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Controllable three-dimensional electrostatic lattices for manipulation of cold polar molecules
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Engineering many-body systems of particles in lattices has attracted intense interest in the last few decades,
thanks to their promising applications such as in quantum computation or topological matter. While lattices of
different dimensions have been demonstrated with magnetic and/or optical fields, little work has been done
upon three-dimensional (3D) electrostatic lattices to tame polar molecules. Here, we propose a 3D electrostatic
lattice consisting of periodically distributed square-patterned electrodes in space, whose potentials reach tens
of millikelvin and can be controlled easily. Detailed analysis and Monte Carlo simulations indicate that ND3

molecules in its |J, KM〉 = |1, −1〉 state can be effectively trapped and evaporatively cooled. In addition,
replacing the electrodes with different patterns enables realizing 3D electric lattices with new topological
geometry (e.g., honeycomb or kagome). As a natural extension of the 3D optical and magnetic lattices, the
3D electrostatic lattice offers intriguing perspectives for cold chemistry, quantum simulation, and precision
metrology.
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I. INTRODUCTION

Lattice, characteristic of hundreds of potential traps and
small sizes, serves as a convenient platform for taming a
single particle or many-body system. Atomic lattice has been
pursued for decades due to its intriguing prospects in fields
including but not limited to condensed-matter physics and
quantum information processing [1,2]. For instance, engi-
neering many-body systems of ultracold quantum gases in
three-dimensional (3D) optical lattice enables one to gain
insights into complex solid-state systems, leading to the dis-
covery of “artificial crystal of light” [3]. In addition, magnetic
or magneto-optical lattices for cold atoms have also been
demonstrated and widely utilized in atomic matter wave inter-
ference [4,5] and Mott insulator quantum phase transition [6].

The complicated internal energy level structure of
molecules, on one hand, offers enhanced sensitivity in preci-
sion spectroscopy and measurement in fundamental physics,
but on the other hand, brings great difficulties to realize
molecular cooling and trapping. In the last two decades, ex-
perimental techniques that produce intense cold molecular
gases have been invented, which we can divide into four cate-
gories in general. (i) Deceleration (filtering) methods utilizing
conservative fields including electric [7–9], magnetic [10,11],
or laser fields [12] to slow down (filter) molecular beams
produced from a jet (reservoir) to get slow-moving molecules.
(ii) Laser cooling methods employ the dissipative force from
laser to chill certain molecules that depict the quasiclosed
cycling scheme in the molecular schemes [13]. (iii) Colli-
sion techniques such as evaporative cooling [14], sympathetic
cooling [15], and buffer gas cooling [16] that are achieved by
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elastic collisions between molecules or atoms. (iv) Synthetic
methods using magnetic [17,18] and/or laser light [19,20] to
generate ultracold molecules from ultracold atoms, which is a
prevalent way to prepare a quantum degenerate molecular gas.
The combination of molecular cooling and lattices gives rise
to a wealth of opportunities in fundamental physics, precision
metrology, and quantum computation. Recently, evaporative
cooling of chemically active molecules was demonstrated in
optical lattices, which paved the way for the study of collec-
tive quantum many-body physics [14].

While a great number of excellent studies on one-
dimensional [21,22] and two-dimensional (2D) [23,24] elec-
trostatic lattices for polar molecules were conducted, little
work on the 3D electrostatic lattice is not readily available,
mostly due to the complex energy level structure of cold polar
molecules. Here, we propose a design of a 3D electrostatic
lattice for cold polar molecules based on the following con-
siderations. First, the 3D electrostatic lattice is suited to tame
polar molecules, and is a natural extension of the 3D optical
and the 3D magnetic (-optical) lattices. Second, the depth of
3D electrostatic lattices is typically several orders of mag-
nitude deeper than that of 3D optical lattices, thus allowing
for powerful control of polar molecules over comparatively
large energy scales. Third, by replacing the electrodes with
different patterns, our scheme enables realizing 3D electric
lattices with various topological geometries such as quadri-
lateral, honeycomb, or kagome. Furthermore, the voltage on
each electrode can be controlled individually, thus enabling
both tunability of local electric field distribution and gener-
ation of uneven lattice patterns for exotic topological band
structures.

In this paper, we first focus on the design of the 3D electric
lattice scheme as well as a detailed theoretical analysis. The
molecular trajectory calculations are then carried out to simu-
late the molecular trapping and evaporative cooling processes.
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FIG. 1. (a) Schematic view of the 3D electrostatic lattice for
trapping a Stark-decelerated cold polar molecular beam. The 3D
electrostatic lattice is formed by a series of periodically spaced
electrode plates. (b) Zoom-in view of one piece of plate of the 3D
electric lattice, together with the pattern parameters.

Some possible topological geometries and applications of the
3D electric lattice are also discussed.

II. LATTICE DESIGN AND THEORETICAL ANALYSIS

Figure 1(a) depicts an application scenario of our designed
3D electrostatic lattice in a cold molecular experiment, where
the electrostatic lattice is located close to the end of a Stark
decelerator [25]. A supersonic beam produced by a pulsed
valve [26,27] is slowed down via the Stark decelerator and
then coupled into the 3D electrostatic lattice. The lattice is
composed of thin metal electrode plates with a square hole
array. Figure 1(b) presents a detailed view of one electrode
plate of the lattice. These plates have a thickness of c and
are evenly spaced with a distance of d . The length of the
square hole on the plate is s and the width of the metal
frame between two square holes is g. By applying appropriate
voltages on these metal plates, a 3D electric potential array
can be formed among the metal plate array. The longitudinal
(along the z axis) and transverse (x or y axis) periodicity of the
3D electrostatic lattice is Nd and s + g, respectively, in which
N indicates the number of electrodes in one longitudinal peri-
odicity.

One can express the fixed voltage applied on each electrode
as the following expression:

Vn = V0sin

(
φ0 + 2πn

N

)
, (1)

where V0 is the voltage amplitude, φ0 is the phase offset, and
n is the electrode index number. In the following discussion,
the voltage of lattice refers to the voltage amplitude V0. The
parameters of the 3D lattice are set as follows: d = 40 μm,
c = g = 10 μm, s = 50 μm, and N = 8. Therefore, the lon-
gitudinal and transverse periodicity of the 3D lattice is 320
and 60 μm. One can find that there are two electric field
minima in one longitudinal period. That is to say, the distance
of the neighboring electric traps in the longitudinal direction
is 160 μm. It should also be noted that the geometries of the
electrode plates are subject to scaling up or down if needed.

FIG. 2. Four slices of the electric field distributions of the 3D
electrostatic lattice at different positions through the electric field
minima of the sites (a), together with the potential-well distribution
along the longitudinal (b) and the lateral (c) directions for ND3

molecules.

The electric potential φ(x, y, z) in the electric lattice can
then be expressed as

φ(x, y, z) =
∞∑

m,n,l

Amnl [cos (mkxx + ϕ1) + sin (mkxx + ϕ1)]

× [cos (nkyy + ϕ1) + sin (nkyy + ϕ1)]

× [cos (lkzz + ϕ2) + sin (lkzz + ϕ2)], (2)

where kx = ky = 2π
L1

, kz = 2π
L2

, and L1 and L2 are the period-
icity of potential in the transverse and longitudinal direction,
respectively. According to the parameter settings mentioned
above, L1 = 60 μm, L2 = 320 μm, ϕ1 = π

4 , and ϕ2 = −π
8 .

When taking m, n, l = 0, 1, 2, the coefficients Amnl can be
obtained by comparing each Fourier component with Eq. (2),
using the method similar to Ref. [28]. Once the potential
φ(x, y, z) is determined, the electric fields can be given by the
following equation:

Ei = ∂φ

∂i
, (3)

with i = x, y, z. Then the magnitude of the electric field in the
lattice is achieved with

| �E | =
√

(Ex )2 + (Ey)2 + (Ez )2. (4)

The resulting electric field distributions can be derived
based on Eqs. (2)–(4), as shown in Fig. 2(a). It shows four
slices of the electric field distributions in the x-y planes
through the minima of the lattice sites, which are in the right
middle of two neighboring plates. Each slice in Fig. 2(a) is
patterned with a 2D potential array, with separations of 60 and
160 μm in the lateral (x or y axis) and the longitudinal (z axis)
directions, respectively. Figure 2(b) shows the electric field
distribution of the 3D lattice at different positions through the
electric field minima of the sites. When V0 is set to 100 V,
the trap depth for ND3 molecules in the |J, KM〉 = |1,−1〉
state reaches 27.5 and 280 mK in the lateral and longitudinal
directions, respectively. Here M and K are the projections of
the total angular momentum �J on the electric field �E and along
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FIG. 3. Loading and trapping polar molecules into the 3D elec-
tric lattice employing only one electric field configuration (a) and two
different electric field configurations in succession (b). The dashed
red line and dotted blue line represent the Stark potential energy of
the molecules in the lattice, and the solid green lines indicate the
molecular potential energy gained in the loading processes.

the symmetry axis, respectively. As visualized in Fig. 2, a 3D
electrostatic lattice with a certain configuration can be formed
for polar molecules prepared in low-field-seeking states.

The force felt by a polar molecule in electric fields is given
by

⎧⎨
⎩

Fx

Fy

Fz

⎫⎬
⎭ = −

(
1

| �E |
dW

d| �E |
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⎪⎪⎩
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∂φ
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∂z

⎫⎪⎬
⎪⎭ (5)

For ND3 molecules in the |J, KM〉 = |1,−1〉 state, the
Stark potential W (| �E |) can be expressed as

W (| �E |) = ±
√(

Winv

2

)2

+ (μeff | �E |)2 − Winv

2
, (6)

where Winv = 0.053 cm−1 is the zero-field inversion splitting
and μeff is the effective dipole moment with the expression
μeff = μMK/[J (J + 1)]. Here, μ = 1.5 D is the permanent
electric dipole moment of the ND3 molecule.

III. TRAPPING AND EVAPORATIVE COOLING

A. Loading and trapping

The 3D electric lattice can be filled with slow-moving
polar molecules produced by, for example, Stark deceleration
or bend filtering. The loading efficiency of molecules into
the 3D lattice is key for the subsequent molecular experi-
ments. We employ a so-called “synchronous molecule” for
convenience in describing the operation sequence, which is
a virtual molecule moving along the beam axis and always
synchronized with the change of the external electric field.
There are two different loading methods for our designed 3D
electrostatic lattice, as shown in Fig. 3. For the loading method
I, the molecule first climbs the potential hill from position
A1 to B1, which is accompanied by a loss in kinetic energy.

FIG. 4. The calculated longitudinal phase-space distribution of
ND3 molecules at t = 2 ms for the loading methods I (a) and II
(b), respectively. (c) The loading efficiency of ND3 molecules as a
function of the forward velocity using two different loading schemes.
(d) The dependence of the molecular number density upon a time in
the lattice sites for different loading methods.

Then the molecule continues to fly freely to the following
lattice site minimum and repeats the above slowing process
until at a standstill. For the loading method II, the synchronous
molecule is first decelerated from position A2 to B2 and then
the electric field configuration (dotted blue curves) is switched
to another one (dashed red curves), where the minimum of
the trap exactly overlaps the position of the synchronous
molecule. This is achieved by suitably choosing the voltages
on the lattice plates. In principle, the lattice enables construct-
ing electric field configurations with the trap minima at any
position.

To verify the feasibility of these loading methods, 3D nu-
merical calculations are carried out using ND3 molecules in
the |J, KM〉 = |1,−1〉 state as a tester. In the following simu-
lations, the molecular losses due to background collisions and
nonadiabatic transition are not considered in our calculations
[29,30], and molecules hitting the surface of the electrode
are eliminated. Both the position and the velocity distribution
of the ND3 molecular beam is flat in any direction with
the six-dimensional (6D) emittance [500 μm × 2 m/s] ×
[500 μm × 2 m/s] × [500 μm × 2 m/s] (in the x, y, and z
axis, respectively). The molecular beam contains 7 × 106

molecules with an initial distribution centered at x = 30 μm,
vx = 0 m/s, y = 30 μm, vy = 0 m/s, z = 0 μm, and vz =

4 m/s. The above parameters of the tailored molecular beam
are chosen by referring to the related experimental parameters
[31]. In the calculation, the transverse dimension of the lattice
is set to 7 mm × 7 mm, and the longitudinal dimension is
about 10 mm. The starting position of the trajectory is the
end of the hexapole downstream from the Stark decelerator,
which is 2 mm away from the 3D lattice. The voltage of the
lattice V0 is set to 100 V, and the trap depth in the longitu-
dinal direction reaches 0.2 cm−1, allowing for confining ND3

molecules with a maximum velocity of approximately 15 m/s.
Figure 4 shows the calculated results in only one lattice site.
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Figures 4(a) and 4(b) depict the longitudinal phase-space
distributions of ND3 molecules after 2 ms using the loading
methods I and II, respectively. In Fig. 4(a), the phase-space
distribution in the lattice is characteristic of an empty center,
which arises from the defective match between the molecular
packets and the acceptance of the potential traps, namely, the
center of the molecular packet deviates from the center of the
potential wells when the traps are switched on. In loading
method II, the beam center matches well with the trap center,
and thus most molecules can occupy the trap center stably.
Figure 4(c) shows the loading efficiency of the lattice as a
function of the forward velocity via two different methods.
The loading efficiency refers to the ratio between the confined
molecules in the lattice and the original molecules. When the
forward velocity is ∼4 m/s, the optimum loading efficiency
of the 3D lattice using the first method is estimated to be
about 3%. Compared to the first method, the second loading
strategy slightly improves the loading efficiency at any veloc-
ity, with the optimum loading efficiency increased to 3.3%
when vz = 4.0 m/s. Figure 4(d) depicts the molecular density
dependence on time using two different loading methods,
which indicates that both permit stable confinement for ND3

molecules.

B. Evaporative cooling

Scientists have realized low-entropy quantum gases of po-
lar molecules via the synthetic method in 3D optical lattices
[32], which inhibits chemical reactions between molecules. A
filling fraction of 25%–30% is obtained in their experiments,
limited by the molecular preparation efficiency. A larger fill-
ing fraction means lower entropy per particle in a lattice,
which in principle could be achieved for natural molecules
via various ways like adiabatic cooling, Sisyphus cooling,
or evaporative cooling of trapped molecules. These cooling
methods have been demonstrated in a single electric trap.
Here, we utilize the Monte Carlo simulation approach to study
the production of a low-entropy gas of polar molecules in our
designed 3D electric lattice through evaporative cooling.

Evaporative cooling in our 3D electric lattice is performed
by ramping down the voltages on the electrodes, thus lowering
the potential depth of the lattice sites and removing the hottest
molecules. In our Monte Carlo simulations, the voltages ap-
plied on the 3D lattice are slowly changed from 100 to 10 V
in 1 ms and kept for 2 ms. Following that, the voltages are
gradually increased back to 100 V in 1 ms and kept for 5 ms.
It is worth noting that during the evaporative cooling process,
the ramping time should be sufficiently long for molecules
to follow the change in potential, that is, dT/dt � 1 [33],
where dT and dt represent the trapping period and ramping
time, respectively. The trap frequency of the 3D lattice site is
f = 97 and 31 kHz when the applied voltage is 100 and 10 V,
respectively. When the voltages are reduced from 100 to 10 V,
the trapping period is varied from 10 to 33 μs, both of which
are much less than the ramping time �t = 1 ms, and therefore
satisfy the cooling conditions.

In current simulations, the initial molecular packet con-
tains 6 × 106 molecules and has a 6D emittance [200 μm ×
6 m/s] × [200 μm × 6 m/s] × [500 μm × 16 m/s] (in the x,
y, and z axis, respectively). The packet distribution is

FIG. 5. Space-periodic ND3 molecular packets in the 3D electro-
static lattice at voltages of 100 V (a) and 40 V (b).

centered at x = 30 μm, vx = 0 m/s, y = 30 μm, vy =
0 m/s, z = 250 μm, and vz = 0 m/s. The potential-well
depth in the z direction is about 0.19 cm−1, which can confine
the molecules to less than 15 m/s. The potential depth in the
x(y) direction is much shallower than the longitudinal one,
reaching 0.02 cm−1, thus allowing molecules below 5 m/s to
oscillate in the trap. Figure 5(a) shows the spatial distribution
of molecules confined in the lattice after about 10 ms with
V0 = 100 V. It is clear that arrays of molecular packets are
formed in 3D space and the temperature of the molecular
packets in the lattice is 24 mK. Now we start evaporative cool-
ing from V0 = 100 V. As the voltage of the lattice decreases,
the trap depth becomes shallower and the hottest molecules
escape from potential wells. Figure 5(b) shows the calculated
results of the 3D spatial distribution of ND3 molecules in
the lattice with V0 = 40 V. The temperature of the molecular
packets in the lattice is reduced from 24 to 13 mK as the
voltages lower from 100 to 40 V. The temperature of the
packet can be obtained from (3/2)kBT = (1/2)kBTL + kBTT

[34], where TL and TT are the corresponding longitudinal
and transverse temperatures of the molecular packets and are
given by Tx,y,z = m�v2

x,y,z/8 ln2kB [35], where kB is Boltz-
mann constant, m denotes the mass of the molecule, and
�vx,y,z is the velocity spread of the molecular packet. Note

FIG. 6. The dependence of the filling ratio and the average
number of molecules per lattice site on applied electrode voltage,
respectively.
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FIG. 7. The design of hexagonal honeycomb (a) and kagome (d) 3D electric lattices and the pattern in the electrodes. Electric field
distribution of the honeycomb (b) and the kagome lattices (e) along the z direction. The two-dimensional transverse electric field distributions
through the lattice site minima of the honeycomb (c) and the kagome (f) 3D lattices, together with the electric field strength bar.

that within our evaporative cooling timescale, the densities
in the lattice are too low to have thermalization, and the
concept of temperature used here is only for the convenience
to represent the molecular distribution. Figure 6 shows the
filling ratio of the lattice that is reduced from 100% to about

6% when the voltages decrease from 100 to 10 V. Here, the
filling ratio refers to the number of occupied lattice sites to the
total number of sites. Simultaneously, the average molecular
number per lattice is lowered from 19 to 0.06, also as shown
in Fig. 6.

FIG. 8. Transverse space distribution of ND3 molecules in the honeycomb (a) and the kagome (c) lattices after 2 ms of confinement.
Molecular phase-space distribution in the z direction in the honeycomb (b) and the kagome (d) lattice sites.
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IV. OTHER TOPOLOGICAL 3D ELECTROSTATIC
LATTICES

Topology has emerged in the last few decades and played a
pivotal role in the search for novel phases of matter. Tremen-
dous efforts have been devoted to exploring novel topological
phases of material since the discovery of the quantum Hall
effect and topological insulators [36–38]. Ultracold atomic
and molecular gases stored in the optical lattice offer a unique
platform for the implementation of exotic topological states
and band structures.

The geometry of an optical lattice can be controlled by
changing the angles of the interference lasers [39]. Analogous
to the optical and magnetic lattices, our 3D electrostatic lattice
can be constructed with the flexibility of transforming the
3D lattice to various topological geometries via changing the
pattern in the plates. Figure 7(a) depicts our designed hon-
eycomb 3D electric lattice, which is formed by an array of
electrodes in a triangular pattern. Figures 7(b) and 7(c) present
the longitudinal and the transverse electric field distributions
through the lattice site minima, respectively. We can imagine
that an array of true 3D electrostatic traps characteristic of
honeycomb geometry could be formed for polar molecules
in low-field-seeking states. Similarly, various topological 3D
electric lattices such as kagome and triangular lattices can
also be generated. Figures 7(d)–7(f) show the construction
of the 3D electric kagome lattice, including the pattern in
the electrodes and corresponding electric field distributions.
Kagome lattice is thought to possess many essential features
of high-temperature superconductors [40].

With similar parameters of the molecular beam, we carried
out the numerical simulations for trapping ND3 molecules in
both the honeycomb and the kagome lattices. Figures 8(a) and
8(c) depict the transverse distribution of ND3 molecules after
trapping 2 ms in the lattice. Figures 8(b) and 8(d) illustrate the
molecular phase-space distribution in one site. These results
show the possibility of the honeycomb and kagome electric
lattice schemes.

V. CONCLUSION

We have proposed a scheme of 3D electrostatic lattice
suitable for cooling and controlling polar molecules in the
low-field-seeking states, whose lattice formed by periodical

electrodes offers a high degree of design flexibility. The depth
of the lattice and the local electric field distribution can be
easily tweaked by changing the voltages on the electrodes.
Theoretical analysis and Monte Carlo simulations have been
carried out to justify the possibility of our scheme. Com-
bined with laser polarization gradient cooling, the 3D lattice
might further cool molecules to ultracold temperatures [41],
thus paving the way for the development of controlled cold
chemistry, quantum simulation, and quantum metrology. By
changing the pattern in the electrode plates, the 3D electric
lattice can generate numerous complex landscapes for polar
molecules, such as hexagonal, triangular, and kagome lattices,
which facilitate engineering many-body systems to realize and
probe exotic topological phenomena.

The lattice constant of the 3D electric lattice presented
here is about two orders of magnitude larger than the 3D
optical lattice, which is too long to study many-body systems
using polar molecules. From the point of view of processing
feasibility, reducing the geometry of the 3D electric lattice
by one order of magnitude or more could be enabled by
modern micro-nano structure processing technology [42,43].
When scaled down, our 3D electric lattice may apply to polar
molecules with the largest electric dipole moments. From the
perspective of easier implementation, the 3D electric lattice
may be more suitable for exotic particles, such as Rydberg
atoms with extremely large electric dipole moments [44],
between which the interaction distance can approach the scale
of tens of micrometers [45] with considerable interaction up to
tens of kilohertz. The highly tailored and well-controlled 3D
electric lattice provides a natural stable platform for a full 3D
gas of polar molecules and adds new elements to the toolbox
for engineering many-body systems.
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