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Subcycle time-resolved nondipole dynamics in tunneling ionization
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The electron nondipole dynamics in tunneling ionization in an elliptically polarized laser field is investigated
theoretically using a relativistic Coulomb-corrected strong-field approximation (SFA) based on the eikonal
approximation of the Klein-Gordon equation. We calculate attoclock angle-resolved light-front momentum dis-
tributions at different ellipticities of the laser field in quasistatic and nonadiabatic regimes and analyze them with
an improved simple man’s model. The nondipole correlations between longitudinal and transverse momentum
components are examined. Deviations of the nondipole photoelectron momentum distribution calculated via SFA
with respect to the available experimental results as well as with the improved simple man’s model are discussed
and interpreted in terms of nonadiabatic as well as Coulomb effects in the continuum and under the barrier. The
favorable prospects of an experimental observation are discussed.
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I. INTRODUCTION

High-precision measurements in strong-field atomic
physics allow to detect nondipole features in photoelectron
momentum distribution (PMD) at laser intensities far below
the relativistic regime [1–12]. The leading nondipole effect
in tunneling ionization is due to the laser magnetic field and
results in imparting the photoelectron a momentum along
the laser propagation direction, which has consequences for
the partitioning of the absorbed photon momentum between
the photoelectron and the parent ion [1,13–24]. The electron
energy resolution of state-of-the-art detection techniques [25]
is of about meV, which corresponds to a momentum resolu-
tion of about 0.01 a.u. The nondipole shift of a longitudinal
momentum can be estimated as pk ∼ ca2

0 [26], with the rel-
ativistic invariant laser field parameter a0 = E0/(cω) [27],
the laser field amplitude E0, frequency ω, and the speed of
light c. Atomic units are used throughout if not specified
otherwise. This means that a nondipole shift of a longitudinal
momentum can be detected in a laser field with a0 ∼ 10−2

corresponding to a laser intensity I ∼ 1014 W/cm2 at 800-nm
wavelength. With the recent advancement of the strong-field
laser technique into the mid-infrared (mid-IR) region up to
wavelengths of the order of 10 μm [28], the nondipole ef-
fects become measurable at even lower laser intensities. The
Lorentz force effect matters not only in the continuum but
also during the subbarrier tunneling dynamics, inducing an
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additional longitudinal momentum shift Ip/(3c) [5,13], with
the ionization potential Ip. The latter is increased by subbarrier
Coulomb corrections [24].

In a linearly polarized laser field, the drift of the electron
induced by the laser magnetic field is known to suppress the
recollision and related phenomena (see, e.g., [29–31]). At
restrained recollisions, the interplay between the Coulomb,
ellipticity, and nondipole effects in the continuum induces
specific structures in PMD [2–4,32–38]. In an elliptically po-
larized laser field close to circular the Coulomb field of the
atomic core disturbs the photoelectron motion in the contin-
uum mostly near the tunnel exit; however, it also modifies the
subbarrier dynamics [24].

While in first experiments [1,5,6] the average of the
longitudinal momentum shift was in the attention of investi-
gation, the recent experiment of Ref. [4] provides a subcycle
time-resolved study, and the experiment of Ref. [8] investi-
gates nondipole correlations between longitudinal-transverse
momentum components in the ionized wave packet. The
nondipole effects have been observed also in high-order
above-threshold ionization [9], and the photoelectron energy
peaks shift against the radiation pressure has been shown in
the experiment [10]. The results of these experiments have
raised significant interest of theory, addressing different as-
pects of the nondipole phenomena, in particular investigating
the nonadiabatic [39], and Coulomb effects [40,41], as well
as the intercycle interference structure in the PMD in the
nondipole regime [42,43]. Recently, the magnetic-field effect
has been proposed to be used as a tool to monitor electron
correlations in nonsequential double ionization [12].

In this paper we investigate theoretically the electron
nondipole dynamics in an elliptically polarized laser field
in detail. A relativistic strong-field approximation (SFA) is
employed and Coulomb corrections in the continuum as well
as during tunneling are included in the eikonal approximation.
Main attention is devoted to the investigation of nondipole
features of the attoclock angle-resolved light-front momentum
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distribution and on possible nondipole correlations between
longitudinal-transverse momentum components. The role of
nonadiabatic and Coulomb effects in the continuum and dur-
ing tunneling as well as their interplay are analyzed for
the nondipole dynamics. The simple man’s model [44] is
improved, including nondipole, nonadiabatic, and Coulomb
corrections, for an intuitive interpretation of the PMD features
within the SFA theory. The light-front momentum as a choice
for an observable is underlined as being especially suitable
for exploring the role of nonadiabatic and Coulomb effects
for modifying the characteristics of the nondipole dynamics.
While the main aim of the paper is the investigation of all
nondipole effects of the order of 1/c, we apply a fully rel-
ativistic theory because it allows for a more consistent and
compact treatment than the nondipole one.

II. THEORETICAL APPROACH

The tunneling ionization of a hydrogenlike ion in a strong
laser field is investigated. We employ a relativistic Coulomb-
corrected SFA (CCSFA) based on the Klein-Gordon equation,
where the Coulomb potential of the atomic core is accounted
for using the eikonal approximation [45,46]. The ionization
amplitude is calculated in the dressed partition [47], neglect-
ing small spin effects [48]:

mp = −i
∫

dt〈ψp(t )|Hi|φ(t )〉 (1)

with the interaction Hamiltonian Hi = r · E(η). The laser field
is elliptically polarized:

E = − E0√
1 + ε2

[ex cos(ωη) + εey sin(ωη)], (2)

where ε is the ellipticity, η = t − k̂ · r/c = t − z/c, k̂ the
unit vector along the laser propagation direction, φ(r, t ) =
caφ0(r, t )φ1(r, t ) is the initial bound state of the electron in
the atomic Coulomb potential V = −Z/r, with charge Z and
an asymptotic expression at r � 1/κ:

φ0(r, t ) = exp(−κr + iκ2/2t )

r
, φ1(r) = (

√
2κr)Z/κ , (3)

with ca ≡ √
κ/(2π ) and κ = √

2Ip. We use the nonrelativistic
bound state because the relativistic corrections scale as Ip/c2

and are negligible for the applied conditions. The electron
final state in the continuum is assumed to be the Coulomb-
Volkov state in the eikonal approximation [46]:

ψp(r, t ) = 1

(2π )3/2
exp[iS0(r, t ) + iS1(r, t )]. (4)

The applied eikonal approximation is valid if the momentum
change of the electron due to the Coulomb field is smaller
with respect to the electron momentum via the laser field. This
is the case when hard recollisions do not play a role, which
exactly corresponds to the electron dynamics discussed in this
paper, namely, ionization in an elliptically polarized laser field
with ε � 0.3 [3,33]. Here,

S0(r, t ) = (p + A(η) − (ε/c − c)k̂) · r +
∫ ∞

η

ds[E(s) − c2]

is the Volkov action, ε =
√

c4 + c2p2 the electron energy,

A(η) = E0/ω√
1 + ε2

[ex sin(ωη) − εey cos(ωη)] (5)

is the laser vector potential, and

E(s) = ε + p · A(s) + A(s)2/2



(6)

is the electron energy in the laser field, with the integral of mo-
tion 
 = ε/c2 − pk/c and pk = k̂ · p. Further, the Coulomb
correction (CC) to the eikonal is

S1(r, t ) =
∫ ∞

η

ds
E(s)


c2
V (r(s, η)), (7)

with the electron relativistic trajectory

r(η′, η) = r+ 1




∫ η′

η

ds

(
p+A(s)+k̂

p · A(s) + A(s)2/2

c


)
.

(8)

The ionization amplitude of Eq. (1) consists of a four-
dimensional integral. After a coordinate transformation from
t to η, we solve it with the four-dimensional saddle-point
approximation (SPA). Deviating from common approaches,
cylindrical coordinates are used r = (ρ, ϕ, z) (z axis along
the laser propagation direction) for evaluation of the relativis-
tic matrix element of strong-field ionization. The advantage
is that the integrand is free of the singularity at r = 0 in
cylindrical coordinates and the SPA validity is mathematically
justified. For the accurate application of SPA the integrand is
exponentiated:

mp = −i
∫

dη dρ dφ dz exp(ζ0 + ζ1), (9)

where ζ0 = ln(ρcaHiφ0) − iS0 and ζ1 = ln(φ1) − iS1. Conse-
quently, we obtain the saddle-point equations:

∂ηζ0(ρ, ϕ, z, η) = 0, ∂ρζ0(ρ, ϕ, z, η) = 0,

∂ϕζ0(ρ, ϕ, z, η) = 0, ∂zζ0(ρ, ϕ, z, η) = 0. (10)

In the saddle-point equations it was assumed that the first-
order term ζ1 is slowly varying and therefore neglected with
respect to the ζ0 contribution. For a given final momentum p
the saddle-point equations are solved numerically, obtaining
the ionization amplitude

mp = −i

√
(−2π )4

det ∂i∂ jζ0,s
exp(ζ0,s + ζ1,s), (11)

where indices i and j run over the cylindrical coordinates and
η. The corresponding momentum distribution is then calcu-
lated via

dw(p)

d3p
= |m(p)|2. (12)

III. SIMPLE MAN’S MODEL

In this section we extend the well-known simple man’s
model [44] into the relativistic domain for spinless particles
and further improve it to include the nondipole subbarrier
correction to the longitudinal momentum at the tunnel exit
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and its CC, the nonadiabatic corrections to the initial electron
momentum at the tunnel exit, as well as Coulomb correc-
tions due to the continuum motion in the quasistatic and in
nonadiabatic regimes. The improved simple man’s model is
a convenient tool for analyzing the role of the nonadiabatic
and Coulomb effects in modifying the characteristics of the
nondipole dynamics.

A. Quasistatic regime

In the simple man’s model we find the most probable
relativistic trajectory for the ionized electron, and accordingly
the most probable asymptotic momentum corresponding to
the peak of PMD in the nondipole regime. In the quasistatic
regime the ionized electron appears in the continuum at the
tunnel exit (at the laser phase φi = ωηi) with a vanishing
momentum p⊥i = 0, pki = 0. Here p⊥ is the transverse mo-
mentum component in the polarization plane, and pk the
longitudinal component. Further, the electron moves in the
laser and Coulomb fields of the atomic core.

First, we find the electron trajectory in a plane-wave laser
field A = A(φ). In this field there are two relativistic integrals
of motion following from the field symmetry, namely, from
the field dependence only in the single variable φ:

p⊥ − A(φ) = p⊥i − A(φi ), (13)

ε − cpk = εi − cpki = c2
, (14)

with the initial energy εi at φ = φi, φ = ωη. From the lat-
ter the final photoelectron momentum is derived [see, e.g.,
Eq. (A10) in [3]]:

p⊥ = p⊥i − A(φi ), (15)

pk = pki + p2
⊥ − p2

⊥i

2c

. (16)

Further, we use the relativistically correct expressions of
Eqs. (15) and (16) for the nondipole regime [O(1/c)], when

 ≈ 1 − pki/c ≈ 1. The latter can be expressed either via the
initial transverse momentum p⊥i or via the asymptotic one p⊥,
which in the leading order of O(1/c) reads as

pk = pki − p⊥i · A(φi ) − A(φi )2/2

c
, (17)

pk = pki − p⊥ · A(φi) + A(φi )2/2

c
. (18)

In the quasistatic regime and neglecting the subbarrier
nondipole dynamics, pki = 0 and p⊥i = 0, and the peak of the
final momentum distribution within the simple man’s model
is

p(m)
⊥ (φi ) = −A(φi ), (19)

p(m)
k (φi ) = p(m)

⊥ (φi )2

2c
. (20)

We define the light-front momentum via the integral of motion
in a plane wave p− = c(1 − 
):

p− = pk − p2
⊥

2c
. (21)

In the quasistatic simple man’s picture the most probable
value of the light-front momentum is, therefore, vanishing:

p(m)
− (φi) = 0. (22)

The relationship of Eq. (22) for the time-resolved light-front
momentum is fulfilled in a plane-wave laser field of any inten-
sity and ellipticity as far as nonadiabatic and Coulomb effects,
subbarrier nondipole effects, as well as recollisions are negli-
gible. For this reason the momentum variable of p−(φi) is a
very convenient observable for the time-resolved investigation
of signatures of nonadiabatic, subbarrier, and Coulomb effects
in the nondipole dynamics. Note that recollisions do not play
a significant role at rather large ellipticity of the laser field
ε � 0.3 [3,33].

B. Subbarrier corrections

In this section we improve the simple man’s model in-
cluding the subbarrier nondipole, Coulomb, and nonadiabatic
corrections. The subbarrier nondipole effects shift the peak
of the longitudinal momentum distribution at the tunnel exit
from the simple man’s model value pki = 0 to

pki = Ip

3c

[
1 + 6ν

E (φi )

Ea

]
, (23)

where the first term Ip/(3c) is due to the subbarrier nondipole
magnetic field effect [13], and the second term due to
the subbarrier Coulomb field effect in the quasistatic and
quasiclassical approximation [24], ν = Z/κ is the effective
principal quantum number of the bound state, and Ea = κ3

the atomic field strength.
In the nonadiabatic regime the peak of the transverse

distribution in the polarization plane at the tunnel exit is
shifted due to the action of the nonadiabatic transverse force
F⊥ ∼ E ′(φi)τK ∼ εγ (φi)E (φi) with respect to the direction of
the tunneling channel during the subbarrier dynamics within
the Keldysh time τK = γ (φi )/ω, with the Keldysh parameter
γ (φi ) = ωκ/E (φi). This yields a transverse nonadiabatic mo-
mentum shift [49]

p(nad )
⊥i = εγ (φi )κ

6
ê⊥(φi ), (24)

where

ê⊥(φi ) = (Ey(φi),−Ex (φi))/E (φi ) (25)

is the unit vector perpendicular to the time-dependent laser
field.

C. Coulomb corrections in the continuum

During the continuum motion of the ionized electron,
the Coulomb field of the atomic core induces a momentum
transfer. In the case of large ellipticity ε � 0.3, recollisions
are negligible and the Coulomb effect mostly arises during
the electron motion near the tunnel exit with the coordinate
re(φi ) = −IpE(φi )/E (φi )2.

While in the quasistatic limit the CCs at the tunnel exit are
known [36,50], here we derive the CC including nonadiabatic
effects. The CC to the momentum due to the atomic potential
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V (r) is calculated as follows:

δpC = −
∫ ∞

ηi

dη ∇V (r(η, ηi )), (26)

using the electron trajectory r(η, ηi ) in the laser field. The
following results are obtained keeping the first-order nonadi-
abatic terms with respect to γ (φi ) [valid at γ (φi ) � 1].

The CC to the momentum in the field direction reads as

δpeC = πZ
E(φi )

Ea

[
1 + γ (φi )

3π

1 − ε2

1 + ε2

E2
0 sin(2φi)

E (φi )2

]
, (27)

where the first term coincides with the quasistatic Coulomb
momentum transfer in the field direction derived in [50],
which results in a rotation of the final PMD in the polar-
ization plane, and inducing the attoclock offset angle δθ ∼
πωZ/(εκ3). The attoclock angle is defined via the trans-
verse momentum components p(m)

⊥ (φi) = (p(m)
x (φi ), p(m)

y )(φi)
(in the polarization plane) of the PMD peak:

tan θ (φi ) = p(m)
y (φi )/p(m)

x (φi). (28)

In the simple man’s model the attoclock angle is θ0 = π/2,
and the attoclock offset angle is defined as δθ = θ − θ0. The
second term in Eq. (27) ∼γ (φi) is the nonadiabatic CC.

The CC to the momentum in the polarization plane, trans-
verse to the field direction, is

δpe⊥C = −εγ (φi )κ

6

2Z

κ

E (φi )

Ea

[
1 + E2

0

E (φi )2(1 + ε2)

]
ê⊥(φi ).

(29)

The first term is the CC due to the initial transverse nonadi-
abatic momentum following from [50]. The second term is
an additional CC in the continuum due to the motion driven
by the nonadiabatic transverse force δp⊥ ∼ εγ (φi)κ (see the
intuitive explanation in Appendix A).

The CC to the momentum in the laser propagation direction
is

δpkC = −
(

pki + Ip

3c

)2Z

κ

E (φi )

Ea

− 3π

16
γ (φi )

Ip

3c

Z

κ

E (φi )

Ea

1 − ε2

1 + ε2

E2
0 sin(2φi )

E (φi )2
, (30)

where the first term with the factor pki is the quasistatic
Coulomb momentum transfer in the direction transverse to the
field derived in [50], while the second term with the factor
Ip/(3c) is due to the electron nondipole displacement in the
continuum by the v × B force (see the intuitive explanation in
Appendix B), and the last term is the nonadiabatic CC.

Thus, taking into account the nondipole, Coulomb, and
nonadiabatic effects under the barrier and in the continuum,
we obtain the most probable initial momentum:

p(m)
⊥i = πZ

E(φi )

Ea
[1 + ge(φi)] + εγ (φi )κ

6
ê⊥(φi )[1 − g⊥(φi )],

(31)

p(m)
ki = Ip

3c

[
1 + 6ν

E (φi )

Ea
− gk (φi )

]
, (32)

with the nonadiabatic and Coulomb correction functions

ge(φi) = γ (φi )

3π

1 − ε2

1 + ε2

E2
0 sin(2φi)

E (φi )2
, (33)

g⊥(φi ) = 2Z

κ

E (φi )

Ea

(
1 + E2

0

E (φi )2(1 + ε2)

)
, (34)

gk (φi) = E (φi)

Ea

[
4Z

κ
+ 3π

16
γ (φi )

Z

κ

1 − ε2

1 + ε2

E2
0 sin(2φi)

E (φi)2

]
.

(35)

Here we keep the leading terms in E0/Ea, and have added
the negative continuum Coulomb corrections to the initial
momentum, assuming that it takes place during the motion
near the tunnel exit in the case of a large ellipticity. With
Eqs. (31) and (32) the most probable asymptotic momentum
reads as

p(m)
⊥ (φi) = −A(φi ) + πZ

E(φi )

Ea
[1 + ge(φi )]

+ εγ (φi)κ

6
ê⊥(φi)[1 − g⊥(φi )], (36)

p(m)
k (φi) = Ip

3c

[
1 + 6ν

E (φi )

Ea
− gk (φi )

]
+ A(φi )2

2c

− πZ

Ea

E(φi ) · A(φi )

c
[1 + ge(φi)]

− εγ (φi)κ

6

ê⊥(φi ) · A(φi )

c
[1 − g⊥(φi )]. (37)

The mapping of the initial laser phase (φi) of the tunneled
electron to the attoclock angle (θ ) is derived from Eq. (28).

The light-front momentum (21) is an integral of motion:

p−(η) = pk (η) − p2
⊥(η)

2c
= pki − p2

⊥i

2c
. (38)

From the latter, keeping the first-order terms with respect to
E0/Ea and γ , we have for the peak value of the asymptotic
light-front momentum

p(m)
− (φi ) = Ip

3c

[
1 + 6ν

E (φi)

Ea
− gk (φi)

]
. (39)

The term p2
⊥i/(2c) in Eq. (38) has contributions of the order

of O((E0/Ea)2, γ 2), which are neglected.
Thus, we have derived in the weakly nonadiabatic regime

the most probable asymptotic momentum of the photoelec-
tron within the simple man’s model [Eqs. (36) and (39)],
which provides the parametric dependence of the asymptotic
momentum on the attoclock angle θ via the parameter φi

[Eq. (28)]. The estimation for the light-front momentum (39)
includes the nondipole subbarrier momentum shift (Ip/3c),
quasistatic CC during the subbarrier dynamics [6νE (φi )/Ea]
and in the continuum [(−4Z/κ )E (φi )/Ea], as well as nonadi-
abatic CC [∼γ (φi )2Z/κ]. The estimation for the transverse
momentum (36) includes the quasistatic CC during the
continuum dynamics [πZE (φi )/Ea], and its nonadiabatic cor-
rection [∼γ (φi)] as well as the nonadiabatic momentum
shift due to subbarrier dynamics [εγ (φi)κ/6], and its CC
(∼(2Z/κ )[E (φi)/Ea]).
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FIG. 1. Ionization phase φi vs attoclock offset angle δθ via the
improved simple man’s model (28) (blue, solid), and plain simple
man’s model (orange, dashed). The laser field strength is E0 = 0.05,
frequency ω = 0.05, and ellipticity ε = 0.5.

IV. COMPARISON OF SFA RESULTS WITH IMPROVED
SIMPLE MAN’S MODEL

A. Time-resolved light-front momentum

In this section we consider the ellipticity dependence of the
time-resolved light-front momentum p−(φ) corresponding to
the peak of PMD in the quasistatic and nonadiabatic regimes,
respectively [for simplicity of notation we remove the super-
script (m) in p(m)

− (φ)]. The use of the light-front momentum
for the presentation of the results is quite useful because it im-
mediately demonstrates the role of Coulomb and nonadiabatic
corrections, as in the plain simple man’s model p− = 0. We
note that in the nonrelativistic limit (c → ∞) the light-front
momentum p− is vanishing exactly, as Eq. (39) indicates. We
will present the p− dependence on the attoclock offset angle
δθ because the latter is of experimental significance. However,
in the simple man’s model [Eq. (39)] the dependence on
the initial phase φi is derived, therefore, we first discuss the
relation of the ionization phase to the attoclock offset angle
(see Fig. 1). When the ionization phase varies within the half
of the laser cycle −π/2 � φi � π/2, the offset angle changes
within −0.4π � δθ � 0.4π . An important feature of Fig. 1 is
that the peak of the laser field φi = 0 is shifted from zero offset
angle, i.e., the field is not symmetric with respect to δθ = 0. It
is due to the nonadiabatic Coulomb effects in the continuum.

In Fig. 2 the p− dependence on the attoclock offset angle
is presented. We have applied several versions of SFA: (1) full
CCSFA, which includes all Coulomb corrections, i.e., during
the subbarrier dynamics, as well as in the continuum; (2)
tunnel Coulomb-corrected SFA (TCSFA), i.e., the SFA with
only subbarrier Coulomb corrections; (3) plain SFA with no
Coulomb corrections. We provide also a comparison of the
SFA results with the improved simple man’s model [Eq. (39)].
The general observation from the results of Fig. 2 is the
following. In the quasistatic regime (in our example γ ≈ 0.4),
the improved simple man’s model and the plain SFA describe
quite well the full CCSFA results for the given ellipticity range
ε = 0.5–0.9. They both underestimate the CCSFA result for
p− slightly. The deviation of CCSFA result from the improved
simple man’s model and the plain SFA is not large because the

subbarrier CC (highlighted via TCSFA) and the continuum
CC (included in CCSFA), which are of opposite sign and
larger at small ellipticity values, compensate each other to
some extent [24].

In the nonadiabatic regime [in our example γ ≈ 1.1, Fig. 2
(right column)] there are large deviations of the plain SFA
with respect to CCSFA at small ellipticity. The performance of
the improved simple man’s model is also not good. In the sim-
ple man’s model we expand the nonadiabatic CC with respect
to γ , and the model is not accurate at large γ . Nevertheless,
we probe the improved simple man’s formulas for the γ ∼ 1
domain in Fig. 2. They do not predict the slope for the CCSFA
result, and there is a deviation from CCSFA in the offset-angle
dependence. The deviation is larger at small ellipticities and
at large positive offset angles. The improved simple man’s
model does not capture this latter feature. This stems from
nonadiabatic Coulomb corrections, which are larger for small
elipticity. In the nonadiabatic regime the electron stays longer
near the core than the quasistatic estimation assumes, leading
to a large CC. The characteristic feature of the CC in the
nonadiabatic regime is that it induces an asymmetry between
the positive and negative offset angles. At γ ∼ 1 this effect is
significant.

Contributions of different Coulomb and nonadiabatic cor-
rections are analyzed in Fig. 3 for the nonadiabatic regime.
The simple man’s model without CC (but with nonadia-
batic corrections) coincides with the plain SFA result for the
time-resolved light-front momentum. The subbarrier and con-
tinuum CCs are underestimated by the simple man’s model
because of the applied expansion over γ parameter (weakly
nonadiabatic approximation). This results in the final devi-
ation of the improved simple man’s model with respect to
CCSFA. Especially the asymmetry of p− with respect to the
sign of the offset angle, which is due to the nonadiabatic
Coulomb effects in the continuum, is not captured in the
simple man’s model. This asymmetry we have already seen
in Fig. 1. We note that due to applied eikonal approximation
in CCSFA, the CC effect sometimes becomes overestimated.

B. Transverse-momentum distribution resolved in time
and in longitudinal momentum

In the previous section we investigated the absolute peak
value of the time-resolved light-front momentum [Eq. (39)].
Following the experiment [8], we further provide a more
detailed description and examine the peak of the transverse
momentum distribution resolved in the longitudinal momen-
tum, as well as resolved in time (attoclock offset angle).
For a given ionization phase φi, let us fix pk and calculate
the maximum of the transverse momentum distribution with
respect to the transverse momentum p⊥. The final distribution
over transverse momenta arises because of the deviation of
the electron transverse momentum at the tunnel exit from the
peak value given by Eqs. (31) and (32):

p⊥i = p(m)
⊥i + ê⊥(φi) p̃⊥, (40)

pki = p(m)
ki + p̃k . (41)

Then, taking into account the additional CCs due to the
additional initial momenta p̃⊥, p̃k we have from Eqs. (15)
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FIG. 2. Light-front momentum p− = pk − p2
⊥

2c vs attoclock offset angle δθ . Left column: quasistatic regime, ω = 0.02 (γ ≈ 0.4); right
column: nonadiabatic regime ω = 0.05 (γ ≈ 1.1); for ellipticity values (a), (d) ε = 0.5, (b), (e) ε = 0.7, (c), (f) 0.9; (red solid) CCSFA,
(orange dashed-dotted) plain SFA without CC, (green dotted) TCSFA (SFA with only subbarrier CC), (blue dashed) improved simple man’s
model. The laser field strength is E0 = 0.05. Note that in the nonrelativistic limit (c → ∞) p− = 0 exactly.

and (17)

p⊥ = p(m)
⊥ (φi) + ê⊥(φi) p̃⊥[1 − g⊥(φi )], (42)

pk = p(m)
k (φi ) + p̃k[1 − gk (φi )] − p̃⊥ · A(φi )

c
[1 − g⊥(φi)],

(43)

where p(m)
⊥ (φi ), p(m)

k (φi) are the most probable asymptotic mo-
mentum components of the ionized wave packet at the tunnel
exit via Eqs. (36) and (37). The factors g⊥(φi ), gk (φi ) account
for the continuum CC due to the additional momentum p̃k, p̃⊥.
Equation (43) shows that p̃k and p̃⊥ are not independent at a
given asymptotic momentum pk:

p̃⊥ = [p⊥ − p(m)
⊥ (φi )] · p̂(m)

⊥ (φi )

[ê⊥(φi) · p̂(m)
⊥ (φi )][1 − g⊥(φi)]

, (44)

p̃k = pk − p(m)
k (φi )

1 − gk (φi )
+ p̃⊥

A⊥(φi )

c

1 − g⊥(φi )

1 − gk (φi )
, (45)

where A⊥(φi ) = A(φi) · ê⊥(φi ), and p̂(m)
⊥ (φi ) ≡

p(m)
⊥ (φi )/|p(m)

⊥ (φi)|. The probability distribution over electron
momenta at the tunnel exit p̃⊥, p̃k is determined by the
tunneling Perelomov-Popov-Terent’ev (PPT) distribution
[51,52]

w( p̃⊥, p̃k ) ∝ exp

{
−2

3

(
κ2 + p̃2

⊥ + p̃2
k

)3/2

E (φi )

}

≡ exp {−G( p̃⊥, p̃k )}.
Therefore, the maximum of the distribution for a given pk −
p(m)

k (φi ) is determined by the minimum of G( p̃⊥, p̃k ). From
the condition

∂G/∂ p̃⊥ = 0, (46)

taking into account Eqs. (44) and (45), and keeping the terms
linear in p̃⊥, p̃k , and up to the order of 1/c, one obtains that a
given pk − p(m)

k (φi ), the transverse-momentum distribution is
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FIG. 3. (a) Different contributions to the simple man’s model for
the nonadiabatic regime, with ω = 0.05 and ellipticity ε = 0.5: (red,
solid) CCSFA, (orange dashed-dotted) plain SFA without CC, (green
dotted) TCSFA (no continuum CC), (blue dashed) improved simple
man’s model with all corrections, (blue dashed cycles) simple man’s
model with no continuum CC, (blue dashed boxes) simple man’s
model with no CC. The laser field strength is E0 = 0.05.

maximal at

p⊥(φi ) − p(m)
⊥ (φi ) = αφi

[
pk (φi) − p(m)

k (φi )
]A0

c
, (47)

with p⊥(φi ) − p(m)
⊥ (φi ) ≡ [p⊥(φi) − p(m)

⊥ (φi )] · p̂(m)
⊥ (φi), and

the coefficient αφi defined as

αφi ≡ − A⊥(φi )

A0[ê⊥(φi ) · p̂(m)
⊥ (φi )]

[
1 − g⊥(φi )

1 − gk (φi )

]
, (48)

and CC factors g⊥(φi ), gk (φi ) from Eqs. (34) and (35). Thus,
the time-resolved PMD with respect to (p⊥(φi ), pk (φi )) shows
a local maximum, which runs along the line of Eq. (47). It
is in accordance of the experimental observation of Ref. [8]:
when pk > p(m)

k , one has a local maximum of p⊥ at a given pk ,
which exceeds the absolute maximum p(m)

⊥ , and vice versa. An
alternative derivation of the correlation of the transverse and
longitudinal components momentum is given in Appendix C.

The correlation of the transverse and longitudinal momen-
tum components given by Eq. (48) is time resolved via the
ionization phase φi. However, it is not suitable for a direct
experimental observation because in an experiment the PMD
is time resolved via the attoclock angle θ . While there is a
θ -φi relationship [Eq. (28)], it is momentum dependent, and
the correlation (48) is not equivalent, though quite similar, to
the experimentally accessible relationship

p⊥(θ ) − p(m)
⊥ (θ ) = αθ

[
pk (θ ) − p(m)

k (θ )
]A0

c
, (49)

where p⊥(θ ) is the most probable transverse momentum at
the given offset angle θ , and p(m)

⊥ (θ ) its peak value, A0 =
εE0/(ω

√
1 + ε2). This is because for the given attoclock an-

gle θ , the corresponding φi is different for p(m)
⊥ and p⊥.

While in Eq. (49) we parametrize by αθ the correlation
between the deviations of the most probable transverse mo-
mentum p⊥(θ ) and the longitudinal momentum pk (θ ) from

the global most probable corresponding values of p(m)
⊥ (θ )

and p(m)
k (θ ), in Ref. [8] the coefficient α parametrizes the

relationship of the deviation of the average of the transverse
momentum 〈p⊥〉 (with respect to the simple man value p(m)

⊥ =
A0) to that of pk (with respect to the simple man’s model value
p(m)

k = 0): α = (p⊥ − A0)/(pkA0/c).
In Fig. 4 we show the time-resolved dependence of the

αθ parameter on the ellipticity of the laser field. First of all,
there is no significant CC effect in the quasistatic regime
[Figs. 4(a)–4(c)], especially at large ellipticities, as the results
of the plain SFA, TCSFA, and CCSFA are very close to each
other. In the nonadiabatic regime [Figs. 4(d)–4(f)] we note
that there is no significant effect of subbarrier CC, as TCSFA
results coincide with the plain SFA at any ellipticity. However,
a significant deviation of CCSFA results from the plain SFA
is observed in the nonadiabatic regime at small ellipticity and
large positive offset angles, induced by the nonadiabatic CC in
the continuum. There is an asymmetry in α with respect to the
sign of the offset angle due to nonadiabaticity. A comparison
of the SFA results for αθ with the improved simple man’s
model αφi indicates that the equivalence of αθ to αφi in both
regimes is broken at small ellipticities and large offset angles.
Note also that αφi = 1 for the simple man’s model at δθ = 0,
but αφi is increasing at large offset angles.

In Fig. 5 we present the field dependence of the α param-
eter. As expected, for the plain SFA αθ = 1 at any ellipticity
and intensity. There is a remarkable influence of the contin-
uum CC, which increases significantly the αθ parameter in
weak fields and at small ellipticities. The simple man’s model
does not fully account CC, especially nonadiabatic CC in the
continuum.

V. LONGITUDINAL MOMENTUM AT SMALL
ELLIPTICITY VALUES: ROLE OF RECOLLISIONS

The improved simple man’s model presented in Sec. III
fails for small ellipticity values. In this case recollisions play
a role and we have no analytical expression to account for the
recollision effect. In this section we put forward an augmen-
tation of the improved simple man’s model to account for the
recollision effect approximately, and check its capability for
small ellipticity values. The augmentation is straightforward:
For the most probable trajectory we calculate the final longitu-
dinal momentum of the electron numerically within a classical
consideration, assuming initial conditions at φi = 0 according
to the improved simple man’s model:

pxi = 0, pyi = εγ (φi)κ/6, pki = Ip/(3c), (50)

and the initial coordinate at the tunnel exit

re = −ê(φi)Ip/E (φi ). (51)

With these initial conditions Newton equations are integrated
assuming the Coulomb field as a perturbation:

pk = pki−p⊥i · A(φi ) − A(φi )2/2

c
−

∫ ∞

ηi

dη ∂zV (r(η, ηi )),

(52)

with ηi = φi/ω. In Fig. 6 we show the ellipticity dependence
of the most probable longitudinal momentum, calculated via
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FIG. 4. The coefficient αθ from Eq. (49) vs attoclock offset angle δθ . Left column: quasistatic regime, ω = 0.02 (γ ≈ 0.4); right column:
nonadiabatic regime ω = 0.05 (γ ≈ 1.1); for ellipticity values (a), (d) 0.5, (b), (e) 0.7, (c), (f) ε = 0.9; (red solid) CCSFA, (orange dashed-
dotted) plain SFA without CC, (green dotted) TCSFA (SFA with only subbarrier CC), (blue dashed) improved simple man’s model. The laser
field strength is E0 = 0.05.

the augmented simple man’s estimation. Surprisingly, such
a simple model predicts quite correctly the ellipticity value
(ε = 0.12) when the most probable longitudinal momentum
vanishes pk = 0. From Fig. 3(a) of the experimental result of
Ref. [3], this ellipticity value is ε = 0.11. However, this sim-
ple model does not account for the phase-space deformation
due to the Coulomb focusing effect, and correspondingly fails
at smaller ellipticities, when this effect essentially modifies
the PMD.

VI. EXPERIMENTAL TIME-RESOLVED
SPECTRA VS CCSFA

In this section we compare the CCSFA calculations of the
time-resolved nondipole momentum shift to the experimen-
tal data of Ref. [4]. In the latter, rather than the light-front
momentum, the data for the longitudinal momentum are pre-
sented as a function of the so-called streaking angle. In

contrast to the attoclock angle defined by Eq. (37) in Carte-
sian coordinates, the streaking angle θelliptical is defined using
elliptical coordinates. The relation between the elliptical co-
ordinates θelliptical, pρ, pz and the Cartesian one (px, py, pz ) is

θelliptical = 1

f
Im{cosh−1 (px − ipy)}, (53)

pρ = 1

f
Re{cosh−1 (px − ipy)}, (54)

pz = pz, (55)

with f = √
1 − ε2(E0/ω), and the inverse mapping

px = f cosh(pρ ) cos(θelliptical ), (56)

py = − f cosh(pρ ) sin(θelliptical ), (57)

pz = pz, (58)
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FIG. 5. The coefficient αθ [Eq. (49)] (at δθ = 0) vs the laser
field, for ω = 0.04 a.u. and κ = 1 a.u.: (a) ε = 0.6; (b) ε = 1; (red
solid) CCSFA, (orange dashed-dotted) plain SFA without CC, (blue
dashed) improved simple man’s model.

which allows a linear relationship between the ionization
phase and the streaking angle.

In Fig. 7 we show the offset angle, expressed as a time de-
lay, between the attoclock angle of the maximum yield and the
minimum of the longitudinal momentum vs ellipticity. Both
the simple man’s model and CCSFA results are in accordance
with the experimental data within the error bars. However, the
experimental data hint for a slight slope decreasing the time
delay at large fields. This feature is absent in the simple man’s
model, but demonstrated by CCSFA.

FIG. 6. The most probable longitudinal momentum via the aug-
mented simple man’s model (with forward rescattering) vs ellipticity,
for ω = 0.013 45 a.u., κ = 0.944 a.u., and E0 = 0.0338 a.u.

FIG. 7. Offset angle (expressed as a time delay) between the
attoclock angle of the maximum yield and the minimum of the
longitudinal momentum vs ellipticity. Experimental data [4] with
error bars are black, CCSFA (blue cycles) and simple man’s model
results (orange boxes).

In Fig. 8 the CCSFA and simple man’s model results for the
average of the longitudinal momentum vs the elliptical offset
angle δθelliptical = −φi + π/2 are compared with the experi-
ment. The simple man’s model results on the time-resolved
data coincide with those of CCSFA; however, there are sig-
nificant deviations with respect to the experiment, especially
at large offset angles. However, the qualitative features of
the curves, as in the simple man’s approximation, in SFA,
as well as in the experiment, coincide. Namely, the value of
〈pk〉 at δθ = 0 decreases with the decrease of the ellipticity,
and increases with the increase of |δθ | at a fixed ellipticity
(the increase is larger at small ellipticity). Both features can
be explained via Eq. (37), where the main contribution at the
given parameters comes from the second and fourth terms,
the ponderomotive drift term A2/(2c) and the nondipole
drift term εγ (φi)[−ê⊥(φi) · A(φi )]κ/(6c) = εa0κ

2/[6E (φi )],
respectively, with both terms positive. We note that A(φi ) ∝√

1 − (1 − ε2) cos2 φi increases with the larger offset an-
gles, and the increase is larger at smaller ellipticity; E (φi ) ∝√

1 − (1 − ε2) sin2 φi decreases with the larger offset angles,
and the decrease is larger at smaller ellipticity. With this
information, we can deduce that at δθ = 0 the ponderomotive
and the nondipole drift terms’ contribution in 〈pk〉 decreases
at smaller ellipticity. At a given ellipticity, the increase of |δθ |
will increase both drift terms and 〈pk〉, where the increase is
larger at smaller ellipticity. Thus, the mentioned two quali-
tative features of the 〈pk〉 dependence can be explained with
the ponderomotive and nondipole drifts. While the improved
simple man’s model captures these qualitative features, it
underestimates the nonadiabatic effect at weak fields (large
offset angles). Note that the subbarrier and the continuum
CCs compensate each other, as the first is positive and the
second negative. Our CCSFA result in Fig. 8 is closer to the
experimental spectra than the classical Monte Carlo trajectory
simulations (CTMC) of Ref. [4]. The reason could stem from
the above-mentioned compensation of CCs in the continuum
and under the barrier, along with the neglect of the subbarrier
CC and nonadiabatic effects in CTMC.
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FIG. 8. The average longitudinal momentum 〈pk〉 vs the streaking elliptical offset angle: (a) ε = 0.3; (b) ε = 0.4; (c) ε = 0.6; (d) ε = 0.8.
Experimental data [4] with error bars are black; CCSFA (blue cycles) and simple man’s model results (orange boxes).

In Fig. 9 we compare the results of CCSFA for the depen-
dence of the average of the longitudinal momentum on the
transverse one with the experimental data of Ref. [5]. Gen-
erally, the Coulomb corrections are not very significant for
the given interaction regime. However, we note an important
message of Fig. 9, that the subbarrier Coulomb corrections
increase the momentum shift along the propagation direction
〈pk〉, while the continuum one oppositely decreasing it, which
is in accordance with Ref. [24].

VII. CONCLUSION

We have developed a nondipole CCSFA theory and a
improved simple man’s model, which include Coulomb

FIG. 9. The average of the longitudinal momentum vs the trans-
verse momentum: CCSFA (blue dots), plain SFA (orange dots),
CCSFA with only subbarrier corrections (green dots), and the ex-
perimental data (black points) of Ref. [5].

corrections during the subbarrier dynamics and in the contin-
uum up to first order in E0/Ea, the improved simple man’s
model includes nonadiabatic corrections up to first order in
γ . Both CCSFA and simple man’s model are applied for
the description of the time-resolved (attoclock angle-resolved)
nondipole longitudinal dynamics. Further, we have introduced
the light-front momentum, which absorbs the trivial rela-
tivistic correlation between the transverse and longitudinal
momenta and allows to elucidate the role of nonadiabatic
and Coulomb effects. Our conclusion is that in the quasistatic
regime the plain SFA and the simple man’s model describe
quite well the time-resolved nondipole longitudinal dynam-
ics because of a partial compensation of the subbarrier and
the continuum Coulomb effects. In contrast, the nonadiabatic
Coulomb effects, especially large at small ellipticity values,
introduce a deviation of the simple man’s model and the
plain SFA with respect to the full CCSFA. In particular, the
nonadiabatic Coulomb effect in the continuum violate the
symmetry of the light-front momentum with respect to the
sign of the attoclock offset angle. The Coulomb effect is
especially conspicuous at small ellipticity ε � 0.6 and positive
offset angles, and gives rise to interest for experimental obser-
vation [see, for instance, Figs. 2(d) and 4(d)]. The same kind
of CC induces a large deviation of the parameter α from the
simple man’s model value 1 [see, for instance, the weak-field
region in Fig. 5(a)]. The parameter α describes the shift of the
peak of the transverse-momentum distribution with respect to
variation of the longitudinal momentum.

We find deviations of CCSFA results from the experi-
mental data of Ref. [4] for large offset angles and large
ellipticities, which indicate that there is a notable nonadiabatic
Coulomb effect and/or ionization time delay still remaining
not reproducible within our CCSFA based on the eikonal
approximation and applicable only for soft rescatterings.
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APPENDIX A: TRANSVERSE NONADIABATIC COULOMB
MOMENTUM TRANSFER

Here we provide an intuitive estimation of the CC in the
direction transverse to the laser electric field in the polariza-
tion plane in the nondipole regime. Due to nonadiabaticity the
electron obtains a transverse momentum during tunneling:

δpy i = εγ κ

6
, (A1)

where the y axis is transverse to the field in the polarization
plane. The Coulomb momentum transfer can be estimated as

δpy C ∼ Z

x2

y

x
δt, (A2)

where x is the coordinate along the laser electric field direc-
tion, y is the transverse displacement, and δt is the effective
interaction time with the atomic core. As x ∼ E0δt2/2, the
effective time can be estimated as

δt ∼
√

x0

E0
, (A3)

assuming during this time the electron displacement is twice
the distance of the tunnel exit x0 ∼ Ip

E0
. The transverse dis-

placement is

y ∼ pyiδt +
∫ δt

dt ′
∫ t ′′

dt ′′Ey(t ′′) = pyiδt + ωE0δt3

6
,

(A4)

where Ey ∼ εE0ωt is the transverse nonadiabatic force. The
first term is estimated as

∼εγ κ

6

2ZE0

κEa
, (A5)

and the second one as

∼E0
ωδt3

6
∼ εγ κ

6

2ZE0

κEa
. (A6)

Thus,

δpy C ∼ εγ κ

6

4Z

κ

E0

Ea
. (A7)

APPENDIX B: LONGITUDINAL COULOMB
MOMENTUM TRANSFER

Here we provide an intuitive estimation of the CC in the
laser propagation direction in the nondipole regime, when the
electron has an initial momentum at the tunnel exit pki. The
Coulomb momentum transfer can be estimated as

δpk C ∼ Z

x2

z

x
δt . (B1)

We estimate the longitudinal displacement:

z ∼ pkiδt +
∫

p⊥(t ′)
c

E (t ′)dt ′ ∼ pziδt + E2
0 δt3

6c
. (B2)

Thus,

δpkC ∼ Z

x3
0

pziδt + Z

x3
0

E2
0 δt3

6c
. (B3)

The first term is estimated as

∼pki
2ZE0

κEa
, (B4)

and the second one as

∼ Ip

3c

2ZE0

κEa
. (B5)

Taking into account that pki = Ip

3c , we have

δpk C ∼ pki
4Z

κ

E0

Ea
. (B6)

APPENDIX C: TRANSVERSE- AND
LONGITUDINAL-MOMENTUM CORRELATION

Here we provide an alternative derivation of the coefficient
α related to the correlation of the transverse- and longitudinal-
component momentum. We solve the electron equations of
motion in the laser field of magnetic dipole approximation,
with a time-dependent electric and magnetic field:

x′′(t ) = A′
x(t )



, (C1)

y′′(t ) = A′
y(t )



, (C2)

z′′(t ) = x′(t )A′
y(t )

c

− y′(t )A′

x[t]

c

, (C3)

with the initial conditions x′(ti ) = vxi, y′(ti ) = vyi, z′(ti) = pzi,
and x(ti ) = y(ti ) = z(ti) = 0. The correction to the electron
final momentum due to the electric quadrupole correction to
the laser field is calculated perturbatively:

�px = −1

c

∫
Ax(s)z(s)ds = − E0

cω
pzi sin(ωti ), (C4)

�py = −1

c

∫
Ay(s)z(s)ds = εE0

cω
pzi cos(ωti ). (C5)

The final transverse momentum is

p⊥(pzi ) =
√

[vxi − Ax(ti) + �px]2 + [vyi − Ay(ti ) + �py]2,

(C6)

which we expand over the initial longitudinal momentum pzi

around pz0:

αθ ≡ p⊥(pzi )

εE0/cω

= {ε cos(ωti )[cvyiω + εE0(c + pz0) cos(ωti )]

− cvxiω sin(ωti ) + E0(c + pz0) sin2(ωti )}1

ε

× {
c2

(
v2

xi + v2
yi

)
ω2 + E0(c + pz0)[ε cos(ωti )(2cvyiω
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+ εE0(c + pz0) cos(ωti )
) − 2cvxiω sin(ωti )

+ E0(c + pz0) sin2(ωti )]
}−1/2

. (C7)

For the values for vxi, and vyi, we use Eqs. (31), and for pz0,
Eq. (32). The results for αθ with this estimation coincide with
those in Figs. 4.
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