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We employ the recently developed multiphoton R-matrix method for molecular above-threshold photoion-
ization to obtain second-order ionization amplitudes that govern the interference in RABITT experiments. This
allows us to extract RABITT time delays that are in better agreement with nonperturbative time-dependent
simulations of this process than the typically used combination of first-order (Wigner) delays and asymptotic
corrections. We calculate molecular-frame as well as orientation-averaged RABITT delays for H,, N,, CO,,
H,0, and N,O and analyze the origin of various structures in the time delays including the effects of partial-wave
interference, shape resonances, and orientation averaging. Time delays for B and C states of CO,™ are strongly
affected by absorption of the second (IR) photon in the ion. This effect corresponds to an additional contribution
Teoupl 1O the asymptotic approximation for the RABITT delays T A Tyol + Tee + Teoupl- Applicability of the
asymptotic theory depends on the target and IR photon energy but typically starts at approximately 30-35 eV of

XUV photon energy.
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I. INTRODUCTION

The experimental method of reconstruction of attosecond
beating by interference of two-photon transitions (RABITT,
[1,2]) for measurement of the intrinsic attosecond photoion-
ization time delay celebrates two decades since its invention.
Since its conception, it has been applied to a variety of sys-
tems, including noble gasses [3-5], isolated molecules H;
[6], H,O and N,O [7], N, [8,9], CO [10], or CO; [11] and
has been the subject of many theoretical works aiming at
more or less accurate numerical simulations of the process
[12—15]. Related methods have been used for time-resolved
spectroscopy in liquid water [16], on surfaces [17], and in
other contexts [18-20]. Angularly dependent RABITT spectra
have been studied too; see, e.g., Refs. [21,22].

RABITT is a two-photon process where two different ab-
sorption pathways interfere, although more complex setups
have been considered as well [23,24]. An extreme ultraviolet
(XUV) photon is absorbed, with energy Q2. or 2., releas-
ing the photoelectron, which subsequently either absorbs
another infrared (IR) photon, or—stimulated by the ambient
IR field—emits one, with energy w. The two ionization path-
ways leading to the same photoelectron energy, Q. + w =
Q. — o, interfere. Their phase difference depends on many
factors, including the phase of the ionizing field, the intrinsic
photoionization time delay, and the relative temporal delay
A7 between the XUV and IR field [12,13]. When observing
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the photoionization yield in some direction, its magnitude /
periodically fluctuates with varying Az,

AI(AT) ~ cos 2w(AT + )], (1)

giving rise to the “beating” RABITT sideband [12]. In exper-
iments the delay At is varied and the signal fitted to Eq. (1),
thus determining the sideband delay t,,. The sideband delay
T, has been commonly expressed as a sum of the one-photon
Wigner ionization delay Ty and the continuum-continuum de-
lay 7., arising from the additional interaction with the second
(absorbed or emitted) IR photon [25], see Fig. 1, and possibly
other additional phases [26]. However, the separation of the
time delay into Ty and 7. is only an approximation.

Direct calculation of the RABITT delay without the
aforementioned approximation is complicated since it is a
two-photon above-threshold ionization process (i.e., involving
absorption or emission of the second photon by the photo-
electron in the continuum) for which specialized treatments
are necessary. For this reason time-dependent theoretical stud-
ies [14,27-29] have prevailed over time-independent ones
[15,30]. Moreover, the latter mostly consisted of approxi-
mate methods that extended various asymptotic forms of the
photoelectron wave functions all the way to the origin, as
in Ref. [12], where they are necessarily inaccurate. This led
to various approximate forms for the continuum-continuum
correction 7. [12,25], all of which share the same feature
that they are incapable of providing correct results in the low-
energy limit. At the same time, access to a theoretical method
both computationally efficient and accurate is invaluable for
analysis of the observed experimental results.

©2022 American Physical Society
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FIG. 1. Single- (left) and multichannel RABITT (right). W; rep-
resents the initial state of the molecule, ®; is the jth residual ion
state, and B; is the associated continuum wave function of the
photoelectron.

While there have been a few successful attempts to obtain
two-photon above-threshold ionization amplitudes for atoms
using time-independent approaches [31-33], these have been
rarely applied to the RABITT process so far [5]. In molecules
there has not been any such option available until recently.
To overcome this limitation, we developed an efficient R-
matrix-based time-independent method for the calculation of
multiphoton above-threshold ionization amplitudes of many-
electron atoms and molecules [34], which can be directly
applied to RABITT and similar multiphoton processes.

In this article we apply the time-independent multiphoton
R-matrix method to the calculation of RABITT sideband de-
lays in molecular hydrogen, nitrogen, carbon dioxide, water,
and nitrous oxide. To obtain reference results for a spe-
cific combination of an IR field and a time-dependent XUV
attosecond pulse train we also employ the time-dependent
“R-matrix with time dependence” (RMT, [35,36]). We com-
pare the accurate two-photon results to the one-photon Wigner
delays alone as well as augmented with various forms of the
continuum-continuum correction 7. reported in the literature.
Where available, we contrast the calculations with experimen-
tal data.

In Sec. II we briefly summarize the notation used through-
out the paper, define the observable RABITT delays, and
outline the theoretical method used for calculation of the
multiphoton amplitudes. In Sec. III we present the calculated
delays for all studied molecules and discuss the effects of
electron correlation revealed by the use of various molecular
models. In the last two sections we analyze in detail two spe-
cial aspects of the calculated time delays: In Sec. IV we show
that the channel coupling mediated by the probing IR field
significantly affects the calculated (and measurable) sideband
delays in ionization of CO, into higher excited states (B 2x;
and C *1}) of CO,™. This is due to the energy separation
of these two states being close to resonance with the IR
field. In the asymptotic treatment of molecular RABITT time
delays, the resonant transition leads to an additional delay
Teoupl, fOT Which we provide an explicit formula. The separate
treatment of the channel-coupling contribution enables us to
isolate time-delay structures that are caused by more complex
electron correlation effects. In Sec. V the origin of a structure
in time delays for oriented H, molecule and parallel emission
direction is tracked down to the interference of partial waves.
A simple time-dependent wave-packet model is introduced

for ease of interpretation, based on the time-independent
amplitudes.

II. THEORY

We use Hartree atomic units throughout the text; ay denotes
the Bohr radius. The one-photon ionization time delay for
a specific orientation of the molecule, fixed photoelectron
emission direction and known field polarization direction € is
defined using the asymptotic continuum wave function i of
the photoelectron as [30]

Tw =—i argw=+iargd(1). 2)
dE dE
Here dV = ¢-dV = (\IJ};)|D(€)|\P,-) is the one-photon ion-
ization amplitude into the final residual ion state ®, E is the
photoelectron kinetic energy, and

N
D(e)=¢€-Y ri (3)
i=1

is the projection of the electronic dipole operator along the
polarization direction, expressed as a sum over coordinates
of all N electrons. The stationary photoionization state W~
is asymptotically resolved into channels of the final residual
ion states. Due to the phase freedom, we choose that the
initial state \; as well as all residual ion states are real, which
justifies the second equality in Eq. (2).

In the RABITT experiment, the total ionization signal in
a given direction de}))ends on two interfering two-photon am-
plitudes df) and d* corresponding to pathways Q_ + w and
Q. — w, respectively:

I~ a4 P
= [dP[ +d? +2/d?||d?|cosargdP*d®.  (4)

The magnitude of the ionization signal depends on the relative
phase of the two-photon amplitudes due to the last, interfer-
ence, term. Assuming zero time delay At = 0 between the
XUV and IR pulses, the RABITT sideband time delay can be
obtained by matching Eq. (4) to Eq. (1) as

1
()% 7(2)
Tsp = %argd_,_ d_ . (5)

The required two-photon amplitudes are given by the leading-
order perturbation theory expressions [37]:

oP@Iv). ()

a2 = (PO s

+Q<

d® = (\y};) |D(e) D()|¥;). (7D

Ei+Q. —H+i0

Here E; is the energy of the initial bound neutral state \V;,
H is the field-free Hamiltonian, and the many-electron final
stationary photoionization state \Ifﬁ) with the total energy
Ef=E + Q.+ w=E + Q. — w is obtained by using the
standard R-matrix photoionization method [38].

In the R-matrix approach, space is split into two parts:
(a) The spherical surroundings of the target up to some ra-
dius r = a (the “R-matrix radius”), where multi-electron wave
functions and quantum-chemical methods are used; and (b)
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FIG. 2. Physical space division into the inner region (left, dark
shaded), and the numerically and analytically integrated sections of
the outer region (central, light shaded and right, in white, respec-
tively). The symbols DW; and W, q illustrate the right-hand side and
the solution of Eq. (8).

the outer region, where only the uncoupled one-electron ion-
ization channels are considered. The two-photon ionization
amplitudes in Egs. (6) and (7) are evaluated in two steps: First,

the intermediate state |\Ill e ) is calculated from the equation

(Ei+ Q< —H)|V) )=

,+Q D(€)|qjl>v (8)

with the outgoing wave boundary condition imposed at the
boundary between the two regions. Then, the remaining free-
free matrix element can be written in the molecular frame by
means of the partial-wave expansion in terms of the photo-
electron emission direction,

d(Z) <‘I/( )|D( )i\p(-k) ): Zd@)

i+Qg + flmqulm(k)GPE‘I' (9)

Impq

The function X;,,(k) is a real spherical harmonic. This dipole
integral is evaluated numerically in the inner region, where
expansion in many-electron Hamiltonian eigenstates is used,
and analytically using the asymptotic method from [39] in the
outer region. This approach is supplemented with an efficient
integration using the numerical Levin quadrature [40] up to a
large-enough radius r = b, where the asymptotic approach is
applicable, see Fig. 2. This numerical method can take advan-
tage of the known recurrence relations for Coulomb functions
[41] and offers significant speed-up compared with classi-
cal quadrature methods. Details of the R-matrix multiphoton
calculation procedure as well as its generalization to photon
transitions of higher order were explained in Ref. [34]. The
application of the Levin quadrature, which was not used in
the original presentation of the R-matrix multiphoton method
[34], is discussed in detail in Appendix A.

A. Orientation averaging

The following sections discuss time delays for specific
orientation of the polarization and direction of emission in
the molecular frame, as well as fully emission-integrated and
orientation-averaged time delays. The latter can be obtained
by substituting Egs. (5) and (9) into Eq. (4) and averaging
over all orientations. The result is

T(Z) = arg Z df);lmqlqz iz>flmq A(II(IZ(/](/Z’ (10)

‘]l(h‘llfh

where the factor [42]

. . . . dE
Agadia, = | €anéq.éq éq, .

1
= E(‘Sqlqusq’]q’z + 8(1141’] ‘quqé_ + ‘Sq]q’z‘sq’,qz) (11

arises due to orientation averaging. Here we assume Cartesian
basis (real spherical harmonics) for indices ¢, g2, ¢}, and
q,, which correspond to molecular-frame polarization direc-
tions of the two absorbed photons in the first and the second
pathway. In the derivation of Eq. (10) we first integrated
over emission directions of the photoelectron in the molecular
frame and then over all possible relative orientations of the
linear polarization vector with respect to the molecular axis.

B. Reference RABITT delays from time-dependent calculations

The RABITT experiment can be directly simulated by us-
ing a solution of the time-dependent Schrodinger equation in
the molecular frame. To provide such benchmark results, we
used the molecular RMT [36]. In all time-dependent calcu-
lations performed as part of this work we used the same
combination of an attosecond XUV pulse train (consisting
of odd harmonics of the IR field frequency) and a probe IR
pulse as given in Ref. [14]. The time evolution was calculated
for 19 uniformly spaced relative temporal offsets of the two
pulses to cover one full period of the IR field. The extraction
of the RABITT sideband time delay was done by transforming
the evolved photoelectron wave packet to momentum space.
In momentum space, the main bands and the sidebands were
identified as local maxima of the momentum probability dis-
tribution. The sidebands correspond to even harmonics not
contained in the attosecond pulse train. The oscillatory behav-
ior of the sidebands with the relative pulse delay At was fit
to the expected form given by Eq. (1) and, finally, the abso-
lute delay of the oscillations 7y, ~ Ty + T, corresponding to
At = 0 was read out. This is the time delay given by Eq. (5),
associated with the XUV photon energy 2 = (2. + Q2_.)/2.

With realistic XUV pulses of finite duration the maxima
of the momentum distribution are not infinitely narrow, so
some ambiguity of data extraction may arise. Nevertheless,
the synthetic pulse used in this work was sufficiently long (and
the molecules sufficiently simple) to generate well-separated,
nonoverlapping peaks in the momentum space, allowing un-
ambiguous identification of centers of the individual bands.

C. Molecular delay vs RABITT delay

The second-order RABITT results can be approximated by
using one-photon delays, where the amplitudes for ionization
after absorption of two photons in Eq. (5) are replaced by
amplitudes corresponding to absorption of the XUV photon
only (2. and 2.), i.e., neglecting the effect of absorption of
the second photon. This makes the formula a discrete approx-
imation of Eq. (2). Then, an expression similar to Eq. (10) can
be obtained for the averaged one-photon time delay:

1
n _ § : (1) (1)
T( )= 2w arg d+ ;qud— flmg* (12)

Imgq
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TABLE I. Calculated, corrected (in brackets) and experimental
vertical ionization potentials in eV for the final cationic states of the
molecules analyzed in this work.

Molecule ITon state Calculated (shifted) Measured
N, X xS 16.67 (15.60) 15.6 [43]
A, 18.12 (17.05) 17.0
B2y’ 19.87 (18.80) 18.8
CO, X 2, 14.85 (13.78) 13.8 [44]
A, 18.82 (17.75) 17.6
B2y’ 19.27 (18.19) 18.1
C’xf 2059 (19.52) 19.4
H,0 X 2B, 12.80 (12.60) 12.6 [45]
AZA, 15.18 (14.96) 14.7
B 2B, 19.35 (19.12) 18.5
N,O X2 13.66 (12.89) 12.9 [46]
A’y 17.18 (16.41) 16.4
B2m 19.33 (18.56) 18.3
C?y 21.31 (20.54) 20.1

Here the one-photon partial-wave transition dipoles dj([l }lm g

correspond to absorption of one of the two interfering harmon-
ics with frequencies Q2. and 2. and Cartesian component g
of the polarization vector.

Neglecting the interaction with the IR field can be partly
compensated for by inclusion of the continuum-continuum
correction .., which is accurate at high energies [12], as
we explicitly demonstrate below by comparing with our two-
photon delays which do not use this splitting.

We would like to stress that the two-photon delay 7 con-
sidered in this work is not the same quantity as the so-called
“two-photon molecular delay” discussed in the literature (T,
in Ref. [15], 7p; in Ref. [11]). The latter can be expressed
in the present definitions as 7,0 &~ 7 — 1. and, despite its
name, is actually closer to approximating () than t® (see
Appendix B), which was also confirmed by calculations of
Kamalov et al. in the Supplementary Material to Ref. [11] “in
stark contrast to the previous observation by Baykusheva and
Worner [15].

III. TIME-DELAY CALCULATIONS AND RESULTS

A. Details of the calculations

In all calculations presented in this article, the calculated
energy of the neutral ground state was manually shifted to re-
cover the experimental vertical first ionization potential of the
molecule. This is a common practice in the R-matrix method,
where the same molecular orbitals and active space are typi-
cally used for both the initial neutral molecule and the residual
ion states. As a consequence, the initial and the final states
are described with a different degree of accuracy but their
energies can be manually adjusted. Such a correction does
not alter excitation thresholds within the ion. Comparison of
the original calculated, the corrected, and the experimental
vertical ionization thresholds for molecules discussed in this
article is shown in Table I.

Some plots below present smoothed energy dependencies
of the time delays. They were obtained transforming often

highly oscillatory raw calculated results to data suitable for
comparison to experimentally observable average trends in-
cluding effects like vibrational averaging, finite bandwidth,
and similar. In Egs. (10) and (12), time delays are calculated
as complex phases of the differential cross section interfer-
ence terms. These interference terms were smoothed using a
convolution with a Gaussian distribution g(x). The smoothing
is also very useful for practical purposes. Extremely close
to thresholds, the multiphoton R-matrix method is extremely
sensitive to channel energies. Due to the finite precision of
a computer calculation, this often translates into very narrow
but extremely high spikes of numerical origin in the calculated
dipole energy dependence. To avoid distortion of the results
by these spurious spikes, we included an additional weighting
factor in the smoothing procedure, which is approximately
inversely proportional to the distance between the raw calcu-
lated value and the smoothed value at the same energy:

8l — x;)f (x;)
Ssmootn (Xi) = Z
=7

(13)

+ |f(xj) - fsmooth(xj)|2‘

The additional factor penalizes strongly outlying values. This
self-consistent smoothing procedure is performed for a few
iterations until it converges.

Where both time-dependent and time-independent calcu-
lations were performed, we always used the same molecular
models. In all cases fixed geometry was assumed.

B. H; molecule

We first calculated the photoionization amplitudes and
time delays for the H, molecule. We used two different
models: ionization of a single Hartree-Fock orbital from a
single Slater determinant (static exchange model, SE) and full
CIL In both cases we employed the basis set cc-pVDZ and
Hartree-Fock orbitals of H, ™ obtained from PS4 [47]. The
size of the inner region was set to 150ay (200 in the full
CI calculation) and the partial-wave expansion was truncated
at the angular momentum ¢ = 4. We performed the time-
independent calculations with the molecular scattering suite
UKRMOL+ [48] for a range of photoelectron energies from
the threshold up to 80 eV. To obtain reference data, we also
ran a time-dependent simulation in RMT for the combination
of pulses detailed in the previous section. All calculations
on H, were done for two specific configurations: with
the linear polarization direction parallel or perpendicular to
the molecular axis. Only electron emission in the direction of
the polarization vector was studied. The same configurations
were studied by Serov and Kheifets [14].

The results of the SE model are shown in Fig. 3 for both
perpendicular and parallel directions. The plots include both
the one- and two-photon delays as defined by Eqs. (2) and
(5), respectively. On top of that, for both polarizations in
Figs. 3(a) and 3(b), we also add to the one-photon (Wigner)
ionization delays several high-energy corrections from the
literature [12,25], approximating the complete two-photon
picture. We see that only our full two-photon method is able to
correctly reproduce the decreasing behavior of the time delays
towards low energies. In the long-wavelength limit all of the
corrections either over-estimate the decrease, or eventually are
dominated by the large positive Coulomb delay coming from
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FIG. 3. Calculated RABITT sideband delays and other computed
reference time delays for photoionization of Hj, in the static exchange
model into the ground state of H,™ by a pulse linearly polarized
parallel (left column) or perpendicular (right column) to the molec-
ular axis and photoelectron emission in the same direction. The
top row shows the time delays calculated from the time-dependent
(RMT) and time-independent method (one-photon ty, two-photon
7) compared with calculations of Serov and Kheifets [14]. Different
asymptotic corrections of Dahlstrom et al. [12] and Ivanov and
Smirnova [25] are used to complement 7y . The middle row shows
the magnitude of the one-photon ionization dipole per partial wave,
and the bottom row contains the phases of these dipoles, partial and
total. The shaded region, 50-70 eV, highlights the interval of energies
where the two contributing partial-wave amplitudes exchange in
magnitude and their interference gives rise to the feature in the time
delays.

the one-photon delay. Finally, it is obvious that the wide hill-
like structure in the time delays between 50 and 70 eV, that is
highlighted by the shaded background, is present both in the
first-order and second-order results. In Sec. V we discuss its
origin in the context of one-photon ionization.

The results for the full CI model, Fig. 4 (parallel polariza-
tion only), are qualitatively equal to those of the SE model in
Fig. 3(a), only the position of the broad structure is shifted
from approximately 60 eV to around 40 eV due to an im-
proved accuracy of the dipole matrix elements which shifts
the interference structure to lower energies, see Sec. V. The
wild oscillations in the full CI results are caused by Feshbach
resonances and are also apparent in the dipole magnitudes,
which are directly linked to the differential cross section.
As before, the second-order calculation agrees best with the
time-dependent results from RMT.
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FIG. 4. Calculated RABITT sideband delays (zy) and other
computed reference time delays (ty, 7.) for photoionization of
H, in the full CI model into the ground state of H,* by a pulse
linearly polarized parallel with the molecular axis and photoelectron
emission in the same direction. The results are compared with the
same data as in Fig. 3: the full green line with circles (barely visible)
corresponds to the PSECS calculation [14] and the black dashed line
with triangles to RMT. The shaded region highlights the region of
partial-wave interference as in Fig. 3.

C. N, molecule

For N, we first used the same basis set and the same SE
model as for H,. That is, the cc-pVDZ atomic basis set was
used together with all N, HF molecular orbitals of the neutral
ground state. The partial-wave expansion was extended to
{ = 6, the R-matrix radius was set to 15ag, while the other
parameters were left unchanged. The calculated results, both
time dependent and time independent, are in Fig. 5. As before,
there is an energy interval around 50 eV where the magnitudes
of the leading partial photoionization dipole elements become
comparable, causing a large variation of the total phase. On
top of that, the f wave (I = 3) exhibits another feature related
to a broad shape resonance around 20 eV. Unlike the time
delay feature caused by the partial-wave interference, this
latter one is also visible in the results for an unoriented sample
of molecules [red curve in Fig. 5(a)].

The various asymptotic forms of the continuum-continuum
delay perform similarly as in H,. For low energies they
diverge away from the time-dependent and second-order cal-
culations, but for photoelectron kinetic energies above 20 eV
they generally perform very well, the short-range variant of
Ref. [12] being the least accurate.
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FIG. 5. RABITT sideband delays and other reference time de-
lays for photoionization of N, in the static exchange model into
the ground state of N, by a pulse linearly polarized parallel (left
column) or perpendicular (right column) to the molecular axis and
photoelectron emission in the same direction. The top row shows the
time delays, the middle row shows the magnitude of the one-photon
ionization dipole per partial wave, and the bottom row contains the
phases of these dipoles, partial and total. The gray shaded regions
45-60 eV in both columns highlight the interval of energies where
the contributing partial-wave amplitudes exchange in magnitude and
their interference gives rise to the feature in the time delays. The
light-blue shaded region in the left column, around 20 eV, is where
the dominant f wave is the one most affected by the nitrogen’s broad
shape resonance.

Loriot et al. [8] and Nandi et al. [9] measured relative
RABITT time delays of the ground ionic state X 22;' with

respect to the excited ionic state A 2[T, for an unoriented
sample of N, molecules in the vicinity of a broad shape
resonance located at 30 eV of photon energy. Having access
to molecular-frame partial-wave transition elements in the
present R-matrix method, we are easily able to calculate the
laboratory-frame observables by using Egs. (10) and (12). In
Fig. 6 we present the results of such calculation, where we
used a larger molecular fixed-nuclei model with internuclear
separation d = 1.1 A based on the cc-pVQZ basis set as
employed in an accurate N, structure study [49,50]. We used
complete active space self-consistent field (CASSCF) orbitals
of N, ™ obtained in MOLPRO [51] by optimizing with respect
to the sum of energies of the three lowest states of N> in the
Dy, point group, corresponding to the two states X and A in
Doon. We constructed the molecular model from two frozen
orbitals, nine active orbitals and 300 ionic states, employing
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FIG. 6. Unsmoothed (gray) and smoothed RABITT sideband de-
lays for photoionization of N, into the lowest two states of N,*
in a larger close-coupling model, averaged over orientations of the
molecule. Dashed curves correspond to the static exchange results,
solid to close-coupling. Left column shows raw and smoothed dis-
crete one-photon delays (. Right column shows two-photon delays
7® . The experimental and theoretical results of Loriot et al. [8] are
shown by using the filled circles and the purple curve, respectively.
The experimental data of Nandi et al. [9] are plotted using the empty
circles. Experimental data for the transition between the lowest vi-
brational states are plotted. The resonance in the X state discussed in
the text is highlighted by the shaded region.

an R-matrix radius r = 15ay, a partial-wave expansion up to
£ = 6, and a B-spline basis consisting of 30 equally spaced
functions for construction of the radial continuum functions.
This model gives sufficiently accurate one-photon cross sec-
tions and asymmetry parameters, see Fig. 7, particularly for
the X state displaying the prominent resonance around 30 eV.

To explore electron correlation effects, we also calculated
the same process with the SE model discussed before, see
dashed lines in Figs. 6 and 7. In that calculation we used HF
orbitals generated from the same basis set, cc-pVQZ; four of
these orbitals were included in the continuum basis as virtual
orbitals. Other parameters were left unchanged.

For the RABITT calculation, the IR wavelength was
800 nm, which is different than the wavelength of 400 nm
used in Ref. [8]; however, in the experiment a frequency-
doubled fundamental pulse was used which resulted in a
more complex interference of three ionization pathways.
Despite the slightly different method, the calculated and
orientation-averaged molecular two-photon delays agree very
well with the experiment in the energy range 24-30 eV, see
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FIG. 7. Smoothed isotropic cross sections and asymmetry pa-
rameters for one-photon ionization of N, into the lowest two states
of N, ™. Results are compared with measurements of Plummer et al.
[52], Samson et al. [53], Woodruff and Marr [54], and Marr et al.
[55]. The peak of the resonance in the X state discussed in the text
is highlighted. Labels “SE” and “CC” distinguish the static exchange
and close-coupling models.

Fig. 6(f). In Fig. 6 our calculated results are given in their raw,
unsmoothed form (gray), as well as with Gaussian smoothing
as explained in the theory section. The experimental point at
21 eV is somewhat off the smoothed curve but the upward
trend of the delays observed in the experiment is confirmed
by our calculations. The agreement with both experiments is
excellent, with only a minor deviation in the lowest-energy
experimental point.

Figure 6 also clearly demonstrates that only the large close-
coupling (CC) model is able to reproduce the increase of the
relative delay at low energies. This difference in the relative
delays arises due to the structure in the absolute delays for
the X state, see Fig. 6(b), where in the region from 23 to
19 eV the smoothed CC results maintain constant delays at
variance with the SE results which drop down monotonically,
while the absolute delays pertaining to the A state drop down
in the same interval in both types of calculation. This clearly
demonstrates the important role of electron correlation at low
energies in ionization into the X state.

D. H,0 and N,O molecules

Huppert et al. [7] measured relative RABITT time de-
lays in unoriented H,O and N,O molecules, exploring the
effect of photoionization shape resonances. They observed
that the calculated relative delays between the ionization of
H,0 molecule into states A 2A; and X 2B, are essentially
featureless. Our fully two-photon calculation confirms their
conclusion, see Fig. 8, even though neither our nor their calcu-
lation is able to fully reproduce the measured data within the
reported experimental uncertainty. In this calculation we used
the large molecular model from Ref. [36], which was shown to
provide one-photon cross sections in a good agreement with
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—— A- X (smooth)
X (smooth)
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20 25 30 35 40 45 50
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FIG. 8. Orientation-averaged two-photon time delays t® for
ionization of H,O into the first two states of its ion and their dif-
ference. Comparison is made with the measurement and calculation
of Huppert et al. [7].

experiment. The wavelength of the IR field was assumed to be
800 nm.

Figure 9 compares our one- and two-photon delays to
measurement and calculation of time delays in N, O [7], while
Fig. 10 shows the one-photon observables for this molecule.
Figures 9 and 10 also compare two different molecular mod-
els: SE and CC. In the former case we used Hartree-Fock
orbitals of the neutral N,O molecule at its experimental equi-
librium geometry (N-N 1.128 A, N-O 1.184 A), obtained
from PS14 [47] using the basis set cc-pVTZ. The B-spline con-
tinuum basis was the same as in the above N, calculations and
included ten additional virtual HF orbitals of the molecule.
In contrast, for the CC model we used CASSCF molecular
orbitals of N,O obtained in MOLPRO [51] by state-averaging
including the neutral ground state and the eight lowest states
of the ion (in Dy;). The larger molecular model consisted
of three frozen orbitals, eleven active orbitals, seven virtual
orbitals added to the continuum basis, and 200 ionic states.
The IR wavelength was 800 nm.

Judging by the agreement with photoionization measure-
ments of Brion and Tan [56], Truesdale et al. [46] and Carlson
et al. [57] in Fig. 10, the CC model yields very good one-
photon cross sections. Only the asymmetry parameter for the
excited state [Fig. 10(d)] somewhat deviates from the an-
gularly resolved measurement [57] above 40 eV. Generally,
our one-photon cross sections and asymmetries seem to agree
with the experiments better than the results of Huppert ef al.
[7].

However, while we are confident that our one-photon ob-
servables are accurate, we were not able to reproduce the
experimental and the theoretical results of Huppert et al. [7].

Having achieved such a good agreement for an analogous
experiment with Ny, Fig. 6(f), we have no simple explanation
that would account for the qualitative difference. In contrast
to Ny, the partial one-photon ionization cross sections of N,O
do not exhibit as dramatic resonance features, cf. Figs. 10(a)
and 10(b) vs Figs. 7(a) and 7(b), even though some shape
resonances are undoubtedly present. According to Braunstein
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FIG. 9. Smoothed and unsmoothed RABITT sideband delays for
photoionization of N,O into the lowest two states of N,O" in a
static exchange (dashed lines) and close-coupling (solid lines) model,
averaged over orientations of the molecule. Left column shows raw
and smoothed one-photon delays V. Right column shows two-
photon delays T®. The experimental data (black points) as well as
the additional calculations (black curves) are from Huppert ez al. [7].
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FIG. 10. Smoothed cross sections and asymmetry parameters of
one-photon ionization of N,O into the lowest two states of N,O™ cal-
culated for the static-exchange and close-coupling molecular model,
compared with the calculation of Huppert et al. [7] and measure-
ments of Brion and Tan [56], Truesdale et al. [46], and Carlson et al.
[57].
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FIG. 11. Photoelectron-emission-integrated sideband time de-
lays t,,(€) of photoionization into the A state of N,O™ for several
molecular alignment angles with respect to the field polarization.
Left panel shows the molecular delay t,, of Baykusheva and
Worner [15]. Right panel shows the present two-photon calculation
in UKRMOL+-.

and McKoy [58], one of the shape resonances in the ionization
into the A state affects the cross sections around the threshold.
In our calculation we do observe a buildup of the time delay
towards low energies, but this is almost out of the range of
the RABITT experiment of Huppert et al.. The second shape
resonance in the A state, in the range of photon energies of
approximately 3040 eV, that Braustein and McKoy discuss,
manifests solely as the dip in the asymmetry parameter. While
there seems to be a very low and broad structure in our cal-
culated time delays centered at 35 eV, see Fig. 9(f), roughly
coinciding with the bottom of the dip in the asymmetry pa-
rameter, Fig. 10(d), we found no trace of a time delay feature
as prominent as those calculated by Huppert et al. [7] [black
curves in Figs. 9(a) and 9(c)] by means of the molecular theory
of Baykusheva and Worner [15].

Baykusheva and Worner also report photoionization de-
lays for the A state for several fixed alignment angles of
the N,O molecule with respect to the polarization € of the
field, see Fig. 11(a). Since none of their fixed-alignment time
delays for photon energies around 25 eV exceeds 75 as, it is
quite surprising that their reported alignment-averaged time
delay [darker curve in Fig. 11(a)] exceeds 150 as in this
energy range, even though we would expect the alignment-
averaged photoelectron distribution to exhibit a smoother
energy variance and smaller delays. In the present fully-two-
photon calculation we obtained the emission-integrated but
alignment-resolved second-order time delay in the molecular
frame and Cartesian basis from

()% d?
by arg Z d+ flmqlqg —.flmq\q) 6‘116‘1264/ 84 (14)
qqu‘]l‘b

T (€) =

The results calculated from Eq. (14) are in Fig. 11(b). The en-
ergy dependence of our molecular-orientation-averaged time
delay is more in line with the above expectation, i.e., not
deviating significantly from the fixed-alignment data. The
continuum-continuum delay was considered separately in
Ref. [15], which is why our second-order data in Fig. 11(b),
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inherently containing the continuum-continuum component,
are generally lower than the molecular delays in Fig. 11(a).

In Ref. [15] it is argued that the large change in magnitude
of the molecular delay arising in the orientation averaging is a
key result of their theoretical method; see also the discussion
in Appendix B. However, the results of the present second-
order calculation do not exhibit such behavior.

The disagreement between the experiment of Huppert et al.
and our calculations may originate in dynamical factors that
either cannot be included in our calculations, such as nuclear
dynamics, or come from the experimental setup departing
from the purely two-photon picture: finite bandwidth of the
pulse and intensity-dependent effects including higher-order
IR transitions, dynamical polarization of the target, etc. While
the latter could be modeled using RMT, investigation of these
effects lies well beyond the scope of the present work.

Finally, going back to Fig. 9, we also see that the SE model
yields time delays that are in fair agreement with the CC
model for energies above approximately 25 eV. For lower en-
ergies the results are strongly affected by resonances close to
the channel thresholds, requiring a more complex description.
The overall agreement between the single-channel and the
multichannel calculations also to some degree dispels a con-
cern that the lack of anticipated shape resonance features in
the second-order time delays is caused by insensitive smooth-
ing approach. Still, given the large density of resonances in
the two-photon data, some uncertainty related to the smooth-
ing persists. It also leaves open the question as to how the
unsmoothed results would look like if nuclear vibration was
included in the model. Below 25 eV the difference between
the models increases, particularly due to the improved posi-
tion of the low-energy shape resonance in the A state.

E. CO, molecule

Kamalov et al. [11] measured molecular orientation-
averaged time delays for photoionization of CO, into the
three lowest states of its ion. In their work, they measured
relative RABITT time delays with respect to ionization of
krypton. Because the ionization thresholds of Kr and CO,
are very close to each other, the uncertainty in the difference
between 7. in these two gasses was considered very small
and the asymptotic forms for .. sufficiently accurate for this
purpose. Subsequently, they made use of accurate calculations
of atomic time delays in krypton to obtain the (one-photon)
molecular delays in CO,. We used the accurate molecular
model of Ref. [59] to calculate the one-photon delays for the
ground cation state, X *TT ¢ according to Eq. (12) and assumed
an 800 nm IR field. In contrast to Ref. [59], though, here we
replaced the Gaussian continuum basis with a B-spline-based
one to maintain accuracy even at somewhat higher energies.
The calculation results in an excellent agreement at higher
energies, see Fig. 12(a), although there is some divergence at
lower energies, possibly related to the above-mentioned t,,-
compensating procedure. Even though the coupled-channel
theory of Kamalov et al. seems to reproduce the experimental
point at ~21 eV very well compared with our calculation, we
find their theoretical approach questionable due to their use of
incorrect boundary conditions, see Appendix C for details.

We further calculated two-photon relative ionization delays
between the excited states A *T1, and B 22; ; see Fig. 12(b).
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FIG. 12. Orientation-averaged time delays for ionization of CO,.
(a) Smoothed one-photon delay (! for ionization into the ground
state of CO, ™. (b) Difference of smoothed two-photon delays 7®
for ionization into the first two excited states of CO,™; the asymptotic
two-photon results are obtained from Eq. (21). Comparison is done
to the calculations (independent and coupled channels, respectively)
and the experiment of Kamalov et al. [11]. (c) Ionization into C 2 E;.
Light curves in (a) and (c) depict unsmoothed CC results.

Here the agreement is very good, too. Instead of using the
postprocessed molecular delay difference presented directly
in Ref. [11] for comparison, we took the original measured
(two-photon) delays from the Supplemental Material of that
article and evaluated the B — A difference from those. This
included the value at 21 eV otherwise omitted in the main text
of that work due to the uncertainty in the 7. used to extract
the presented molecular delays. In our calculation, we are not
limited by the approximate forms of 7., and we can compare
directly to the measured relative two-photon delay. The exper-
imental uncertainty for the relative delays in Fig. 12(b) was
obtained by summing the experimental uncertainties for the
measured krypton-referenced data pertaining to the two final
excited states A and B.

Figure 12 further demonstrates the effect of electron cor-
relation on the photoionization delays. While the results for
the X state are largely insensitive to the choice between
the SE and CC model, indicating weak electron correlation,
results for the excited states require the CC model for a good
experimental agreement. In Fig. 12(b), this is possibly caused
by coupling of the C-channel core-excited shape resonance
to the B channel, as suggested in the previous one-photon
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results [59]. A similar shift of a shape resonance is visible
in the C state of CO,*, Fig. 12(c). We also see that while
the difference between the two models’ one-photon delays
(magenta curves) is more or less limited to the resonant en-
ergy interval 40-50 eV, the two-photon results (green curves)
differ from each other in a much broader range of energies,
particularly in the long wavelengths. Analogous behavior can
be observed for the X state of N, in Figs. 6(a) and 6(b). The
different two-photon delays for the SE and CC models at low
energies indicate that the interaction of the photoelectron with
the second photon is significantly more complex than what
the simple single-channel continuum-continuum correction
would suggest. This is further analyzed in Sec. IV.

Finally, we would like to remark that the very dense for-
est of narrow autoionizing resonances in Fig. 12(c) ends at
approximately 45 eV, corresponding to the highest CO, ion-
ization threshold included in the close-coupling expansion.
This was a typical cutoff for all CC calculations in this article.

IV. CHANNEL COUPLING IN TIME DELAYS

The conventional description of the RABITT two-photon
process is compatible with the single-channel picture: the pho-
toelectron is released by the XUV photon, leaving a hole in its
original orbital. This is followed by absorption or emission of
the IR quantum by the very same electron.

However, this may not be a sufficient interpretation for
multi-electron systems with multiple open channels. In this
case, absorption of the IR photon can lead either to transition
in the ion (i.e., between the various final channels) or to
polarization (virtual excitation). Electron correlation is then
responsible for redistributing the excitation among the dif-
ferent final photoionization channels. This means that, while
the absorption of the XUV photon results in a superposition
of several ionic states coupled to the photoelectron wave
function with the residual kinetic energy, interaction with the
IR field further mixes these channels, proportionally to the
dipole coupling between them. This is somewhat similar to the
process investigated in Ref. [60] (in the lithium atom), with
the important distinction that, in the latter case, the resonant
transition was occurring within the neutral target rather than
in the residual ion.

As an example we investigate here the strongly coupled
states B and C of CO,™, as illustrated in Fig. 13. When we
inspect the one-photon delays for ionization into states B and
C, Figs. 14(a) and 14(b), we see that the results are largely
independent of the model, single-channel or coupled-channel.
The only significant change is the shift to lower energies and
change of size of the core-excited shape resonance in the C
state, Fig. 14(b), which is a known effect [59]. This tells us
that the absorption of the XUV photon alone is not sensitive
to multi-electron effects, at least away from resonances. The
wide structure in the B state with the center at approximately
40 eV is related to onset of the p partial wave and is not of
resonant character.

The similarity between the SE and CC calculations holds
to some degree also for the two-photon delays, Figs. 14(c) and
14(d). However, here the CC results appear almost uniformly
shifted from the SE results by approximately 20 as towards
positive delays. The two-photon SE results allow us to more
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FIG. 13. Absorption of XUV and IR photons in CO,, indicating
possible absorption pathways involving residual ion states B 2%, and
C 23, including the dipolar channel coupling between these two
states during interaction with the IR field.

easily identify the low-energy shape resonance in the B state
[11], which here appears centered at approximately 25 eV of
XUV photon energy. In the CC model, it occurs at somewhat
lower photon energies.

The calculated magnitude of the ion core transition dipole
element Dpc, = (®p| Zf]:] 7;|®c) that couples the residual
ion states B and C together in the IR field is approximately
equal to 1.0 atomic units, which is a relatively strong coupling.
For comparison, the only other lower CO,™ state that C is
coupled to via a component of the dipole operator is the state
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FIG. 14. Comparison of one- and two-photon delays in ioniza-
tion of unoriented CO, into states B *%} and C *£. Thicker
solid curves correspond to smoothed CC results, dashed curves to
SE results, and chain curves to smoothed modified CC results (see
text). Light gray curves are the unsmoothed CC delays.
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A, with the transition dipole element magnitude of 0.09 a.u.
Furthermore, the states B and C are separated by the energy
1.3 eV (see Table I), which is very close to the energy 1.55 eV
of the IR field used in the calculation. This means that in
this case the IR field indeed very strongly couples the two
states, producing a mixture of these two final states regardless
of whether the initial XUV ionization resulted in one or the
other. We verified this hypothesis by manually setting the
Dgc; dipole coupling element to zero in the otherwise fully
coupled calculation. The resulting time delays are marked as
“CC*” in Figs. 14(c) and 14(d) and clearly show much better
agreement with the single-channel SE results than the delays
obtained from the fully coupled original calculation.

The remaining discrepancies in the time delays for ioniza-
tion into the C state below 30 eV can be ascribed to other
couplings than the field-driven B-C ion core transition. The
features in the energy range 50—70 eV, present also in the one-
photon delays, are visible in the one-photon cross sections and
asymmetry parameters, too [59]. They might be unphysical
pseudoresonances since at these energies the calculation is
missing not only further singly ionic channels but also chan-
nels corresponding to double ionization of the molecule.

The effect of the field-driven coupling on the time delays
can be quantified in the asymptotic theory, purely from the
knowledge of the one-photon ionization amplitudes and the
ion transition dipole element. As detailed in Appendix C,
the two-photon ionization amplitude can be written as d® =
dl(‘i) dé%v)g, see Eq. (C11). Here the first term is the amplitude
of absorption of the photon by the residual ion, proportional
to the B-C transition dipole matrix element, while the second
term corresponds to absorption by the photoelectron. The ion
core transition is responsible only for a small correction of the
dominant partial-wave coupling term and dl can be regarded
as a perturbation of d).. Expanding Eq. (lO) to first order in

pws*
2) ;
d,;, then yields

2 _ @ 2)
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The partial two-photon ionization amplitudes dXXX . flm,ab and
hence also the quantities Qp and 8Q can be approximately
calculated from the asymptotic theory of Appendix C that uses

only the one-photon ionization amplitudes:
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FIG. 15. Contribution of the field-driven B-C coupling to the
photoionization delays in CO, according to the asymptotic theory
of Appendix C. The curves labeled as t® are obtained from the
full two-photon method; asterisk marks results with excluded B-C
residual ion coupling from the full theory. The quantity Teoupipc
(yellow line in both panels) is the contribution to the time delay
arising from the B-C coupling, as calculated in the asymptotic theory.

Here, A, are factors that depend only on the momentum
k and k of the photoelectron in the intermediate n and the
final state f of the molecular ion, respectively, for the given
absorption-absorption (+4) or absor tlon-emission (—) ion-
ization pathway. The quantities d are the terms of the
partial-wave expansion of 1omzat10n amplitude into the inter-
mediate state n. In the above two formulas, these one-photon
amplitudes are recombined in terms of partial waves and final
states, respectively. Dy, , is the Cartesian a component of the
transition dipole between the states n and f of the residual ion.

In other words, the additional effect of the field-driven
coupling between the two states extends the frequently used
decomposition @ 2 1,01 + 7. With another term Teoupls
@~ ~ Tmol + Tee + Teoupls 2n
or with more such terms when multiple residual ion states are
field-coupled to the final state of interest. The effect of Teoup
on the results pertaining to B and C ion states of CO,™" is
demonstrated in Fig. 15. Other field-driven dipole couplings
than this one are not considered. The figure shows that, for
sufficiently high photon energies, this new term describes
almost perfectly the difference between the CC and CC*
datasets in Fig. 14, confirming consistency between the full
second-order method discussed earlier and the asymptotic
approach just introduced.

While the new term 7coupl is proportional to the transition
dipole element between the final and the intermediate ion
state, in the asymptotic approach this is the only way that the
channel coupling explicitly enters the formulas (C12)—(C14).
If this transition dipole is obtained from some external source,
Teoupl Can be calculated even from an uncoupled photoioniza-
tion model. In the studied case of CO,, addition of z¢oup to
the SE results in Fig. 14 would shift them upwards, making
them compatible with the proper CC calculation. Only the
resonance features specific to the coupled model cannot be
obtained in this way, since they are a manifestation of electron
correlation.
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FIG. 16. RABITT sideband delays for photoionization of CO,
into its four lowest ion states (yellow light solid curve) compared
with the asymptotic approximation (red dark solid curve). Individual
terms of the asymptotic approximation are plotted as broken lines.

The complete asymptotic splitting of the delay given by
Eq. (21) converges to the two-photon result in the limit of
high energies. This is illustrated in Fig. 16. Inclusion of
Teoupl for the states B and C is necessary due to their sub-
stantial dipolar coupling. However, even with the coupling
delay accounted for the approximation for the excited states
significantly deviates from the two-photon results at energies
below 35 eV. At such energies only the complete multiphoton
and multi-electron theory is appropriate and can reproduce the
measurement in Fig. 12(b).

V. INTERFERENCE STRUCTURES IN TIME DELAYS

When compared with the time-dependent approach the
time-independent R-matrix approach for calculation of
two-photon delays offers the advantage of an improved
computational efficiency and a clearer interpretation in
terms of channel-resolved amplitudes and their interfer-
ences. This allows for a detailed interpretation of some
structures that are otherwise simply part of the total time-
dependent ionization yield when a time-dependent method is
used.

It was shown earlier [61,62] that—unlike atoms—in the
case of molecules, some partial-wave components of oriented
photoionization dipoles feature “deep minima” at specific en-
ergies. These minima are the result of destructive interference
between electrons ionized from the individual atoms of the
molecule. This picture is easily applicable to diatomics where
it resembles a double-slit interference and leads to a formula
for the minima relating interatomic distance to photoelectron
energy or wavelength [63].

As an example of use of the partial-wave dipoles in
assisting interpretation of the time-dependent picture, we
investigate in detail the time evolution of parallel photoioniza-
tion in H,. Specifically, we focus on interpretation of the broad
structure in the parallel photoionization time delays [Fig. 3(a)]
caused by the two-center interference.

The p-wave component of the oriented photoionization
dipole parallel with the molecular axis in the hydrogen
molecule has a deep minimum at photoelectron energy of
about 70 eV [see Fig. 17(a)], which means that, at somewhat
smaller kinetic energy, it goes below the f-wave component
that is otherwise smaller due to the higher centrifugal barrier
that it has to overcome [64]. Consequently, these two partial-
wave dipoles have different phase-energy dependencies and so
different corresponding partial-wave photoionization delays.
When the magnitude of the two components swaps, the phase
of the total dipole element rapidly changes from being almost
equal to that of the originally dominant p wave to being very
similar to that of the other partial wave. This swapping can be
localized in a narrow region around the crossing energy and
so the time delay, which is the energy derivative of the dipole
element phase, will become very large. This is illustrated in
Fig. 17(b).

Note that in Ref. [63] where a similar structure in the paral-
lel photoionization delays is discussed in H,*, it is ascribed to
the minimum of the differential cross section. It is argued that
“the destructive interference suppresses the emission of the
outgoing wave packet and the magnitude of the corresponding
tgws delay is significantly increased.” While we agree that
there is a connection to the minima in the differential cross
sections, we feel that this explanation is not accurate and does
not give a detailed insight into the actual mechanism by which
the interference could “suppress” a wave packet. To further
elaborate what this delay means in the time-dependent picture,
we construct a simple model of the one-photon ionization
process. We irradiate the molecule with a spectrally narrow
Gaussian pulse such that, if the photoionization efficiency was
constant, the resulting photoelectron wave packet would have
the energy spectrum

AEy) = e Hk—ho)", (22)

where E; = k?/2 is photoelectron kinetic energy, ko is the
central momentum, and « a suitable normalization constant.
We know, however, that the photoionization has different ef-
ficiency at different energies, which is directly related to the
photoionization amplitude (or dipole). We focus on the p and
f components of the wave packet that propagates along the z
axis

V(z, 1) = ¥z, 1) + ¥z 1), (23)
of the two contributing partial-wave components

400
Vi(z, 1) = / AE)d "V (Ee B gk, (24)
0

Now, we could substitute for d;l)(Ek) and d}l) (Ex) the pho-
toionization amplitudes (dipoles) calculated numerically. For
simplicity, we restrict ourselves to the narrow vicinity of the
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FIG. 17. Left and center: fit of the energy dependence of the magnitudes and phases respectively of the one-photon amplitudes of the axial
ionization of H, by weak-field polarized parallel to the molecular axis for the full CI model. Right: one-photon time delays calculated as the

energy derivative of the combined transition dipole element.

swapping energy (Ey = 40 eV) and perform a fit of the energy
dependencies of the magnitude and phase of the dipoles; see
Fig. 17. We end up with the following model:

dl(l)(Ek) — aleinl(Ek)e_alEk, (25)
where the energy-dependent phase is
m(Ex) =11} + (E — Eo)1, (26)

and the values of the constants are a,=1.70, a; =
=21, a, =21, ay =04, ’72 =1.71, n? =-2.10, Ey =
1.47 (=40 eV), 1, = 0, and 77 = 0.4. This model reproduces
qualitatively the interference structure in the time delays in
Fig. 4, as shown in Fig. 17(c). For a sufficiently narrow spec-
trum; that is, large values of A, the integrations in Eq. (24) can
be extended to minus infinity, because the Gaussian envelope
of the source pulse will not allow any significant contribution
from negative momenta. The integral in Eq. (24) can then be
calculated analytically. The explicit forms of the wave packet
(24) corresponding to the model parameters is

DB, _. 5
Vi(z.t) = /%fe Gt o @7
1 1

A=t
= —_— 1 .
! 2 2

B, = -2k — iz, D; = —ae ™) (29)

Here,

C = M, (28)

We can then find out the effect of the partial-wave interference
on the time delay by comparing the time-dependent position
of the actual wave packet including the interference

Prowat (2 1) = |¥p(z, 1) + Vr(z, ) (30)

to the position of a reference wave packet, whose components
have the same phase,

;Oreference(zs t) = ||1/fp(Z, t)| + hﬁf(Za t)||2~ (31)

The comparison of the wave packets (for A = 500) is plotted
in Fig. 18. Even though the centers of the partial-wave packets
are very close to each other, the maximum of the total com-
bined wave packet has its center significantly shifted towards
the origin and hence the wave packet appears retarded on

the detector when compared with the reference wave packet
whose components do not interfere. This apparent retardation
can be directly calculated in this model case by evaluating
the position of the peak of pya1(z, t) for a given time. This is
then compared with the expected position zy(t) = kof, where
ko = +/2Ey. Here we assume that the peak is located at z(t) =
z0(t) + Az, with Az being a small offset with respect to zo(z).
Simplification of the expression P (2, ) to the first order in
A~ and localization of its maximum with respect to Az leads
to a A-independent result

0_ 0
1 1 Np — Ny
Az ~ —Eko(fp—FTf)—}— Eko((x,, —af)tan T 32)
This is related to the apparent time delay t ~ —Az/ky of the
combined wave packet:

0 0

T %(rp+rf)—%(ap—ozf)tan %. (33)
For the above-given parameters of the model, we get T = 66
as, in good agreement with the value of 64 as obtained directly
from the time-independent approach [highlighted by the gray
cross-hair in Fig. 17(c)]. We see from Eq. (33) that, when the
phases 772 and n? of the partial dipoles are the same at the
crossing energy Ey, the resulting time delay corresponds to a
simple mean of the partial time delays of the two wave pack-
ets. The explanation is that, in this case, the wave packets do
not interfere, the magnitudes of the wave packets are additive,
and the center of the combined wave packet corresponds to a
simple mean of the center of the two constituent wave packets.

The same is true when the local energy dependence of the
magnitude of the partial dipoles at Eq are equal, o), = ay. In
the wave-packet picture this also makes sense: The overall
phase of the sum of the two partial-wave packet contributions
of the same magnitude will be the mean of their individ-
ual phases, arg(expin, + expiny) = (n, + nr)/2. And this in
turn leads to the mean time delay v = (7, + 77)/2 for the
combined wave packet.

To sum up, the partial-wave interference is responsible for
asymmetric subtraction of the resulting wave packet, rather
than “suppression” [63] of the wave packet as a whole. It
is now obvious that the same mechanism can also result
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FIG. 18. Ionized photoelectron wave packets at three times (r = 50, 100, and 150 a.u.), with spectral width parameter A = 500 a.u. The
magnitudes of the partial p-wave and f-wave components are plotted, as well as magnitude of their coherent and incoherent sum (“total”
vs “reference,” respectively, the latter not to scale). The indicated apparent time delay arising in the asymmetric subtraction of the partial
components corresponds to the time delay calculated in the time-independent approach.

in advancing the wave packet, i.e., in negative time delays,
which is what occurs in the perpendicular ionization of Nj
in Fig. 5(b). Nevertheless, as commented in Ref. [26], ob-
servation of these interference delay peaks is experimentally
challenging, because they are located angularly close to min-
ima in the differential cross section.

VI. CONCLUSION

In this article we investigated RABITT time delays
calculated from full two-photon amplitudes by the time-
independent multiphoton R-matrix method. This method
offers significant advantages compared with typical methods
used in the field: it is computationally more efficient than
the solution of the time-dependent Schrodinger equation and
provides accurate second-order results for the time delays.
We have explicitly verified that the conventional asymptotic
theory (@ & 101 + Tee) based on separability of the individ-
ual contributions is insufficient at low energies. As expected,
the asymptotic theory is accurate at higher photoelectron en-
ergies but the threshold for its applicability depends on the
target and ranges from a few eV of photoelectron energy
for H, up to a few dozen for CO,. Depending on the target
and the IR photon energy, the RABITT delay may contain
an additional contribution Tcoup coming from field-induced
ion-state coupling. In contrast with that, as expected, the
second-order time-independent theory provides time delays
in agreement with results obtained by solution of the time-
dependent Schrodinger equation all the way to the threshold.

We calculated orientationally averaged absolute and/or rel-
ative time delays for N,, CO,, H,0, and N,O, finding a
very good agreement with published measurements for N;
and CO,, a fair agreement for H,O, but a very poor one
for N,O, despite reproducing the experimental one-photon
ionization cross sections very well. This implies that either the
measurements [7] should be revisited or our theory is failing
to account for other effects that might play a significant role
such as nuclear motion.

The comparison between single-channel and close-
coupling calculations suggests that electron correlation sig-
nificantly alters the time delays at photon energies even as

high as 40 eV for some of the studied molecules. This is
particularly noticeable around shape resonances in ionization
of N 2 and C02

We further discussed in detail the effect of field-driven
coupling of ionization channels. We demonstrated that in the
case of CO; the ion states B and C are strongly coupled by
typical IR fields, resulting in a significant deviation of the
calculated (and measurable) time delays in the coupled model
from the results of the single-channel model. Based on this
observation we have extended the widely used asymptotic
approximation [15] for the two-photon time delays 7® =
Tmol + T¢e to include an additional delay Teoupi that describes
the effect of the field-driven coupling of the final residual
ionic states. This correction can be used together with the
single-channel models, provided that the residual ion dipole
transition element is obtained from some external source.

Finally, we inspected the origin of the structures in the
time delays for oriented molecules. We demonstrate the con-
nection between the one-photon time delay and the shape of
the photoelectron wave packet: the destructive partial-wave
interference alters the shape of the wave packet, resulting in its
apparent retardation or advancement. In Hj, this interference
is a coincidence caused by a deep minimum in the p-wave
partial photoionization cross section. In Nj it is caused by
convergence of the p and f partial-wave cross sections, with
additional effect of the / = 5 partial wave.

The data sets resulting from out calculations are available
in Supplemental Material [67].
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APPENDIX A: LEVIN QUADRATURE

Levin [40] introduced an efficient quadrature method for
highly oscillatory integrands that takes advantage of some ad-
ditional knowledge about the integrated function. The method
can be used to numerically evaluate integrals of the form

b
I=/ Sf(r)-w(rdr, (AD)
where components of w(r) strongly oscillate, but components
of f(r) do not. Moreover, there has to be a known rectangular
matrix A(r) that relates the oscillating part of the integrand

to its derivative, w’(r) = A(r)w(r). Then the result of the
integral can be written as a difference of surface terms

Z=p®) wbd)—pl) - wa),

provided that the auxiliary set of functions p(r) satisfies the
coupled differential equations

p'(r)+AT(np(r) = f(r),

with any boundary conditions; the homogeneous solution does
not contribute to Eq. (A2). In our RABITT calculations, the
integrals of interest have always the form

(A2)

(A3)

b
T= / rmH;l"(n],klr)lez(ng, korydr, (A4)
a
where Hli(n, p) is the Coulomb-Hankel function and n; =
—1/k; for singly charged cations. Coulomb functions are
generally expensive to evaluate numerically, so finding a
quadrature scheme that avoids evaluating them too often is
very beneficial. Choosing

" H)'(m, kir)H;? (2, kar)

0 H)' (n1, kir)H;? (2, kar)
Fr) = Cw() = zs,l 1, ki 12+Sl 2, ka

0 H,'  (m, kir)H,? (2, kor)

0 H)' o, kr)H? (2, kor)

(AS)
makes it possible to construct the matrix A(r) from the known
recurrence relations for the Coulomb-Hankel functions [41].

To make the solution of the differential equation (A3) fast,
we expand the unknown components of p(r) in terms of
Chebyshev polynomials of some given order and solve the set
of equations as a “collocation condition.” That is, we require
that the equations hold in some chosen set of discrete points.
In this case the Chebyshev nodes of the same order as the
interpolating polynomials were used as the collocation points.
The differential equations become a small set of algebraic
equations, which is solved using standard LAPACK routines.
The use of Chebyshev polynomials as the interpolating basis
set is advantageous because it avoids the Runge phenomenon

[65] by a dense distribution of nodes towards the edges of
the interval. For all calculations in this article we used the
Chebyshev order of five.

For transitions from closed to open channels, one of the
oscillating Coulomb-Hankel functions in (A4) becomes the
exponentially decreasing real-valued Whittaker function. In
such a case, it is used as the factor f(r), leaving w(r) with
two independent components only. This reduces the rank of
the linear system by half.

The recurrence relations for Coulomb functions always
diverge in some direction. Levin quadrature employs both
directions, so the solution of Eq. (A3) will always contain
an exponentially increasing component, potentially making
numerical calculations unstable. However, this is easy to avoid
by using a fixed-order adaptive variant of the method. The
integration interval is always divided in half, quadrature esti-
mates are calculated in both half-intervals and compared with
the estimate for the whole interval. When the difference is
not significant, the result is considered converged. Otherwise,
recursive subdivisions are done until the fixed order becomes
accurate enough and convergence is reached. Overall, for the
present application Levin quadrature achieves comparable ac-
curacy to Romberg quadrature with at least 100 times fewer
evaluations of the Coulomb functions. The special functions
need to be explicitly calculated only in the endpoints of all
subintervals.

APPENDIX B: MOLECULAR DELAY
VS ONE-PHOTON DELAY

Bakusheva and Worner [15] define the two-photon molec-
ular delay in their equation (25) as

PN 1
Tmol (29, k. Ry) = o arg[b5,_1brg+1] (BI)

by means of the quantity

bag(k, Ry) =Y gt 1 (Ry Yo (),
LM

(B2)

where, by their equation (19),

N 4
bagr1.m(Ry) =,/ ?(—1)m2+1E§n2

1
X Z I)Lup/ (Yem |Ylp |Y)\.[l. >D§);3m
PP A

x (R,)D') (R,).

pny

(B3)

Here the quantum numbers m; and m, are the laboratory-
frame components of the XUV and IR fields, respectively.
They are both set to zero for fields with identical linear po-
larization. The sum over L and M in Eq. (B2) invokes the
resolution of identity. Combined with equations (3) and (4)
from Ref. [15], it yields

brgsrk, Ry) = —(k - € 2q £ 1,k R, (B4)
where I; ; is the matrix element of one-photon ionization from
the initial state i to the final state f. In the present notation in
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lays T and molecular delays ., for ionization of N,O into the
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liyQqt 1k =3 dD, X (BS)

Img

Apart from the irrelevant sign factor in Eq. (B4), the complex
phase of the quantity b is identical to the complex phase of the
one-photon ionization matrix element. For a fixed orientation
of the molecule with respect to the field and for a fixed photo-
electron emission direction, the formula (B1) then necessarily
yields the discrete-derivative approximation to the one-photon
delays, Eq (2) However, due to the additional angular weight
factor k - €® arising from the asymptotic theory, the emission-
and orientation-averaged 7, may contain some features of
the full second-order expression, Eq. (10), in addition to the
plain one-photon delays given by Eq. (12). If we integrate
the product b3, byq+1 in Eq. (B1) over emission directions k

and average over polarization directions € = XUV = €®, we
obtain
1
— (1) (1)
Tmol = 7~ 418 > A A s D Avpra Bummag
Imp qq'
I'm'p’
(B6)
where Ay, Was given in Eq. (11), while
N 0
Bll’mm’qq’ - /quq/XIle’m’d k
4 1A oAl
-3 Z GaanYpimm (B7)
Al

The symbol G5~ denotes the full angular integral of a
product of three real spherical harmonics. Equation (B6) il-
lustrates that the averaged 7, sits, in terms of complexity,
somewhere between " and 1@, cf. Egs. (12) and (10).
However, this difference alone does not seem to account for
the disagreement in F1g 9. When we use the same one-photon
ionization dipoles d! + Im 4 0 calculate 1y, using Eq. (B6) and

), we obtain very similar results, see Fig. 19. The only
discernible difference is visible for the A state around 40 eV
of photon energy, but not as massive as Figs. 9(a) and 9(c)
suggest, so the disagreement between our results and those of
Huppert et al. [7] must be coming from a different molecular
description.

APPENDIX C: CHANNEL COUPLING
IN ASYMPTOTIC THEORY

In their theoretical exposition of molecular delays,
Kamalov et al. [11] reach Eq. (B1) too, but with a formula
for b that involves the § matrix, at variance with Baykusheva
and Worner [15]. However, their starting point is the boundary
condition

\Illin) r—00 Zl e —iog ZYlm(k) \/7

plm

X (b — S )Y B ®,). (L
plm
which is incorrect. Additionally, note that their A% are actually
asymptotically proportional to e¥»("), The correct stationary
photoionization boundary condition given by Burke [66] is

( ) r—>oo

o) =3 et 3

x <e+i¢v<’)5p,m - e_i¢P(r)S"plm>)’Z"’(i')|d>p). (C2)
nLM nLM

In both equations, @,(r)=kyr+k," In2k,r —ml,/2 +

01,(kp) is the total asymptotic phase of a Coulomb wave

function and @, are the bound states of the ion. The wave

function of the intermediate state after absorption of the first

photon is

—) |D(€XUV)|‘~P,‘>

(
(+) | K, tu i
Yisal Z/ E, + sz E,, + i0

where we neglected the contribution of the bound spectrum
to the resolution of the Green’s operator of Eq. (8). When we
perform the integral over photoelectron emission directions

it,,, we obtain an approximation for (r|W\'y):

d*k,dE,.,

1p= )Y’""|q> OIFS >Y’"qq> L |D(EVV)| W)

Z/r[m roqn

E,—}—Q—E,(” +i0
npq

Kn

F(;;)(r) — (e+i¢q(r)3qn _

T g C3
e .
Ky qn) )

Due to Eq. (C3), the above integral over channel energies E,,
consists of two terms with opposite signs in the exponentials.
Denoting E,, = /2 = E; + €, the individual integrals can
be schematically written as

/+°° eHOON(E,)dE,
o E+Q—E +i0

+00 iup(r)h E
0

k:— K>+ lO “
400 eitd)(r)h(EK) eiid)(r)h(EK)
o ) | N,
0 ko—k +i0  Kkog+x+1i0

where the decomposition into partial fractions has been used
and h(E,) denotes omitted factors. As we are operating in
the limit r — 400, the exponentials oscillate extremely fast
in xk and the only non-negligible contributions to the integral
must be coming from intervals where the remaining part of
the integrand varies sufficiently quickly as well, i.e., around

)d/c, (0]
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the simple pole. This means that of the two integrals in
Eq. (C4) only the first one, with ky — « in the denominator,
is of interest, whereas the other one with the always positive
denominator can be neglected. For the same reason, we can
extend the lower integration bound of the first integral to mi-
nus infinity. Then it is possible to invoke the residue theorem
for contour integration in the « plane, giving eventually

o p(ENVdE, —Irietior)
e (E) N {027'[16 h(E,,) (C5)

+00
[0 E+Q—E +i0

for the positive and the negative exponential, respectively.
Thus, of the two terms in (C3), only the one with the positive
exponential, diagonal in channels and partial waves, remains
after the integration over E,.. Due to the channel diagonality,
the resulting form of the intermediate-state wave function
greatly simplifies to

D etitn

rlwifa) ——==Y" )P, /i C6

i) l%: TR BN Pi,) fin (Co)

fin= Z <—F( )qu('l),q'D( XUV)|\IIi>, )
iqlgmyg

consistently with Eq. (10) of Ref. [34] where the channel
amplitude becomes a, = —/27 [k, f; n.

The approximate two-photon transition matrix element
after absorption or emission of the second photon by the
photoelectron then follows from Eq. (9) as

(W [ -y [WEQ) 2 AT D b, Y (R),(C8)
IfVI’If
where
biyiym, = =1 ) € (Lmyl#llymp)e™Y dl)) . (C9)
lmy,
o~ T/2KAT 2K (24N T2 ik — ik
APWS (2«) ( +l/K l/ ) (CIO)

K Vklic — k12 k)TF (e — Ry

In this second absorption step we followed the asymptotic
theory of Dahlstrém et al. [12]. Only the slowly oscillating

part of the product lIJ( » \Ill(j_'g)2 contributes significantly to the
matrix element (C8). Because \IJ( +0 contains an exponential
with a positive phase, the conjugated \IJIE. i/)* has to contribute

an exponential with a negative phase. This once again discards

“ 39

the term containing the S matrix. The missing factor in
Eq. (B4) with respect to Eq. (C9) is consistent with a dlfferent
choice of the overall phase of the second-order matrix element
in Ref. [15].

To sum up, using the correct multichannel photoioniza-
tion stationary state leads to the same results as obtained by
Baykusheva and Worner, who took a shortcut in their deriva-
tion by neglecting the proper asymptotic condition (C2) of the
final state as needed, even in their one-electron theory, for a
nonspherical (and thus multichannel) system. In any case, in
the asymptotic approximation, there is no additional channel
coupling by means of elements of the S matrix as proposed by
Kamalov et al.

The only relevant coupling for the asymptotic theory is
the field-driven dipole coupling between residual ion states,
which is normally disregarded in the hope that the IR absorp-
tion is not resonant with any transition within the residual ion.
In Eq. (C8) we also implicitly disregarded ion core transitions.
However, the matrix element has generally both contributions:
in the residual ion (electrons 1, ..., N — 1) and in the photo-
electron (electron N). Concretely,

(W WZHW%

e )

(W, [D() [ Wila) = €

(C11)

The first, ion core transition term of the amplitude can be
evaluated analogously to the second, continuum-continuum
transition given by Eq. (C8), yielding a very similar formula:

-1

2) _
leI'l < l+Q>
~ ZAicorllczbf?flfmf ly @, 2
in Lymg
where
biif??flfmf =—€ (D, Zrl|¢ln xov dl(ll)f’"f (C13)
‘ o—T/2K+T /2K () ’/" ra k
. Qe T+ ik — ifk) (C14)

* Tk — k) QRTF (1 — ky Q170

and the index i, in Eq. (C12) runs over all relevant inter-
mediate ionic states that are dipole-coupled to the final ion
state iy.
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