eq. (A6) we need in Appendix A,

det

(
∂2As

∂ (pz0, pρ0)

)
d2As

dφ2
0

=
(

∂2As

∂ p2
z0

∂2As

∂ p2
ρ0

−
(

∂2As

∂ pz0∂ pρ0

)2
)

×
(

∂2As

∂φ2
0

+ ∂2As

∂ pρ0∂φ0

d pρ0

dφ0
+ ∂2As

∂φ0∂ pz0

d pz0

dφ0

)

= ∂2As

∂ p2
z0

∂2As

∂ p2
ρ0

∂2As

∂φ2
0

−
(

∂2As

∂ pz0∂ pρ0

)2
∂2As

∂φ2
0

−
(

∂2As

∂ pz0∂φ0

)2
∂2As

∂ p2
ρ0

−
(

∂2As

∂ pρ0∂φ0

)2
∂2As

∂ p2
z0

+ 2
∂2As

∂ pρ0∂φ0

∂2As

∂ pz0∂ pρ0

∂2As

∂ pz0∂φ0

= det

(
∂2As

∂ (pz0, pρ0, φ0)

)
. (B4)
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