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Determination of atomic multiphoton-ionization phases by trichromatic multichannel
wave-packet interferometry
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We present the unambiguous determination of quantum phases in the multiphoton ionization (MPI) of potas-
sium atoms by using a multichannel photoelectron interferometry scheme based on trichromatic pulse shaping.
The colors of the laser field are chosen to produce three energetically separated photoelectron interferograms in
the continuum. While the red pulse is two-photon resonant with the 3d state resulting in a (2 + 1) resonance-
enhanced MPI (REMPI), a (1 + 2) REMPI occurs via the nonresonant intermediate 4p state with an initial green
or blue pulse. We show that ionization via a nonresonant intermediate state lifts the degeneracy of photoelectron
interferograms from pathways consisting of permutations of the colors. The analysis of the interferograms reveals
a phase shift of ±π/2 depending on the sign of the detunings in the (1 + 2) REMPI pathways. In addition, we
demonstrate that the photoionization time delay in the resonant (2 + 1) REMPI pathway gives rise to a linear
spectral phase in the photoelectron spectra. Insights into the underlying MPI processes are gained through an
analytic perturbative description and numerical simulations of a trichromatic driven three-level system coupled
to the continuum.
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I. INTRODUCTION

Being at the heart of atomic, molecular, and optical
physics, photoionization has been studied for over a cen-
tury, both experimentally and theoretically. Initially, Einstein
gave a theoretical interpretation of the photoelectric effect
in his seminal 1905 publication [1], where he envisioned
the possibility of processes in which an “energy quantum
of emitted light can obtain its energy from multiple incident
energy quanta.” Subsequently, a quantum-mechanical descrip-
tion of two-photon transitions was given by Göppert-Mayer
in 1931 [2] paving the way to our modern understanding
of multiphoton ionization (MPI). Sophisticated MPI schemes
combined with highly differential detection techniques for
the time-, energy-, and angle-resolved measurements have
established the field of nonlinear photoelectron spectroscopy
yielding numerous applications in fundamental and applied
physics, as described in monographs [3–11] and review arti-
cles [12–16]. Attosecond electron dynamics [17,18], coherent
control of atomic and molecular dynamics by shaped laser
pulses [19–24], and the generation of free electron vortices
[25–29] are examples for the wide variety of modern top-
ics in atomic and molecular MPI. In addition to measure
the photoelectron probability density distribution the use
of interferometric techniques [30] has made it possible to
determine the phase of photoelectron wave packets. Quantum-
mechanical phases are key to coherent control [31–35] and
essential for the complete characterization of the wave func-
tion [36–38]. Knowledge about the phase of photoelectron
wave functions from atomic [39–41] and molecular [42–44]
photoionization processes provides insights into the underly-
ing dynamics [45] accompanied with photoemission phases
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and time delays [46–52]. In those measurements, the superpo-
sition of multiple partial waves gave rise to phase-sensitive
interference patterns that allowed the quantum-mechanical
phase to be reconstructed. In general, the exact shape of an
interferogram is determined by the ionizing radiation’s optical
phase and the additional quantum phase due to the ionization
dynamics. To distinguish between these two phases, in the fol-
lowing, the phase introduced by laser radiation will be referred
to as the optical phase, while the quantum-mechanical phase
resulting from ionization dynamics will be referred to as the
MPI phase. Very recently, building on the results presented
in [40], MPI phases from multiple intermediate states were
investigated in the photoionization of helium atoms [41].

In this paper, we demonstrate a trichromatic MPI scheme to
decouple the MPI phase measurement from the optical phase
control for an unambiguous determination of the MPI phase.
We exemplify our scheme on the trichromatic three-photon
ionization of potassium atoms to investigate the MPI phases
due to the intermediate resonances. It has been shown that
interference patterns in photoelectron spectra from multichro-
matic MPI, such as bichromatic photoelectron vortices, are
sensitive to the carrier-envelope phase (CEP) [28]. However,
we have recently demonstrated a pulse-shaper-based trichro-
matic MPI scheme for quantum state holography [53] in
which the photoelectron hologram is sensitive to the MPI
phases and the relative optical phases between the colors in
the trichromatic pulse sequence but insensitive to the CEP.
While in the proof-of-principle experiment in [53] the focus is
on optical phase control of one single photoelectron hologram
and the imprinted time-evolution phases, here we apply and
extend the technique by simultaneously using multiple pho-
toelectron interferences to detect acquired MPI phases along
different quantum pathways. To this end, we use temporally
overlapping trichromatic fields with the central frequencies of
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FIG. 1. (a) Excitation scheme of potassium atoms interacting perturbatively with a linearly polarized trichromatic field for multichannel
interferometry together with the experimental multiphoton spectrum. We use temporally overlapping trichromatic pulses with frequencies
2ωg = ωr + ωb (black dashed box in the left figure) to achieve interference of photoelectrons by MPI with different combinations of red,
green, and blue photons. The interference leads to three energetically separated photoelectron interferograms in the interference channels 1–3
(highlighted in orange, petrol blue, and violet). The frequencies are spectrally confined to be either two-photon resonant with the 3d state, i.e.,
2ωr � ω3d, or one-photon near but nonresonant with the 4p state, i.e., ωg � ω4p < ωb (right bottom inset). The near-resonant excitation of the
4p state lifts the degeneracy of the frequency mixing pathways and causes the second channel to split into two bands (εlow

2 and ε
up
2 ) around ε2.

(b) Measured and Abel-inverted photoelectron signals in polar coordinates. (c) Measured and tomographically reconstructed 3D PMD with
color-coded interference channels at ε1-ε3.

the red (ωr), green (ωg), and blue (ωb) spectral bands chosen
such that 2ωg = ωr + ωb. Due to this frequency condition,
the laser pulses create free electron wave packets forming
interferograms in three different photoelectron kinetic-energy
windows, referred to as interference channels. By design, the
interferograms consist of wave packets from (1 + 2) reso-
nance enhanced MPI (REMPI) via the 4p state or (2 + 1)
REMPI via the 3d state. The observed interference patterns
are sensitive to the MPI phases as well as the relative optical
phases. Motivated by the concerted generation of multiple
interferograms in one photoelectron spectrum, the technique
is termed trichromatic multichannel wave-packet interferom-
etry. Due to the temporal overlap of the fields, the observed
interferograms also map the phases introduced by transiently
populated atomic bound states. The MPI phases are extracted
from energy-resolved photoelectron spectra measured as a
function of the relative optical phase of the green spectral
component. In the resulting phase-resolved measurements, the
quantum phases manifest as relative phase shifts between the
interferograms in the different channels. The interpretation
of the experimental results is supported by the analysis of a
model system consisting of a three-level atom coupled to the
continuum. To simulate laser-induced bound and ionization

dynamics we study both the analytic perturbative description
and the numeric solution of the time-dependent Schrödinger
equation (TDSE).

II. PHYSICAL SYSTEM AND THEORY

In this section, we present the physical system studied
by our shaper-based multichannel interferometry scheme. We
provide a theoretical description of the measured photoelec-
tron momentum distributions (PMDs) with emphasis on their
dependence on the optical and MPI phases. Based on the theo-
retical model, we analyze our experimental results in Sec. IV.

A. Physical system

The excitation scheme of potassium atoms interacting
perturbatively with parallel linearly polarized (PLP) trichro-
matic fields is shown in Fig. 1(a). In the experiment, we
use temporally overlapping trichromatic pulses to produce the
interference of multiple MPI pathways from different com-
binations of red (r), green (g), and blue (b) photons, i.e.,
single-color and frequency mixing contributions [54] in the
photoelectron spectrum. Usually, in multichromatic MPI, only
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TABLE I. Interference channels with the relevant resonance-enhanced pathways together with the theoretical MPI phases and the
corresponding MPI phase differences. In all cases we use δ2 � 0 according to the experiment.

Channel Name Path Theoretical MPI phase χ Theoretical MPI phase difference γ

1 RI ggr χ non
δ1<0 = 3π

2 γ
(1)

theo(ε) = π

2 − ξ (ε)
RII rrb χ res

δ1<0(ε) = π + ξ (ε)

2 GI ggg χ non
δ1<0 = 3π

2 γ
(2,low)

theo = π

G low
II brg χ non

δ1>0 = π

2

GI ggg χ non
δ1<0 = 3π

2 γ
(2,up)

theo = 0
Gup

II grb χ non
δ1<0 = 3π

2

3 BI ggb χ non
δ1<0 = 3π

2 γ
(3)

theo = π

BII brb χ non
δ1>0 = π

2

permutations of a given color combination connect the same
initial and final states. However, by appropriate choice of
the field’s frequencies, even different color combinations give
rise to interference in several energetically separated final
states. In the experiment, the photon energies are chosen to
ensure the same number of photons (three) not only in each
frequency mixing pathway but also in the green single-color
pathway. Consequently, the photoelectron interferograms are
insensitive to CEP variations, but are controlled by the relative
optical phases. To maximize the generation of the frequency
mixing signals, all three colors overlap in time. The inter-
ference of frequency mixing pathways consisting of different
photon combinations is observed when the central frequen-
cies and the time delays of the trichromatic field are chosen
such that

2ωg = ωr + ωb < ωIP, (1)

τr = τg = τb, (2)

where ωr, ωg, ωb and τr , τg, τb denote the central frequencies
and time delays of the red (r), green (g), and blue (b) spectral
components. VIP = h̄ωIP describes the ionization potential.
The spectral and temporal conditions (1) and (2) form the
basic building block of the presented scheme which is visu-
alized by the dashed box in the left inset of Fig. 1(a). When
both conditions are met, the trichromatic field simultaneously
generates three energetically separated photoelectron interfer-
ograms in the continuum. In the following, the corresponding
energy windows centered around ε1, ε2, and ε3 will be referred
to as interference channels [see Fig. 1(a)]. To study the MPI
phases induced by intermediate resonant states, the frequen-
cies are further chosen to be either two-photon resonant with
the 3d state, i.e., 2ωr = ω3d, or one-photon near resonant with
the 4p state, i.e., ωg � ω4p < ωb. Since the (near-)resonant
excitation is more efficient, the 4p and 3d intermediate states
select the resonance-enhanced pathways, listed in Table I.

For example, the interferogram in channel 1 is created
by the interference of photoelectrons via the resonance-
enhanced MPI pathways RI and RII. The pathway RI,
denoted as (ggr), describes the absorption of two green (gg)
photons and one red (r) photon in this order. Similarly, the
pathway RII, denoted as (rrb), describes the absorption of
two red (rr) photons and one blue (b) photon. The other
resonance-enhanced pathways leading to the channels 2 and

3 are labeled in the same way. Even though the color com-
binations of the individual MPI pathways are quite different,
the total optical phase difference 
ϕ introduced by the re-
spective laser pulses is the same for all interferograms. The
perturbative description of the REMPI in Sec. II B shows that
this phase difference is 
ϕ = 2ϕg − ϕr − ϕb, where ϕr, ϕg,
and ϕb are the relative optical phases of the red, green, and
blue pulse, respectively [see Eq. (8)]. Therefore, the variation
of 
ϕ induces a uniform amplitude modulation of the interfer-
ograms in each channel. By scanning the relative optical phase
ϕg and measuring energy-resolved photoelectron spectra we
map out the amplitude modulation. In the following, these
multiple energy-resolved interferograms in a phase-resolved
measurement are denoted as the phase map to underscore
both the relative optical phase as the key parameter in the
measurement and the two-dimensional (2D) character of the
result. Because the influence of the total optical phase dif-
ference 
ϕ and the CEP is the same in each interferogram,
relative phase shifts between the recorded modulations in the
phase maps are exclusively attributed to differences in the
MPI phases acquired in the corresponding pathways. Thus,
in this trichromatic scheme the recorded phase maps provide
direct access to the MPI phases via the observed phase shifts
between the interferograms.

In the experiment we use temporally overlapping trichro-
matic PLP laser fields with central wavelengths of λr =
925 nm (red band), λg = 797 nm (green band), and λb =
708 nm (blue band). The corresponding frequencies meet the
frequency condition in Eq. (1). To study the MPI phase
from resonant excitation, the red pulse is two-photon res-
onant with the 3d state [55] with the very small detuning
h̄δ3d

r = 2h̄ωr − h̄ω3d ≈ 10 meV [see left magnification in
Fig. 1(a)]. The spectral full width at half maximum (FWHM)
of the red pulse is h̄
ωr ≈ 30 meV. In contrast, the MPI
phases due to the transient population dynamics in the nonres-
onant 4p state are studied with the green (h̄
ωg ≈ 60 meV)
and blue (h̄
ωb ≈ 70 meV) pulses. To eliminate the spectral
intensity of the pulse at the transition frequency ω4p [55] a me-
chanical blocker is inserted into the Fourier plane of our pulse
shaper [see bottom right inset of Figs. 1(a) and 3(a)]. This
procedure guarantees nonresonant excitation of the 4p state
despite the small detuning. As a consequence, the spectrum
of the green pulse is slightly asymmetric. The detunings of
the green and blue pulse are h̄δ

4p
g = h̄ωg − h̄ω4p ≈ −50 meV
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and h̄δ
4p
b = h̄ωb − h̄ω4p ≈ 140 meV, respectively [see right

magnification in Fig. 1(a)]. Thus, our trichromatic scheme
allows us to study MPI phases from excitation of two different
intermediate states either via resonant or via red- (δ4p

g < 0)
and blue-detuned (δ4p

b > 0) near-resonant pathways simulta-
neously.

In our theoretical model, the atom is described by a
three-level system coupled to the continuum. The bound part
consists of the ground state |g〉 and the two (near-)resonant
intermediate states |a〉 and |b〉. The final state | f 〉 with vari-
able energy describes the free electron in the continuum (for
details see Sec. II B). Due to the choice of the photon energies
described above, the photoelectron interferograms in channels
1 and 3 are centered around the energies ε1 = 0.10 eV and
ε3 = 0.50 eV. Generally, pathways composed of the same
color combinations are energetically degenerate since they
differ only by permutations. However, the transient population
of the near-resonant 4p state introduces a spectral shift. In par-
ticular, since the green pulse is slightly red-detuned (δ4p

g < 0)
with respect to the 4s → 4p transition, its transient population
follows the laser field envelope with an additional temporal
phase. As a consequence, the photoelectron signals mapping
the 4p state are slightly shifted upwards in energy. For the
same reason, wave packets created via pathways starting with
a blue photon (δ4p

b > 0) are slightly shifted downwards in en-
ergy. Thus, near but nonresonant excitation of the 4p state lifts
the degeneracy of the involved frequency mixing contribu-
tions introducing an energetic splitting between the pathways
with an initial green photon and those starting with a blue pho-
ton. In the interference channels 1 and 3 only the upper signals
are observed since the multiplicity of the green-green-red and
green-green-blue pathways favors the ones with a leading
green photon. In channel 2 the red-green-blue pathway around
ε2 = h̄(ωr + ωg + ωb) = 0.31 eV exhibits both an up-shifted
signal centered around ε

up
2 from the pathways with an initial

green photon and a down-shifted signal centered around εlow
2

from the pathways with an initial blue photon. Note that this
energetic separation is not to be confused with the Stark shift
or the Autler-Townes splitting [56]. It is intensity independent
and fully consistent with the perturbative description of the
excitation (see Sec. II B and Appendix B for more details).
Indeed, the energetic separation permits us to investigate both
the red- and the blue-detuned near but nonresonant excitation
of the 4p state, independently in a single interference channel
[see bottom right inset of Fig. 1(a)]. In addition to the above-
mentioned interferograms, we observe photoelectron signals
at ε4 = 0.73 eV and ε5 = 0.93 eV. While the contribution at
ε4 originates from a frequency mixing pathway with two blue
and one green photon, the one at ε5 arises from the blue single-
color pathway, depicted in Fig. 1(a). The former contribution
is used for in situ temporal pulse characterization in Sec. III B.
Figure 1(b) depicts a section through the y-z plane in polar
representation and the energy-resolved spectrum obtained by
integration over the angular coordinate of the measured PMD,
highlighting the different contributions at ε1-ε5. Figure 1(c)
shows the measured and Abel-inverted [57] three-dimensional
(3D) PMDs of the three color-coded energetically nested
f (m = 0)-type interferograms (details see Sec. III). In this

figure, the 3D PMDs of the contributions around ε4 and ε5

are omitted for clarity.

B. Perturbative description

In this section, we provide a theoretical description of
the photoelectron wave packets created in the multichan-
nel interferometry scheme. We focus on the spectral phases
in the different interference channels introduced by the
(near-)resonant excitation in the MPI processes. First, in
Sec. II B 1 we introduce the trichromatic laser field in the
temporal and spectral representation and derive a general
expression for the photoelectron density in each interference
channel. In Sec. II B 2, we use perturbation theory in a mul-
tilevel model to calculate the MPI phases in the relevant
pathways.

1. Laser field and photoelectron distribution

The trichromatic PLP field is fully characterized by the
scalar electric fields of each color. The total electric field
(negative frequency analytic signal [58]) is therefore given by

E−(t ) =
∑

j∈{r,g,b}
E j (t − τ j )e

−i(ω j t−ϕ j ), (3)

with the temporal pulse envelopes E j (t ) shifted in time by
the delay τ j , the central frequency ω j , and the relative optical
phase ϕ j . In Eq. (3) the CEP of the field components is omitted
because in our scheme the phase in the photoelectron spec-
trum introduced by the CEP is identical for all MPI pathways.
The corresponding spectrum reads

Ẽ−(ω) =
∑

j∈{r,g,b}
Ẽ j (ω + ω j )e

i(ϕi−(ω+ωi )τi ) (4)

with the spectra of the envelopes Ẽ j (ω). Again, the three
central frequencies ω j are chosen such that the energy of two
green photons equals the energy of one red plus one blue
photon as described by Eq. (1). Simultaneous absorption of
another red, green, or blue photon in both processes provides
the photon energy to overcome the ionization potential and
gives rise to the interference channels l = 1, 2, and 3, re-
spectively [see visualization of the basic building block in the
left inset of Fig. 1(a)]. Therefore, each interference channel
l consists of two pathways I and II either with at least two
green photons (I) or with at least one red and one blue photon
(II). Both pathways contain a photon of the additional color
xl with x = [r, g, b], e.g., x1 = r for the additional red photon
in channel 1. Due to the temporal overlap of the three colors
[see Eq. (2)], every permutation of the involved photons gives
rise to another MPI pathway. We can write both pathways
as a set containing all permutations of the involved colors,
i.e., Q(l )

I = Sym({g, g, xl}) and Q(l )
II = Sym({r, b, xl}) where

Sym denotes the symmetric group. In general the resulting
photoelectron interferogram in channel l is given by the super-
position of all possible partial wave functions created via the
pathways Q(l )

I and Q(l )
II . However, as discussed in Sec. II A,

the intermediate resonances in the potassium atom select the
relevant pathways. Therefore, the description focuses on the
superposition of relevant resonance-enhanced quantum path-
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ways I ∈ Q(l )
I and II ∈ Q(l )

II , where the ordering of the colors
is fixed due to the resonances. As an example, we consider
the superposition of the (ggb) and (brb) pathways in channel
3 (see Table I). Hence, we assume each interferogram  (l ) to
be composed of two partial wave functions, i.e.,  (l ) = 

(l )
I +


(l )
II . In the momentum representation, with the photoelectron

momentum k = (k, θ, φ), these partial wave functions are
written as [53,59]


(l )
I/II(k) = c(l )

I/II(k) eiϕ(l )
I/II ψ3,0(θ, φ)

= ∣∣c(l )
I/II(k)

∣∣ ei(χ (l )
I/II (k)+ϕ

(l )
I/II ) ψ3,0(θ, φ), (5)

where ϕ
(l )
I/II represents the acquired optical phase and c(l )

I/II(k) =
|c(l )

I/II(k)| eiχ (l )
I/II (k) denotes the photoelectron amplitude with the

associated MPI phase χ
(l )
I/II(k). Since the sum of the optical

phases does not depend on the permutation of the colors, we
find

ϕ
(l )
I = 2ϕg + ϕxl and ϕ

(l )
II = ϕr + ϕb + ϕxl (6)

for all pathways to the states 
(l )
I/II. Using Eq. (5) the re-

sulting electron density of the photoelectron interferogram
�(l ) = | (l )|2 is given by

�(l )(k) = {O(l )(k) + S(l )(k) cos[γ (l )(k) + 
ϕ]}
× |ψ3,0(θ, φ)|2, (7)

with the signal offset O(l )(k) = |c(l )
I (k)|2 + |c(l )

II (k)|2 and the
signal amplitude S(l )(k) = 2|c(l )

I (k)||c(l )
II (k)|. In Eq. (7) the

MPI phase difference in channel l is denoted by γ (l )(k) =
χ

(l )
I (k) − χ

(l )
II (k) and the optical phase difference by 
ϕ =

ϕ
(l )
I − ϕ

(l )
II . Using Eq. (6), the optical phase difference reads


ϕ = 2ϕg − ϕr − ϕb (8)

and is independent of the respective channel. Therefore, the
phases between the interferograms are determined exclusively
by the MPI phase differences, which is the characteristic fea-
ture of our multichannel interferometry scheme. Equation (7)
describes the photoelectron interferograms in each channel
as f (m = 0)-type wave packets [see Fig. 1(c)], which are
periodically intensity modulated by variation of the relative
optical phases ϕ j . The modulation frequency is determined by
the number of involved photons of the respective color. While
the modulation is analogous to [53], the analysis of multiple
interference channels, including different REMPI pathways,
and the unambiguous mapping of the corresponding MPI
phase differences extend the previous scheme. Specifically,
the MPI phase differences manifest in the phase shifts γ (l )(k)
of the modulation, which sensitively depend on the intermedi-
ate resonances in the MPI pathways.

2. Atomic MPI phases

In the next step, we discuss the influence of the atomic
structure on the phases χ

(l )
I/II(k) acquired in the MPI pro-

cess by calculating the photoelectron amplitudes of the
resonance-enhanced quantum pathways RI/II, GI/II, and BI/II

(see Table I) using perturbation theory. For simplicity, we
reduce the atomic excitation scheme in Fig. 1(a) to the three
most relevant states, i.e., the ground state |g〉 and the two

(near-)resonant intermediate states |a〉 and |b〉 coupled to a
final state | f 〉 with variable energy in the continuum. This
model system is excited by a single-color laser pulse with
central frequency ω0, as shown in Fig. 2(a). A detailed the-
oretical derivation of the population amplitudes is given in
Appendix B. The generic scheme describes three-photon ion-
ization similar to that in the experiment. The MPI process is
subdivided into three steps. First, the state |a〉 (representing
the 4p state) is nonresonantly excited from the ground state
|g〉 (representing the 4s state). For a sufficiently large detuning
of the laser central frequency ω0 with respect to the transition
frequency ωga, i.e., δ1 = ω0 − ωga � 
ω, implying Ẽ (δ1) ≈
0, the resulting time-dependent population amplitude of state
|a〉 can be approximated by [see Eq. (B10)]

cnon
a (t ) ∝ eiπ

δ1
e−iδ̂1tE (t ). (9)

Here δ̂1 = δ1 + ζ denotes the reduced detuning which in-
cludes the phase shift ζ due to the intermediate resonance
|a〉. This means that the time-dependent population instan-
taneously follows the driving electric field envelope—albeit
with an additional temporal phase. For a Gaussian-shaped
envelope, ζ can be estimated by (see Appendix B1b)

ζ ≈ − 
ω2

4 ln(2) δ1
, (10)

which explicitly depends on the detuning δ1. Consequently,
the phase shift induced by the intermediate state |a〉, i.e.,
the 4p state, is different for the red- and blue-detuned ex-
citation and therefore responsible for the observed energy
shift in channel 2. With the experimental parameters given in
Sec. II A the effective energy shift between ε

up
2 and εlow

2 can
be estimated to be about h̄
ζtheo = h̄ζg − h̄ζb ≈ 40 meV. The
experimental investigation of the energy shift in the interfer-
ence channel 2 is presented in Sec. IV B.

Next, we consider the two-photon excitation of state |b〉
(representing the 3d state) via the transiently populated off-
resonant state |a〉 and distinguish between two limiting cases.
In the two-photon resonant case, when δ2 = δ̂1 + ω0 − ωba =
0, the population amplitude of |b〉 is given by [see Eq. (B11)]

cres
b (t ) ∝ e−i π

2

δ1

ˆ t

−∞
E2(t ′)dt ′. (11)

In contrast, for nonresonant two-photon excitation, when
δ2 �= 0 and the two-photon resonance lies outside the band-
width of the second-order laser spectrum implying Ẽ (2)(δ2) ≈
0, the amplitude of the state |b〉 reads [see Eq. (B15)]

cnon
b (t ) ∝ e−iδ2t

δ1δ2
E2(t ). (12)

The third photon maps the population amplitude of |b〉 into the
final continuum state | f 〉 with photoelectron kinetic energy
ε = h̄ω f − h̄ωIP. This photoionization step leads to the final-
state population amplitude of the free state | f 〉:

c f (t, ε) = −μ f b

ih̄

ˆ t

−∞
cb(t ′)E (t ′)e−i� (ε)t ′

dt ′, (13)

where � (ε) = ω0 − ω f b(ε) = ω0 − ε
h̄ + ωb − ωIP. Photoion-

ization via the two-photon resonant pathway yields the final
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FIG. 2. (a) Three-level system with the states |g〉, |a〉, and |b〉 coupled to the continuum state | f 〉 for the excitation by a laser field with
the frequency ω0 and an intensity FWHM of 
t = 90 fs. The detunings between the exciting laser field and the respective states are δ1 and
δ2. (b) Time-dependent photoelectron amplitude cnon

f (t ) in the complex plane representation for nonresonant excitation of the state |b〉 and
different signs of the detuning δ1 (upper frame). Phase χ non = arg{c∞,non

f } and photoelectron amplitude |c∞,non
f |2 as a function of the detuning

δ1 (lower frames). (c) Time-dependent population amplitudes cres
f (t ; � ) for different values of � (ε) assuming resonant excitation of the state

|b〉 and δ1 < 0 (upper frame). The middle frame shows the photoelectron amplitude |c∞,res
f |2 and corresponding MPI phase χ res

δ1<0 as a function
of ε. The bottom frame illustrates the physical picture of the resonance-induced photoionization time delay, explained by windowing of the
temporal field envelope E (t ) with the time-dependent population amplitude of |b〉.

(t → ∞) amplitude [see Eq. (B18)]:

c∞,res
f (ε) ∝ 1

δ1

(
Ẽ (2)(0)Ẽ[� (ε)] − 2iE2(0)

∂ Ẽ
∂ω

[� (ε)]

)

= ∣∣c∞,res
f (ε)

∣∣ eiχ res (ε). (14)

In contrast, the nonresonant pathway yields the amplitude of
[see Eq. (B22)]

c∞,non
f (ε) ∝ ei π

2

δ1δ2
Ẽ (3)[� (ε) + δ2]

= ∣∣c∞,non
f (ε)

∣∣eiχnon
. (15)

Equations (14) and (15) show that for a positive detuning
δ2 � 0, as in the experiment, and a symmetric and real-valued
spectral envelope, the MPI phases are determined by the sign
of the detuning δ1, i.e.,

χ res(ε) =
{
π + ξ (ε) ; δ1 < 0
ξ (ε) ; δ1 > 0 , (16)

χnon =
{

3π/2 ; δ1 < 0
π/2 ; δ1 > 0 . (17)

In Eq. (16), ξ (ε) represents the temporally accumulated phase
due to the resonant excitation of the 3d state which is dis-
cussed in the following. Since the population buildup in the
resonant state occurs on the time scale of the pulse duration,
the reference partial photoelectron wave packet, created by
nonresonant ionization, accumulates its time-evolution phase
in the continuum during the formation of the photoelectron

interferogram. Thus, the time delay introduced by the popu-
lation dynamics in the resonant 3d state manifests in a linear
spectral phase between the 3d-resonant pathway RII and the
nonresonant pathway RI. For a Gaussian-shaped pulse enve-
lope the phase can be approximated by ξ (ε) = τres � (ε) with
(see Appendix B for details)

τres ≈
√

ln(2)

π

4


ω
= 
t√

ln(2)π
, (18)

where 
t represents the pulse duration. An experimental
investigation of the resonance-induced time delay, in terms
of a linear spectral phase in the interference channel 1, is
demonstrated in Sec. IV B.

To verify the MPI phases predicted by the perturbation
theory, we numerically solve the TDSE for the model sys-
tem depicted in Fig. 2(a). The numerical implementation is
described in previous work [15,60] and Appendix A. The
results of the simulation for the nonresonant and the reso-
nant excitation of state |b〉 are depicted in Figs. 2(b) and
2(c), respectively. In the nonresonant case, the time-dependent
photoelectron amplitudes represented in the complex plane
describe almost straight lines as shown in the upper frame
of Fig. 2(b). Each line is rotated by ±π/2 with respect to
the real axis, where the lower sign corresponds to δ1 < 0
(red-detuned) and the upper sign to δ1 > 0 (blue-detuned),
as predicted by Eq. (17). This observation agrees with the
variation of the MPI phase χnon from χnon = −π

2 to π
2

as the detuning varies from h̄δ1 = −0.15 to 0.15 eV as shown
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in the middle frame of Fig. 2(b). The bottom frame depicts
the final population |c∞,non

f |2 as a function of the detuning δ1,
showing a bell-shaped profile centered around δ1 ≈ 0. Note
that δ2 is a function of δ1.

Next, we consider two-photon resonant excitation of the
state |b〉, with δ1 < 0. Since resonant excitation leads to an
energy-dependent MPI phase χ res

δ1<0(ε) according to Eq. (16),
we investigate the final-state amplitude cres

f as a function of
the photoelectron kinetic energy. The upper frame of Fig. 2(c)
shows the time evolution of cres

f (t ; � ) in the complex plane
for different energies in the photoelectron continuum, i.e.,
different values of � (ε) (red, blue, and gray lines). The red
and blue shaded curves illustrate the corresponding time-
dependent amplitudes for different values of � �= 0. The
nearly horizontal gray line is connected to the final phase
value of χ res(ε̄) = π [see Eq. (16)], since the phase introduced
by the population dynamics ξ (ε̄) vanishes. In contrast, for
ε �= ε̄, the time evolution of the energy-dependent amplitude
describes a curve moving either upwards (� > 0, red lines)
or downwards (� < 0, blue lines) on the imaginary axis. The
middle frame of Fig. 2(c) depicts the energy-resolved photo-
electron amplitude |c∞,res

f |2 (blue) and phase χ res
δ1<0(ε) (black).

Here, the symbols (circle, square, and triangle) indicate the
end points of the final-state populations shown in the upper
frame. In the region of a nonvanishing photoelectron ampli-
tude |c∞,res

f |2, the phase exhibits a linear behavior, confirming
the assumption of ξ (ε) ≈ τres� (ε). The bottom frame shows
a physical picture of the resonance-induced ionization time
delay due to the windowing of the Gaussian-shaped tempo-
ral field envelope E (t ) with the time-dependent population
amplitude of the state |b〉. While nonresonant excitation and
ionization follows the field envelope almost instantaneously
[see Eq. (9)], resonant ionization introduces a temporal shift
in the order of the pulse duration according to Eq. (18), corre-
sponding to a linear spectral phase.

III. EXPERIMENT

In this section we describe our experimental setup and
strategy. The trichromatic fields are generated using white
light polarization pulse shaping [53,61,62] and we apply
photoelectron velocity map imaging (VMI) [63] to measure
energy- and angle-resolved photoelectron spectra.

A. Experimental setup

The trichromatic experimental scheme is based on our
setup previously reported in [53]. Briefly, trichromatic pulse
shaping is implemented using a home-built 4 f polarization
pulse shaper [61] employing a dual-layer liquid crystal spatial
light modulator (LC-SLM). The shaper is specifically adapted
to the white light supercontinuum (WLS) [62] generated
by seeding a neon-filled hollow-core fiber compressor with
20-fs pulses (λc = 790 nm) from an amplified laser system
(Femtolasers Femtopower HR 3 kHz). Employing a custom
broadband p polarizer (Codixx colorPol) in the Fourier plane
of the shaper, we generate a PLP trichromatic field [see inset
in Fig. 3(a)] by spectral amplitude and phase modulation. To
individually advance or delay the pulses of different colors in
time, we apply linear spectral phase functions to the LC-SLM.

FIG. 3. (a) Measured trichromatic spectrum together with the
WLS. The inset shows a schematic of the pulse shaper setup with
a broadband p polarizer and the mechanical blocker in the Fourier
plane to eliminate resonant excitation of the 4p state. (b) Energy
sections of the time-resolved measurements on the green-red (left)
and green-blue (right) frequency mixing signals from in situ temporal
pulse characterization (circles and squares) together with Gaussian
fits (solid and dashed lines) and corresponding FWHMs.

Owing to the common-path geometry of the shaper-based
scheme, the generated trichromatic pulse sequences are in-
herently phase locked allowing for high-precision time- and
phase-resolved measurements [64]. The measured spectrum
of the trichromatic field is shown in Fig. 3(a) along with the
input WLS. The central wavelength of the red pulse is set to
λr = 925 nm (red), i.e., tuned to the two-photon resonance of
the 3d state, indicated by the right vertical orange line. The
central wavelengths of the green and blue pulses are set to
λg = 797 nm and λb = 708 nm, respectively. Spectral compo-
nents resonant with the 4p state are eliminated by employing
a mechanical blocker [see inset in Fig. 3(a)] in the Fourier
plane between the blue and green component (see also the
left vertical orange line). The spectral bandwidths of the red,
green, and blue bands are set to 
ωr = 50 mrad/fs, 
ωg =
90 mrad/fs, and 
ωb = 100 mrad/fs (FWHM of the inten-
sity), corresponding to bandwidth-limited pulse durations of

tr ≈ 55 fs, 
tg ≈ 32 fs, and 
tb ≈ 28 fs, respectively, as-
suming Gaussian-shaped envelopes. Using a spherical mirror,
the trichromatic pulse is focused into the interaction region
of a VMI spectrometer filled with potassium vapor from a
dispenser source. The peak intensity of the temporally over-
lapping trichromatic field in the interaction region is estimated
to be on the order of I0 ≈ 5 × 1012 W/cm2. Abel inversion
of the recorded 2D VMI images, using the pBasex algorithm
[57], yields the PMD of the created photoelectron wave pack-
ets. Angle integration and energy calibration [65] of the PMD
leads to the energy-resolved photoelectron spectra shown in
Fig. 1(b).

B. Experimental preparation and characterization

In this section, we describe how we prepare and char-
acterize the shaper-generated trichromatic field for the ex-
periment. To maximize the interference contrast in all three
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interference channels l [see Fig. 1(a)], we optimize the tem-
poral overlap and the amplitudes of the three colors together
with the spectral overlap of the partial photoelectron wave
packets in each channel. First, to compress the WLS in time,
we use a shaper-based evolutionary optimization procedure
to maximize the second harmonic yield of the WLS from
a thin β-barium borate crystal (Eksma Optics, cutting angle
θ = 29.2◦, 5-μm thickness) [66,67]. Subsequently, an initial
trichromatic spectrum is sculpted from the compressed WLS
by spectral amplitude modulation. In the second step, the fre-
quency mixing contributions in the second harmonic signal of
the trichromatic field are maximized by shaper-based pairwise
optimization of the second- and third-order dispersion. The
refined and temporally compressed trichromatic field is then
focused into the interaction region of the VMI spectrometer
to perform an additional in situ temporal characterization and
an iterative spectral optimization of the sculpted field in the
laser focus. To this end, we iteratively adjust the amplitude
and central wavelength of the individual colors to maximize
the contrast of the photoelectron interferograms in phase maps
[53]. For the final characterization of the temporal overlap we
perform bichromatic time-resolved measurements by varying
the time delay τg of the green pulse with a step size of
δτg = 3.75 fs and record the green-red and the green-blue
photoelectron frequency mixing contributions. Figure 3(b)
shows sections from these time-resolved measurements at ki-
netic energies ε1 (left) as well as ε3 and ε4 (right) together with
Gaussian fits (solid and dashed lines). The results show a max-
imal temporal overlap of the green and red pulse at 1.7(8) fs
and of the green and blue pulse at −3.5(13) fs, i.e., within the
temporal step size, ensuring efficient frequency mixing. By
applying the procedure described in [53] we obtain pulse dura-
tions of 
tr = 50(8) fs, 
tg = 49(12) fs, and 
tb = 29(12) fs
from the measured FWHMs shown in Fig. 3(b). The values
for the red and blue pulse are in good agreement with the
estimated bandwidth-limited pulse durations from Sec. III A.
The retrieved pulse duration of the green component is
slightly larger than the value obtained in Sec. III A, which
is attributed to the mechanically blocked edge of the green
spectral component resulting in a non-Gaussian pulse shape.
Overall, the results confirm a flat spectral phase of the trichro-
matic field.

C. Experimental strategy

To extract the MPI phase differences from the measured
photoelectron interferograms, the experiment consists of two
parts. In Sec. IV A, we describe the energy- and phase-
resolved measurements, i.e., phase maps. In the experiment,
we vary the relative optical phase of the green pulse ϕg and
measure photoelectron spectra which are energy calibrated
[65] and angularly integrated,

�int(ε) =
ˆ 2π

0
�(ε, θ )dθ, (19)

yielding the kinetic energy-resolved phase maps
�int(ε, ϕg; ϕr + ϕb), with ε = (h̄k)2

2me
. Changing the phase of the

blue pulse by π inverts the measured phase maps. In Sec. IV B
this inversion is used to remove the phase-insensitive
background. To this end, we calculate the phase contrast map
C(ε, ϕg) analogously to [53] by subtracting two normalized
measured phase maps with an effective phase difference of
|ϕr + ϕb| = π , i.e.,

C(ε, ϕg) = �int(ε, ϕg; 0) − �int(ε, ϕg; π )

∝ cos(γ (l )(ε) + 2ϕg). (20)

Due to this difference between two inverted phase maps, the
phase contrast map emphasizes the contrast of the measured
phase-resolved interferograms and thus reveals even subtle
imprints of the MPI phases in the recorded photoelectron
spectra. In particular, the splitting of channel 2 into an up-
per and a lower contribution corresponding to the red- and
blue-detuned excitation of the 4p state can be clearly seen. In
addition, it directly maps the spectral phase due to the resonant
excitation of the 3d state in the interference channel 1.

IV. RESULTS AND DISCUSSION

In Sec. IV A, we present the ϕg-resolved phase maps and
demonstrate their inversion by changing the optical phase of
the blue pulse from ϕb = 0 to −π . In Sec. IV B, we remove
the phase-insensitive background by calculating the phase
contrast map C(ε, ϕg) [see Eq. (20)] and retrieve the MPI
phases induced by the intermediate states 4p and 3d .

A. Phase control of the photoelectron interferograms

First, we investigate the phase control of the photoelectron
interferograms in ϕg-resolved phase maps �int(ε, ϕg; ϕr + ϕb).
In Figs. 4(a) and 4(b) the simulated and measured phase maps
�int(ε, ϕg; π ) are compared. The observed phase dependence
validates the scheme by showing that the same optical phase
is imprinted in all interferograms [see Eq. (7)]. In the exper-
iment, we vary ϕg ∈ [−π, π ] with a step size of δϕg = 2π

40
and set the phases of the red and blue pulse to ϕr = π and
ϕb = 0, respectively. The upper frame of Fig. 4(b) depicts the
measured phase map which shows the three energetically sep-
arated interference channels centered around ε1, ε2, and ε3 in
an energy window of ε ∈ [0, 0.6] eV. In accordance with the
theoretical description in Sec. II B, each channel is strongly
amplitude modulated with a periodicity of π ; however, each
with an individual phase offsets due to MPI phases. The π

periodicity is due to the fact that effectively two green photons
contribute to each interferogram, resulting in a modulation
period of 2π

2 = π [see Eq. (8)]. The results in channel 2 show
small energetic oscillations of the signal attributed to the two
slightly shifted contributions discussed in Sec. II A. These
two contributions, which are hardly distinguishable at this
point, are more clearly visible in the phase contrast map and,
therefore, they will be discussed in detail in Sec. IV B. First,
we analyze the modulations in channels 1 and 3 around ε1 and
ε3. To quantitatively evaluate the modulation of the photo-
electrons in the channels 1 and 3, we take sections through the
phase maps along the phase axis at ε1 (orange squares) and ε3

(violet circles). These sections are shown in the bottom frame
of Fig. 4(b) together with cosine fits through the data (orange
dashed and violet solid lines). The inversion of the phase map
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FIG. 4. Simulated and measured phase maps of photoelectron in-
terferograms from multichannel interferometry by varying the phase
of the green pulse ϕg ∈ [−π, π ]. (a) Simulated phase map obtained
by numerical solution of the TDSE for the perturbative interaction of
a three-level atom with the trichromatic field having optical phases
of ϕr = π , ϕb = 0. (b) Measured phase map for ϕr = π , ϕb = 0 with
a step size of δϕg = 2π

40 ≈ 0.16 rad, showing the three energetically
separated interference channels around ε1–ε3. Bottom frame: Sec-
tion through the phase maps along the phase axis at ε1 (orange) and ε3

(violet) to emphasize the modulation. (c) Same as the bottom frame
of panel (b) but for ϕr = π , ϕb = −π . The vertical dashed lines serve
as a guide to the eye for visualization of the phase shift between the
orange and violet lines, respectively.

is demonstrated by setting ϕb = −π . The experimental result
of the inversion is shown in Fig. 4(c). The orange (channel 1)
as well as violet lines (channel 3) in Fig. 4(c) and the bottom
frame of Fig. 4(b) are both phase shifted about 3.2(3) rad,
confirming the inversion of the interference patterns, taking
into account the error of the fit parameters. Minor imperfec-
tions of the inverted phase map are attributed to diffraction on
the discrete phase mask of the SLM [68,69]. The phase shifts
between the modulations due to MPI phase differences in all
channels will be discussed in Sec. IV B.

Our interpretation of the experimental findings is con-
firmed by the simulated phase map in Fig. 4(a) for ϕr = π ,
ϕb = 0, which is in good agreement with the measured phase
map in the upper frame of Fig. 4(b). In the simulation, we
consider a three-level system consisting of the states 4s, 4p,
and 3d (similar to Sec. II B and Appendix A) which interacts
with a sequence of three Gaussian-shaped pulses similar to
those used in the experiment (see Sec. III). By numerically
solving the TDSE for the three-level system, we obtain the

bound-state population dynamics. Subsequently, we calcu-
late the energy-resolved photoelectron spectra using time-
dependent perturbation theory (see, e.g., [70] for details).

B. MPI phase retrieval

In this section, we study the phase shifts between the in-
terferograms observed in the different interference channels.
These phase shifts originate from the MPI phases acquired
in the corresponding photoionization processes. For the
background-free determination of the phase shifts in Fig. 4,
we calculate the phase contrast maps C(ε, ϕg) according to
Eq. (20) from the phase maps presented in Sec. IV A. The
simulated and experimental phase contrast maps are depicted
in Figs. 5(a) and 5(b), respectively. To highlight the mea-
sured interferograms in Fig. 5(b), we apply super-Gaussian
filters to blank the space between the regions of interest. The
phase contrast map reveals the splitting of channel 2 which
is barely visible in the phase map shown in Fig. 4(b). The
two contributions are indicated by the petrol-blue dashed and
green dash-dotted lines at ε

up
2 = 0.35 eV and εlow

2 = 0.28 eV,
respectively. In this representation, the maxima have a spectral
separation of about h̄ 
ζmeas ≈ 70 meV which exceeds the
theoretically expected separation of h̄
ζtheo ≈ 40 meV from
Eq. (10) (see Sec. II B). The deviation is explained by the near-
resonant excitation δ1 ≈ 
ω in the experiment, in contrast
to the assumption of δ1 � 
ω in the theoretical description.
However, since the mechanical blocker in the Fourier plane
produces a strongly non-Gaussian optical spectrum with van-
ishing intensity at resonance, the assumption Ẽ (δ1) ≈ 0 is
still valid. Moreover, the choice of frequencies in the exper-
iment leads to a slight energetic separation in the frequency
mixing and the green single-color signals of 20 meV. The
results show that both contributions in channel 2 exhibit a
π -periodic oscillation similar to those observed in channel 1
and 3 (see discussion in Sec. IV A). Again, for quantitative
evaluation of the MPI phases, we take energy sections through
the phase contrast map along the ϕg axis. The sections at
ε3 (violet circles), ε

up
2 (petrol-blue circles), and εlow

2 (green
circles) are shown in Figs. 5(c)–5(e) along with cosine fits
through the data (lines). The phases γ (l ) extracted from the
channels l = 2 (up and low) and 3 provide the MPI phase dif-
ference


γ (l−l ′ ) = γ (l ) − γ (l ′ ) (21)

between two channels l and l ′. To rationalize the extracted
phase differences 
γ , we discuss the values 
γ (3−2,low) and

γ (2,up−2,low) by comparing them with the theoretical results,
starting with 
γ (3−2,low).

In both the channels 3 and (2, low), two ionization path-
ways interfere, one of which originates from a blue-detuned
near-resonant transition, the other from a red-detuned near-
resonant transition. Consequently, the MPI phase difference
between the interference channel 3 and the lower part of
channel 2 is expected to vanish (see Table I), in good agree-
ment with the measured phase difference of 
γ (3−2,low) =
0.0(2) rad.

Next, we investigate the MPI phase difference

γ (2,up−2,low). In multichromatic photoionization, different
final states are addressed with different combinations and
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FIG. 5. Simulated (a) and measured (b) phase contrast maps C(ε, ϕg) with ϕr = π extracted from inverting the phase maps by changing
the phase of the blue pulse from ϕb = 0 to −π . (a) Simulated phase contrast map based on the numerical results described in Sec. IV A, shown
in Fig. 4(a). (b) Measured phase contrast map calculated from the results of Sec. IV A, shown in Fig. 4(b). The different channels are indicated
by horizontal lines. To emphasize the interference channels, we apply super-Gaussian filters to blank the space between the regions of interest.
(c–e) Sections through the measured phase contrast map (circles) at the kinetic energies of ε3 (c), ε

up
2 (d), and εlow

2 (e) together with cosine fits
through the data (lines). The MPI phase differences 
γ are highlighted by vertical dashed black lines through the frames (c)–(e) together with
their associated color-coded error bars.

permutations of the colors in the laser field. However, the
pathways to create the photoelectrons in the interference
channel 2, i.e., Gup

II at ε
up
2 and G low

II at εlow
2 , differ only in

the permutations of the photons—albeit with the common
reference pathway GI [see Sec. II A and Fig. 1(a)]. Therefore,
the phase difference within the interference channel 2 is
uniquely determined by the MPI phases introduced by the
red-detuned (upper signal) and blue-detuned (lower signal)
(1 + 2) REMPI processes. To analyze the dynamics, we first
note that the red or blue detuning of the field corresponds
to an opposite sign of δ1. As a consequence, the two
contributions in the interference channel 2 map the transient
population dynamics of the 4p state but with opposite
signs in the amplitude 1/δ1 and in the time-dependent
phase δ̂1t as described by Eq. (9). While the sign change
in the phase explains the previously described energetic
splitting, the different signs of the amplitudes lead to a
theoretical MPI phase difference of 
γ

(2,up−2,low)
theo = −π [see

Fig. 2(b) and Table I]. The measured MPI phase difference
of 
γ (2,up−2,low) = −3.1(2) rad confirms the above physical
picture.

Finally, we discuss the interference pattern observed in
channel 1 by analyzing the phase contrast map shown in
Fig. 5. Both, the measured and the simulated phase contrast
maps in Figs. 5(a) and 5(b) show a pronounced spectral
shearing around ε1 corresponding to an approximately lin-
ear spectral phase. Following the discussion in Sec. II B, we
explain the linear spectral phase by identifying a time delay
in the resonant photoionization. The (2 + 1) REMPI pathway
RII in channel 1 consists of the two-photon resonant excita-
tion of the 3d state with the red pulse and the one-photon

ionization with the blue pulse. The physical picture to ra-
tionalize the time delay is illustrated in the bottom frame of
Fig. 2(c). Due to the two-photon resonance, the time evolution
of the population amplitude of the 3d state has a sigmoidal
shape. Since the REMPI process is characterized by the ion-
ization of the resonant 3d state, the product of the temporal
envelope of the ionizing pulse and the time-dependent popu-
lation amplitude appears in the perturbative description of the
photoionization in Eq. (13). Hence, the temporal envelope of
the ionizing blue pulse Eb(t ) is windowed by the sigmoidal-
shaped population amplitude cres

b (t ). The windowing results
in a time delayed formation of the photoelectron wave packet
from (2 + 1) REMPI with respect to the temporal pulse en-
velope. The interference of the time delayed wave packet
from the resonant (2 + 1) REMPI pathway RII with the wave
packet from the near-resonant (1 + 2) REMPI pathway RI

in channel 1 gives rise to the spectral shearing in the phase
map, similar to [27,53,71]. However, in contrast to previous
results, here the shearing originates from a time delay due to
the resonant excitation rather than an optical delay. Assuming
a Gaussian-shaped temporal pulse envelope E (t ), the asso-
ciated linear spectral phase can be approximated around the
center of the signal [� (ε̄) = 0] by ξ (ε) ≈ − τres

h̄ ε + ξ0 with
the resonance-induced time delay τres from Eq. (18) (see Ap-
pendix B3a for a detailed discussion). For the field parameters
used in the experiment (Sec. III B) we calculate a delay of
τres ≈ 19 fs which corresponds to a slope of 37 meV/rad. This
slope derived from theory is indicated in Fig. 5(b) and in good
agreement with the observed shearing in the phase contrast
map of channel 1. Our results show that multichannel interfer-
ometry with temporally overlapping trichromatic fields allows
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one to unambiguously determine the MPI phases acquired in
REMPI processes.

V. SUMMARY AND CONCLUSION

In this paper, we presented the unambiguous determination
of quantum phases in MPI dynamics using a multichannel
photoelectron interferometry scheme. We demonstrated the
scheme on the MPI of potassium atoms with temporally
overlapping parallel linearly polarized trichromatic fields. By
appropriate choice of the optical frequencies so that 2ωg ≈
ωr + ωb < ωIP, the photoelectron wave packets overlap in
different interference channels and create three energetically
separated interferograms. These interferograms are sensitive
to both the optical and the MPI phases acquired along the
different MPI pathways. Due to the design of the scheme,
the optical phase is identical in all interferograms. Therefore,
the measured phase shifts directly revealed the MPI phases
introduced by the MPI dynamics in the different interfer-
ence channels. Specifically, the red pulse was tuned to the
two-photon 4s →→ 3d transition, opening a (2 + 1) REMPI
pathway via ionization with the blue pulse. The green and
the blue pulse were tuned close to the 4p resonance with
opposite detunings to implement two different (1 + 2) REMPI
pathways via trichromatic frequency mixing. We observed
high-contrast phase-shifted intensity modulations in the pho-
toelectron interferograms by varying the green pulse’s relative
phase. By introducing an optical phase of −π to the blue
pulse, the interferograms were inverted and used to remove the
phase-insensitive background. Analysis of the background-
free interferograms unambiguously revealed the MPI phases
introduced by the intermediate resonances.

The measured interferograms showed that the MPI phases
manifest in three different ways: First, we observed an ener-
getic splitting of the photoelectron interferograms from red-
and blue-detuned (1 + 2) REMPI. Although interferograms
from frequency mixing pathways, consisting of different pho-
ton permutations, should be energetically degenerate, we
demonstrated that the near but nonresonant excitation of the
intermediate 4p state lifts this degeneracy. Second, we ob-
served constant phase shifts of π both between the split
interferograms within one interference channel and between
interferograms of different interference channels. These phase
shifts between the different (1 + 2) REMPI signals originate
from population amplitudes with opposite signs. Finally, we
demonstrated that the photoionization time delay through the
resonant excitation of the 3d state in the (2 + 1) REMPI path-
way gives rise to a linear spectral phase in the photoelectron
interferograms observed as a pronounced spectral shearing.
All observations were analyzed using an analytic perturbative
description and numerical simulations of a trichromatic driven
three-level system coupled to the continuum.

In conclusion, we demonstrated that our shaper-based
trichromatic multichannel interferometry scheme is a power-
ful tool to measure the phase of ultrafast free electron wave
packets. We showed that the resonance-induced photoion-
ization time delay associated with a linear spectral phase
is a general feature of processes involving a resonant in-
termediate state. For example, the structure of bichromatic
photoelectron vortices as reported in [28,72,73] is affected

by the intermediate resonances. Currently, we investigate
further applications of multichromatic free electron vortex
spectroscopy with polarization-tailored trichromatic fields in
our laboratories, where information on the ionization and
bound dynamics is imprinted in the angular part of the pho-
toelectron momentum distribution. In addition, multichannel
interferometry in 2D spectroscopy [74] on atomic [75–77] and
molecular [78] systems or nanostructures [79] gives rise to
multiple energetically separated 2D spectra in one measure-
ment, containing rich spectroscopic information on different
aspects of the dynamics. In general, our results show that
multicolor schemes open up entirely new perspectives for
the measurement and coherent control of ultrafast quantum
dynamics if we succeed in harnessing the great variety of
interference pathways by a suitable design of the experiment.
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APPENDIX A: GENERIC THREE-LEVEL SYSTEM

For the convenience of the reader and to introduce our
notation, this Appendix provides a detailed description of
the multichannel interferometry scheme studied in the exper-
iment. In this section, we describe the perturbative excitation
of a generic three-level atom by a laser electric field E (t ) =
E (t )e−iω0t , with the pulse envelope E (t ) and the central fre-
quency ω0. The three-level model system, as depicted in
Fig. 2(a), consists of the states |g〉, |a〉, and |b〉 with the cor-
responding transition frequencies ωag = ωa − ωg and ωba =
ωb − ωa and nonzero dipole couplings μag = 〈a|μ|g〉 and
μba = 〈b|μ|a〉. Expanding the system state into this basis,
i.e., |ψ (t )〉 = ∑

n=g,a,b cn(t )|n〉, the laser-atom interaction is
described by the TDSE

ih̄
d

dt

⎛
⎝cg(t )

ca(t )
cb(t )

⎞
⎠ = H(t )

⎛
⎝cg(t )

ca(t )
cb(t )

⎞
⎠ (A1)

for the population amplitudes cn(t ). The Hamiltonian is given
in the dipole approximation by

H(t ) =
⎛
⎝ 0 −μgaE∗(t ) 0

−μagE (t ) h̄ωa −μabE∗(t )
0 −μbaE (t ) h̄ωb

⎞
⎠. (A2)

The TDSE is solved iteratively on a discrete temporal grid
with step size δt using the short-time propagator technique
[80–82]

⎛
⎝cg(t + δt )

ca(t + δt )
cb(t + δt )

⎞
⎠ = e−i δt

h̄ H(t )

⎛
⎝cg(t )

ca(t )
cb(t )

⎞
⎠ (A3)

and assuming the atom to be initially in the ground state. The
photoionization of the population in state |b〉 is described by
the excitation of a final free electron state | f 〉 with ω f b(ε) =
ω f (ε) − ωb as shown in Fig. 2(a).
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APPENDIX B: PERTURBATIVE DESCRIPTION OF MPI
PHASES

1. Excitation of the state |a〉
The population amplitude ca(t ) of the state |a〉 is given by

first-order perturbation theory [83,84]

ca(t ) = −μag

ih̄

ˆ t

−∞
E (t ′)e−iδ1t ′

dt ′, (B1)

with the detuning δ1 = ω0 − ωag and the transition dipole
moment μag. For t → ∞, Eq. (B1) leads to the well-known
result ca(∞) = −μag

ih̄ Ẽ (δ1). Hence, the final population am-
plitude of state |a〉 is given by the spectral amplitude at the
transition frequency. In general, by extending the integral in
Eq. (B1) up to infinity, utilizing the Heaviside function θ (t ),
we obtain

ca(t ) = −μag

ih̄

ˆ ∞

−∞
E (t ′)e−iδ1t ′

θ (t − t ′)dt ′. (B2)

Applying the Fourier transform in combination with the con-
volution theorem,1 the amplitude can be written as

ca(t ) = − μag

2π ih̄

([
πδ(ω) + ie−iωt

ω

]
⊗ Ẽ (ω)

)
(δ1). (B3)

Note that the convolution integral of the second term is only
defined as its Cauchy principal value [85,86], denoted as

ffl
.

Hence, the time-dependent population amplitude of |a〉 reads

ca(t ) = − μag

2π ih̄

(
π Ẽ (δ1) − i

 ∞

−∞

Ẽ (ω)ei(ω−δ1 )t

ω − δ1
dω

)
. (B4)

a. Resonant excitation of the state |a〉
For resonant excitation of the state |a〉, i.e., δ1 = 0, the

population amplitude is given by

cres
a (t ) = − μag

2π ih̄

(
π Ẽ (0) − i

 ∞

−∞

Ẽ (ω)eiωt

ω
dω

)
. (B5)

Since the spectrum Ẽ (ω) is symmetric, the real part of the
integral vanishes and we find

cres
a (t ) = − μag

2π ih̄

(
π Ẽ (0) +

 ∞

−∞

Ẽ (ω) sin(ωt )

ω
dω

)
. (B6)

For t → ±∞ the integral is identified with ±π Ẽ (0) by us-
ing the definition of the δ distribution [87,88]. Hence, in the
resonant case we obtain the known expressions

cres
a (−∞) = 0 and cres

a (∞) = −μag

ih̄
Ẽ (0). (B7)

In the following, we consider the nonresonant excitation of the
state |a〉, since the equivalent 4p state in the experiment is also
excited only near but nonresonantly (see mechanical blocker
in Sec. III).

1Here, we use F{ f }(ω) := ´∞
−∞ f (t )e−iωt dt as the convention for

the Fourier transform of the function f and the convolution theorem
F{ f g}(ω) = 1

2π
F{ f }(ω) ⊗ F{g}(ω).

b. Nonresonant excitation of the state |a〉
For the nonresonant excitation of |a〉, i.e., if the detuning

δ1 exceeds the spectral width 
ω, it follows Ẽ (δ1) ≈ 0 such
that the population amplitude from Eq. (B4) reads

cnon
a (t ) ≈ μag

2π h̄
e−iδ1t

 ∞

−∞

Ẽ (ω)eiωt

ω − δ1
dω. (B8)

For such a large detuning δ1 we use a series expansion of the
fraction in the integral 1

ω−δ1
≈ − 1

δ1
− ω

δ2
1

+ O( ω2

δ3 ). Thus, the
principal value can be approximated by

 ∞

−∞

Ẽ (ω)eiωt

ω − δ1
dω ≈ −2π

(
1

δ1
E (t ) − i

δ2
1

∂E (t )

∂t

)

≈ −2π

δ1
E (t )e−iζ t , (B9)

with the linear temporal phase ζ = ∂2
t E (0)

δ1E (0) , neglecting higher-
order phases and assuming a symmetric pulse envelope, i.e.,
∂tE (0) = 0. For a Gaussian-shaped envelope the phase ζ takes
the form ζ = − 
ω2

4 ln(2) δ1
. Therefore the transient population

amplitude of the state |a〉 for nonresonant excitation is given
by

cnon
a (t ) ≈ −μag

δ1h̄
e−iδ̂1tE (t ), (B10)

with the reduced detuning δ̂1 = δ1 + ζ . Hence, for nonreso-
nant excitation the population amplitude ca(t ) of the state |a〉
follows the temporal field envelope E (t ) and decreases with
the detuning via 1/δ1 which also takes into account its sign.

2. Excitation of the state |b〉
For the excitation of the state |b〉 via a two-photon process

we apply second-order perturbation theory. Assuming a non-
resonant excitation of state |a〉, we build on the results from
Sec. B1, i.e., Eq. (B10). The population amplitude of |b〉 then
takes the form

cb(t ) = −μba

ih̄

ˆ t

−∞
cnon

a (t ′)E (t ′)e−iω0t ′
eiωbat ′

dt ′

= μbaμag

iδ1h̄2

ˆ t

−∞
E2(t ′)e−iδ2t ′

dt ′, (B11)

with δ2 = δ̂1 + ω0 − ωba. Note that the energy conservation is
incorporated by the phase e−iδ̂1t from Eq. (B10), shifting the
transition frequency in the second order about the detuning
of the nonresonant excitation from first order, i.e., ωba →
δ̂1 + ωba. Following an analogous procedure as described in
Sec. B1 we find

cb(t ) = μ
(2)
bg

2π iδ1h̄2

(
π Ẽ (2)(δ2) − i

 ∞

−∞

Ẽ (2)(ω)e−i(δ2−ω)t

ω − δ2
dω

)
,

(B12)

with μ
(2)
bg = μbaμag as the two-photon transition dipole

moment.
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a. Resonant excitation of state |b〉
For two-photon resonant excitation of |b〉 we assume

δ2 = 0, leading to

cres
b (t ) = μ

(2)
bg

2π iδ1h̄2

(
π Ẽ (2)(0) − i

 ∞

−∞

Ẽ (2)(ω)eiωt

ω
dω

)
.

(B13)

For a symmetric temporal pulse envelope E (t ) and the MPI
process to take place in a narrow time window, we can apply
a series expansion at t = 0. In this way, we find the analytical
description for the resonant two-photon probability ampli-
tude:

cres
b (t ) = μ

(2)
bg

2δ1h̄2 e−i π
2 [Ẽ (2)(0) + 2tE2(0) + O(t3)]. (B14)

Note that the term in the order of t2 vanishes since E (t ) is
assumed to exhibit a maximum at t = 0. The second term in
Eq. (B14) represents the linearly time-increasing population
amplitude due to laser excitation and is a sufficient approxi-
mation only for t ≈ 0.

b. Nonresonant excitation of state |b〉
For nonresonant excitation of the state |b〉 we use δ2 �= 0

in Eq. (B12). Analogous to first-order perturbation theory in
Sec. B1b we assume a sufficiently large detuning compared
to the spectral width of the second-order spectrum such that
Ẽ (2)(δ2) ≈ 0, which leads to

cnon
b (t ) ≈ μ

(2)
bg

h̄2δ1δ2
e−iδ2tE2(t ). (B15)

Due to the large detuning δ2 in the experiment, we neglect an
additional resonance induced quantum phase at this point, i.e.,
δ2 ≈ δ̂2. Similar to Eq. (B10) the population amplitude cnon

b (t )
follows the quadratic temporal field envelope and decreases
with the detunings via 1/(δ1δ2) which also takes into account
their signs.

3. Excitation of the state | f 〉: Photoionization

To describe the photoionization of the (non-)resonantly
excited state |b〉 into the final free electron state | f 〉 at en-
ergy ε = h̄ω f − h̄ωIP, we assume a perturbative one-photon
transition with t → ∞. Since we examine both resonant and
nonresonant excitation of the state |b〉 in the experiment (and
in Sec. B 2), we distinguish between these two cases also for
the photoionization step.

a. Photoionization of the resonantly excited state |b〉
To describe the photoionization of the resonantly excited

state |b〉, we build on Eq. (B14), which leads to

c∞,res
f (ε) ≈ μ

(3)
f g

2h̄3δ1

ˆ ∞

−∞
[Ẽ (2)(0) + 2t ′E2(0)]E (t ′)e−i� (ε)t ′

dt ′,

(B16)

where μ
(3)
f g = μ f bμ

(2)
bg denotes the three-photon transition

dipole moment and

� (ε) = ω0 − ω f b = ω0 − ε

h̄
+ ωb − ωIP (B17)

denotes the photoelectron detuning. Now, the linearly increas-
ing population amplitude in the second term of Eq. (B16)
windows the laser electric field of the probe pulse, ensur-
ing the assumption of t ≈ 0 for the linear approximation in
Sec. B2a. This windowing results in a time shift between
the probing electric field and the probed photoelectron dis-
tribution, resulting in a linear spectral phase [see bottom
frame in Fig. 2(c)]. Hence, the second term is equivalent to
the first timelike moment of one part of the final popula-
tion amplitude. Making use of the differentiation theorem for
the Fourier transform [87,88] we obtain the photoelectron
amplitude

c∞,res
f (ε) ≈ μ

(3)
f g

2h̄3δ1

(
Ẽ (2)(0)Ẽ[� (ε)] − 2iE2(0)

∂ Ẽ
∂ω

[� (ε)]

)
.

(B18)
Around the center contribution of the photoelectron signal at
� (ε̄) = 0, the photoelectron amplitude can be approximated
by

c∞,res
f (ε) ≈ μ

(3)
f g

2h̄3δ1
Ẽ (2)(0)Ẽ[� (ε)] eiξ (ε), (B19)

with the additional resonance induced and energy-dependent
quantum phase

ξ (ε) = −2
E2(0) ∂Ẽ

∂ω
[� (ε)]

Ẽ (2)(0)Ẽ[� (ε)]
. (B20)

Using again a Gaussian-shaped envelope we find

ξ (ε) = 4

√
ln(2)

π

� (ε)


ω
= −τres

h̄
ε + ξ0, (B21)

with the resonance induced time delay τres =
√

ln(2)
π

4

ω

and an

offset ξ0 = 4
√

ln(2)
π

ω0+ωb−ωIP

ω

.

b. Photoionization of the nonresonantly excited state |b〉
Photoionization of the nonresonantly excited state |b〉 is

based on Eq. (B15) and leads to a photoelectron amplitude

c∞,non
f (ε) = − μ

(3)
f g

ih̄3δ1δ2

ˆ ∞

−∞
E3(t ′)e−iδ2t ′

e−i� (ε)t ′
dt ′

= i
μ

(3)
f g

h̄3δ1δ2
Ẽ (3)[� (ε) + δ2], (B22)

which agrees with the results from [83,89] for fully nonreso-
nant MPI processes.
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