
PHYSICAL REVIEW A 105, 052811 (2022)

Benchmarking of the Fock-space coupled-cluster method and uncertainty estimation:
Magnetic hyperfine interaction in the excited state of BaF
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We present an investigation of the performance of the relativistic multireference Fock-space coupled-cluster
(FSCC) method for predicting molecular hyperfine structure (HFS) constants, including a thorough computa-
tional study to estimate the associated uncertainties. In particular, we considered the 19F HFS constant in the
ground and excited states of BaF. The ab initio values were compared to the recent experimental results, and
good overall agreement within the theoretical uncertainties was found. This work demonstrates the predictive
power of the FSCC method and the reliability of the established uncertainty estimates, which can be crucial in
cases where the calculated property cannot be directly compared to experiment.
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I. INTRODUCTION

Accurate knowledge of excited state properties of atoms,
ions, and molecules is necessary in many areas of precision
physics for development of efficient laser cooling schemes
[1], construction of ever more precise atomic clocks [2], in-
vestigations of highly charged ions [3], nuclear properties
[4,5], and symmetry-violating studies in molecules [6]. In this
context, the use of sophisticated ab initio theoretical methods
is crucial for providing accurate and reliable predictions of
various parameters where experiment is not yet available, for
interpretation of measurements, and for development of novel
and highly sensitive measurement schemes. This work is con-
cerned with the reliability of ab initio methods for predicting
excited state molecular properties.

The most widely theoretically studied excited state proper-
ties are the electronic transition energies and the accompa-
nying transition dipole moments, which are needed for the
prediction and the interpretation of a wide range of spectra.
These can be calculated with most ab initio methods and
to great precision. On the other hand, since accurate calcu-
lations of excited state magnetic hyperfine structure (HFS)
constants in molecules are less tractable and computationally
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more involved, they are much more scarce compared to those
in atoms.

We have previously carried out a theoretical investigation
of the ground state hyperfine structure constants in BaF [7]
using the relativistic coupled-cluster (RCC) approach. The
focus of that work was to benchmark the performance of
the RCC approach for these properties and to evaluate the
reliability of the uncertainties that we assigned on our theoret-
ical predictions using an extensive computational study. For
the ground state HFS constants, we found our results to be
in excellent agreement (well within the assigned theoretical
uncertainties) with the available experimental values.

Recently, the HFS in the excited 2� state manifold of
BaF was measured [8] as part of a preparatory study for
an EDM measurement by the NL-eEDM Collaboration [9].
These measurements are particularly interesting as they allow
us to extend our study to benchmarking the performance of the
RCC approach for excited state HFS constants. It is expected
that the excited state HFS constants will exhibit a different
dependence on the computational parameters compared to the
ground state properties, due to the different spatial extent of
the excited and ground state wave functions.

Such benchmarks of ab initio methods, carried out on mea-
surable properties, also serve to confirm the accuracy of the
approach for properties where no experiment is yet possible.
For example, in case of BaF, such properties are the P, T -odd
molecular enhancement factors, Ws and Wd [10], which are
crucial for the interpretation of the NL-eEDM experiment
[9], or the WA factor [11], needed for extracting the nuclear
anapole moment from future measurements [12]. BaF is par-
ticularly interesting for precision experiments due to, among
other things, its good laser cooling properties [13–15].

Reliable ab initio methods for calculating excited state HFS
constants should treat electron correlation on a high level,
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should employ a large, sufficiently converged basis set, and,
for heavy-atom-containing systems like BaF, should also be
carried out in a relativistic framework. For atoms, several such
implementations exist, based on the relativistic configuration
interaction (CI) approach [with or without the many-body
perturbation theory corrections (+MBPT)] [16,17], the rela-
tivistic Hartree-Fock method with MBPT [18–20], the various
variants of the relativistic coupled-cluster approach [21–23],
or the multiconfiguration Dirac-Fock method [24,25]. For
molecules, however, such methods are limited. To the best
of our knowledge, the only recent example of accurate HFS
calculations in molecules is the work of Oleynichenko et al.
[26], which presents relativistic Fock-space coupled-cluster
(FSCC) calculations of the HFS constants in the excited states
of the KCs molecule.

A challenging aspect of theoretical ab initio investigations
is a lack of a straightforward scheme for performing a reliable
uncertainty evaluation, which is consequently absent in many
studies. However, for comparison of the calculated properties
with experiments and with other theoretical methods, such
an uncertainty estimate is necessary and it should preferably
be obtained from purely theoretical considerations. Only a
method that is transparent (in that it is clear which approxi-
mations are made and which effects are included) and that can
be systematically improved allows for a reliable theoretical
uncertainty evaluation.

In this study, we investigate the performance of the rel-
ativistic FSCC method in calculating excited state HFS
constants and estimating the theoretical uncertainty. The
FSCC method has shown excellent performance in predicting
energies and spectroscopic constants of molecules [11,26–29]
and has recently been applied by us to the HFS constants
of excited states in atoms by making use of the finite-field
scheme [30–32]. In addition, we use the single-reference
coupled-cluster method with single, double, and perturbative
triple excitations [CCSD(T)] to calculate the ground state HFS
constants. This method has recently shown excellent agree-
ment (below 1%, with a conservative uncertainty estimate of
5.5%) between the calculated and the experimental HFS con-
stants for the ground states of 133Cs and 137BaF (i.e., coupling
to the 137Ba nucleus in BaF) [7].

Here, we focus on the 138Ba19F HFS constants in the
X 2�+ ground state and the A 2�1/2 and A 2�3/2 excited
states, motivated by the recently performed measurements [8].
Compared to Ref. [7], the present study puts higher require-
ments on the theoretical method for two reasons: (1) as we are
dealing with the hyperfine structure due to the coupling to the
fluorine, we need to provide a high-quality description both of
the surroundings of its nucleus and of the bond area, and (2)
for the excited state HFS constants, the FSCC method should
be used and an even stronger dependence on the quality of the
basis set can be expected.

We present a scheme for estimating the theoretical un-
certainty that aims to quantify the approximations of the
employed method through a careful analysis of the effect of
the different computational parameters on the calculated HFS
constants.

In the last part, we derive relations between the ab ini-
tio HFS constants and the Frosch and Foley parameters,
frequently used in molecular spectroscopy [33], and finally

we compare the ab initio results to the experimental HFS
constants, obtained from an analysis of the measured energy
splittings from Ref. [8].

II. THEORY

The finite-field relativistic coupled-cluster method for cal-
culation of magnetic HFS parameters is described in detail
in Ref. [7] and we will briefly review the methodology here.
Throughout this section atomic units are used.

In axial systems (with the symmetry axis along the z axis)
the HFS tensor due to nucleus A can be parametrized in terms
of the parallel,

A‖ = μA

IAS̃z

〈∑
i

(�riA × �αi )z

r3
iA

〉
ψ (z)

, (1)

and the perpendicular component,

A⊥ = μA

IAS̃x/y

〈∑
i

(�riA × �αi )x/y

r3
iA

〉
ψ (x/y)

, (2)

where μA and IA are the nuclear magnetic moment [in units of
the nuclear magneton μN = (2mpc)−1] and the nuclear spin,
respectively, of nucleus A. S̃z and S̃x/y are the projections of the
total electronic angular momentum onto the z or x/y axes. �αi

is the Dirac matrix defined below and �riA is the vector between
electron i and nucleus A. The superscript on the electronic
wave function, ψ (u), indicates the quantization axis of the total
electronic angular momentum. The HFS parameters, A‖ and
A⊥, can further be defined by an effective Hamiltonian, which
will be introduced in Eq. (13).

In this work, the electronic wave function is calcu-
lated using the single reference as well as the Fock-space
coupled-cluster methods. In the case of coupled-cluster wave
functions, the calculation of expectation values is not straight-
forward. Instead, we evaluate these constants by means of the
finite-field method in which the HFS Hamiltonian,

HHFS
u = μA

IA�

∑
i

(�riA × �αi )u

r3
iA

, (3)

with u corresponding to z in the case of A‖ and x or y in the
case of A⊥ [see Eqs. (1) and (2), respectively], is added to the
unperturbed Dirac-Coulomb Hamiltonian:

H (0) =
∑

i

[c�αi · �pi + βic
2 + Vnuc(�ri )] + 1

2

∑
i �= j

1

ri j
, (4)

with a prefactor λ, referred to as the field strength:

H = H (0) + λuHHFS
u . (5)

Here �α = (02×2 �σ
�σ 02×2

) and β = (12×2 02×2
02×2 −12×2

) are the usual
Dirac matrices, �σ is the vector of Pauli spin matrices, Vnuc(�ri )
is the nuclear potential in the form of a Gaussian charge
distribution [34], and �ri is the position vector of electron i.

The values of λ should be small enough to prevent higher-
order terms contributing to the energy and large enough to
avoid numerical issues. Consequently, the HFS parameters
can be obtained by the derivative of the total energy with
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respect to λ:

A‖(⊥) = dEz(x/y)(λz(x/y) )

dλz(x/y)

∣∣∣∣
λz(x/y)=0

. (6)

Within the finite-field method this derivative is evaluated
numerically.

III. COMPUTATIONAL DETAILS

The ab initio computational study was performed using
the DIRAC17 program package [35]. The experimental equilib-
rium bond lengths dBa-F = 2.162 Å [36] and dBa-F = 2.133 Å
[37] were employed for both the ground and the excited states
for the final results. The computational study was carried out
at the ground state equilibrium geometry for all the levels.
The magnetic moment of fluorine was taken as μ(19F) =
2.628868μN [38].

The magnetic hyperfine interaction constants A‖ and A⊥
were calculated by employing the finite-field approach, in-
troduced in the previous section. The same calculation was
repeated three times, with field strengths (λ) of −10−5, 0,
and 10−5 for the perpendicular component and −10−4, 0, and
10−4 for the parallel component. These field strengths were
chosen to ensure a linear behavior of the total energy with
respect to the perturbation. The convergence criterion of the
coupled-cluster amplitudes was set to 10−12 a.u. The HFS
constants were obtained from the derivative of the energy with
respect to the field strength by the means of linear regression
through the three points.

Electron correlation was treated within the different vari-
ants of the coupled-cluster approach, i.e., the relativistic
CCSD(T) and FSCC. In the case of the single-reference
coupled-cluster (CC) method, three different schemes were
used for including the perturbative triple excitations: the
CCSD(T) method [39] includes all fourth-order terms and part
of the fifth-order terms, while the CCSD-T method [40] in-
cludes one additional fifth-order term. The CCSD+T method
[41] includes fourth-order terms only. In the coupled-cluster
calculations all electrons were included in the correlation
treatment and the virtual space cutoff was set to 2000 a.u.,
if not stated otherwise.

Dyall’s relativistic uncontracted basis sets of varying qual-
ity (double to quadruple ζ ) [42–44] were employed in the
calculations, with or without additional core-correlating func-
tions (cvnz vs vnz). We also tested the effect of augmentation
of these standard basis sets by adding, in a geometric progres-
sion (even-tempered fashion) further diffuse (low-exponent)
and tight (high-exponent) basis functions.

IV. RESULTS

In the following sections we present a computational study
of the basis set and electron correlation effects. The results of
these investigations will be used in Sec. IV C to determine the
most suitable computational scheme and to establish a reliable
uncertainty estimate.

In all calculations, the perpendicular component, A⊥, in the
2�3/2 state was zero. As will be discussed in Sec. V A, the
vanishing value for A⊥ in this state is related to the vanishing
� doubling.

TABLE I. Calculated magnetic hyperfine interaction constants of
the F nucleus (in MHz) in the three lowest-lying states of BaF for
increasing quality basis sets. The FSCC(0,1) method was used with
all electrons correlated and a virtual cutoff of 2000 a.u.

2�1/2
2�1/2

2�3/2

A‖ A⊥ A‖ A⊥ A‖

v2z 73.80 64.09 12.04 6.24 2.73
v3z 65.77 58.85 34.04 4.47 4.51
v4z 64.60 58.05 49.10 1.45 12.03

A. Basis sets

In order to obtain the 19F HFS constants in the ground and
excited states of BaF with high accuracy, the chosen basis
set has to fulfill many requirements. The unpaired electron
occupies a molecular orbital of mainly Ba character, which
couples to the ligand F atom. Consequently, both the valence
orbital, the bonding area, and the area of the F nucleus should
be sufficiently covered by the basis functions. In addition,
when considering the excited � states, the wave function can
be expected to expand and an even larger spatial area should
be taken into account. In the following, we will investigate
the performance of the Dyall basis sets with and without
additional functions to properly describe this challenging situ-
ation. The results presented in this section were obtained with
the FSCC(0,1) method, since this method is applicable to both
the ground and the excited states, as will be discussed in the
following section.

In Table I and Fig. 1, the effect of increasing the size (i.e.,
the cardinality) of the basis set on the calculated HFS con-
stants is shown. The first thing to notice is that, as expected,
the basis set dependence is much larger for the excited states
compared to the ground state. In the case of the ground state,
both components, A‖ and A⊥, decrease with increasing basis
set size. For the excited states A‖ increases and A⊥ decreases
with increasing basis set size.

For both parallel and perpendicular components, the 2�1/2

ground state values show a converging behavior with increas-
ing basis set size. Going from v2z to v3z lowers the values by
12% and 9% for A‖ and A⊥, respectively, while going to v4z

FIG. 1. Effect of the basis quality on the calculated magnetic
hyperfine interaction constants of the F nucleus (in MHz) in the three
lowest-lying states of BaF. The FSCC(0,1) method was used with all
electrons correlated and a virtual cutoff of 2000 a.u.
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TABLE II. Calculated magnetic hyperfine interaction constants
of the F nucleus (in MHz) in the three lowest-lying states of BaF
for various augmentations of the v4z basis sets. For the cv4z and
s-aug-v4z basis sets, the addition of extra functions was investigated
for the two atoms individually. The FSCC(0,1) method was used with
all electrons correlated and a virtual cutoff of 2000 a.u.

2�1/2
2�1/2

2�3/2

A‖ A⊥ A‖ A⊥ A‖

v4z 64.60 58.05 49.10 1.45 12.03
Ba cv4z F v4z +1.23 −0.37 −0.08
Ba v4z F cv4z −0.03 +0.07 −0.02
cv4z 65.81 59.17 48.79 1.19 11.93
ae4z 65.71 49.24 12.05
Ba s-aug-v4z F v4z +0.01 +1.10 +0.51
Ba v4z F s-aug-v4z +0.86 +0.32 +0.18
s-aug-v4z 65.44 59.00 50.45 2.05 12.71
d-aug-v4z 65.52 51.42 13.02
t-aug-v4z 65.51 51.57 13.07
s-aug-cv4z 66.65 60.10 50.13 1.78 12.60

changes the values by a much smaller amount, namely, 1.8%
and 1.4%. The situation is very different for the excited states
for which the HFS parameters do not seem to be converged at
the v4z level, as is clear in Fig. 1.

The completeness of the v4z basis set was checked by
adding extra functions that improve the description of the
electronic wave function in the vicinity of the nucleus. In
order to do so, we used the core-valence basis set (cv4z) where
six Ba (3 f , 2g, 1h) and three F (2d, 1 f ) functions were added
to the v4z basis set, as well as the all-electron (ae4z) basis set
where nine additional Ba functions (5 f , 3g, 1h) were added.
In a recent study on the sensitivity to the parity-violating
nuclear anapole moment in light elements [45], the effect of
adding tight s and p functions on the F atom was found to
be important. By contrast, in this study the effect of adding
these functions resulted in a minor change of less than ∼0.1%.
Furthermore, the quality of the description in the valence re-
gion was tested by using the augmented basis sets (s-aug-v4z,
d-aug-v4z, and t-aug-v4z) in which one, two, or three diffuse
functions in each symmetry were added in an even-tempered
fashion. The calculations of A⊥ demand considerably more
computational resources, due to the required lower symmetry
for this property, compared to the calculations of A‖. Conse-
quently, the calculations using the largest basis sets, i.e., ae4z,
d-aug-v4z, and t-aug-v4z, were performed only for A‖ and it
is assumed that the observed effects hold for A⊥ as well. The
results are displayed in Table II.

In the ground state, the addition of one set of diffuse
functions and the change to the cv4z basis set result in small
corrections of 1.4% and 1.7%, respectively, in the case of
A‖. Similar values are obtained for A⊥, which justifies our
assumption that the effect of further augmentations on this
component would be of similar magnitude as on A‖. In the
case of the cv4z and s-aug-v4z basis sets, we investigated
the effects of adding extra functions on the individual atoms.
Again, due to computational costs, we considered only A‖.
These results are also presented in Table II. In the case
of diffuse functions, which improve the description of the

bonding region, we find that mainly those on the F atom have
a discernible effect on the calculated HFS constants. Addition
of further sets of diffuse functions has a negligible effect on
the ground state properties.

For the excited states the effect of adding diffuse functions
is larger, especially for A⊥, namely, 2.7% and 41% for A‖
and A⊥ in the 2�1/2 state and 5.6% for A‖ in the 2�1/2 state.
Contrary to the ground state, this effect is mainly due to the
diffuse functions of Ba. The addition of a second set of diffuse
functions results in a further increase of 1.9% and 2.4% for A‖
in the 2�1/2 and 2�3/2 states and the effect of the addition of a
third set is less than 0.4%. For the excited states the addition of
diffuse functions is consequently reasonably converged at the
d-aug-v4z level. However, in view of the additional compu-
tational costs, we choose to present the recommended values
with one additional set of diffuse (s-aug-) functions and we
account for the missing effects in the uncertainty estimate.

Switching to the cv4z basis set results in an effect of
−0.63% and −18% for A‖ and A⊥ in the 2�1/2 state and of
−0.83% for A‖ in the 2�1/2 state. As for the ground state,
the effect is dominated by the additional functions on Ba.
Interestingly, going to the ae4z basis set, a similar but opposite
effect of 0.92% and 1.0% for A‖ in the 2�1/2 and 2�3/2

states is observed, leaving the v4z and the ae4z results almost
identical. Again, in view of computational costs, we choose to
employ the cv4z basis sets for the final recommended values.

To summarize, we observed a larger basis set dependence
of the calculated excited state HFS constants compared to the
ground state, which is in line with our expectations. Excited
state wave functions are generally more extended, requiring
larger basis sets for their high-quality description. Balancing
the level of accuracy and the computational costs, we choose
to use the s-aug-cv4z for the ground state HFS constants and
the s-aug-v4z for the excited state values.

B. Electron correlation

We use the optimal basis set, determined above, to test
the effect of treatment of correlation on the calculated HFS
constants. For the ground 2�1/2 state, the single-reference
CCSD method with the three different schemes for includ-
ing perturbative triple excitations, CCSD+T, CCSD(T), and
CCSD-T, can be used. Application of this method to the ex-
cited states resulted in large T1 values [46] (∼0.16), indicating
the need for a multireference method. In this work, we used
the multireference FSCC approach [sector (0,1)] for which the
starting point is a CCSD calculation on the BaF+ ion after
which a single electron is added to the orbitals in the so-called
model space, here consisting of the three lowest spinors, i.e.,
σ , π1/2, and π3/2.

Table III contains the comparison of the different
single-reference CC schemes and the FSCC(0,1) results
for the ground 2�1/2 state. The values obtained with the
CCSD and the FSCC(0,1) methods are in a very good
agreement with each other, with a difference of 0.7% and
1.3% for A‖ and A⊥, respectively, which indicates the strong
single-reference nature of this state and justifies the use of the
single-reference method. The inclusion of perturbative triples
has a significant effect on the calculated values. Compared to
the CCSD results, the use of the CCSD(T) method leads to an
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TABLE III. Calculated magnetic hyperfine interaction constants
of the F nucleus (in MHz) in the ground state of BaF obtained with
the s-aug-cv4z basis set, all electrons correlated, a 2000 a.u. virtual
space cutoff, and different correlation methods.

2�1/2

A‖ A⊥

CCSD 67.11 60.87
CCSD(T) 71.22 64.02
CCSD+T 70.90 64.06
CCSD-T 71.22 63.62
FSCC(0,1) 66.65 60.10

increase of 6% for A‖ and 5% for A⊥. The spread in the results
obtained with the three different schemes for perturbative
triples is, however, small, i.e., within 0.4% for A‖ and 0.7%
for A⊥. This is an indication that the effect of higher-order
excitations is small.

It is interesting to compare the correlation effects seen here
with the ones presented in our previous study on the 137Ba
HFS constant in BaF [7], since the two cases show very dif-
ferent behavior. In the case of the 137Ba coupling, the spread
in the results obtained with the different perturbative triples
methods was larger than the effect of including perturbative
triples in the first place. We consequently concluded that the
inclusion of perturbative triples led to unstable results and we
chose the CCSD method for the recommended values. Here,
in contrast, the negligible difference in the perturbative triple
excitation contribution from the different schemes gives us
confidence in the CCSD(T) approach.

In the results presented thus far, all electrons were cor-
related and consequently a virtual cutoff of 2000 a.u. was
used. We investigated the effect of including even higher-lying
virtual orbitals by increasing this cutoff to 10 000 a.u. (for A‖
at the v3z level). For all the states considered, the observed
effect was not larger than 0.03%, meaning that a cutoff of
2000 a.u. is indeed suitable.

C. Recommended values and uncertainty estimation

Based on the computational study presented in the previous
sections, we use the FSCC(0,1) approach for the � states,
while the CCSD(T) method is most suitable for the � ground
state; the final recommended values are obtained using the
s-aug-cv4z basis set. For both approaches, all electrons were
correlated and a virtual space cutoff of 2000 a.u. was used.
Section V E contains the comparison of the calculated HFS
constants with the experimental values.

1. Strategy for estimating uncertainties

The main sources of uncertainty in our calculations
are the incompleteness of the basis set, the neglect of
higher excitations [beyond doubles for FSCC and beyond
(T) for CCSD(T)], the virtual space cutoff in the correla-
tion treatment, and the incomplete treatment of relativity.
The uncertainty due to the various approximations can be
separately estimated for each computational parameter as the
difference between the result obtained using the best feasible

TABLE IV. Description of the scheme employed to estimate the
uncertainty due to each computational parameter.

Error source Description

Basis set
Quality 1

2 (v4z − v3z)
Core-correlating functions A‖: ae4z−cv4z

A⊥:
ae4zA‖ −cv4zA‖

cv4zA‖
× cv4zA⊥

Diffuse functions A‖: t-aug-v4z − s-aug-v4z

A⊥:
t-aug-v4zA‖ −s-aug-v4zA‖

s-aug-v4zA‖
× s-aug-v4zA⊥

Correlation
Virtual cutoff 10 000–2000 a.u. (v3z)
Triples 2�1/2: 1

2 (CCSD(T) − CCSD)
2�: 2 × CCSD(T)�−CCSD�

FSCC�
× FSCC�

model and the second best. A similar scheme was used in our
earlier works on symmetry-breaking properties [7,11,47,48].
The specific schemes for estimating the uncertainties for each
computational parameter are summarized in Table IV and
elaborated in the following.

Basis set. The uncertainty due to the choice of a finite basis
set can be divided into three contributions: the quality (indi-
cated by the cardinal number), the amount of core-correlating
functions, and the amount of diffuse functions.

In order to estimate the missing effects due to using a 4z
level basis set the difference between the v4z and v3z results
is considered. Since we expect a converging behavior when
increasing the basis set size, we take half of this difference as
the corresponding uncertainty.

To estimate the uncertainty related to the additional func-
tions, we consider the difference between the ae4z and cv4z
basis sets for the core-correlating functions and between t-
aug-v4z and s-aug-v4z basis sets for the diffuse functions.

Due to the high computational costs, A⊥ was not calculated
using the largest ae4z and t-aug-v4z basis sets. We conse-
quently work on the assumption that the two components, A‖
and A⊥, experience a similar effect due to the addition of extra
functions and the uncertainties for A⊥ were determined by
using the relative uncertainty for A‖ (see Table IV).

Virtual space cutoff. To estimate the uncertainty due to the
active space cutoff applied in our calculations, we take the
difference between the values obtained with a cutoff of 10 000
and 2000 a.u. at the FSCC v3z level, assuming that further
increase of the active space (i.e., including all the virtual
orbitals in the correlation space) should have a significantly
smaller effect on the results.

Higher-order excitations. In the 2�1/2 ground state the er-
ror due to the missing triple and higher excitation is estimated
by taking half the difference between CCSD(T) and CCSD,
similar to our previous works [7,10,11,47,48]. The factor 1/2
is justified by the small spread in the results obtained with
different treatment of perturbative triples.

This procedure cannot be followed for the � states
investigated here (as the current FSCC implementation in-
cludes single and double excitations only) and an alternative
approach was adopted for these states. We estimate this un-
certainty based on the relative effect observed in the ground
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TABLE V. Summary of the most significant contributions to the
calculated magnetic hyperfine interaction constants (in MHz) of the
19F nucleus in the three lowest-lying states of BaF.

1�1/2
2�1/2

2�3/2

Error source δA‖ δA⊥ δA‖ δA⊥ δA‖

Basis set
Quality −0.59 −0.40 7.53 −1.51 3.76
Tight functions −0.1 −0.09 0.45 0.01 0.12
Diffuse functions 0.07 0.06 1.12 0.04 0.36

Correlation
Virtual space cutoff 0.02 0.02 0.00 0.00 0.00
Triples 2.05 1.57 3.09 0.09 0.78

Total 2.14 1.62 8.23 1.51 3.86
% 3.00 2.54 16.41 85.16 30.62

state. Since correlation effects can be expected to be larger in
the excited states we use twice the relative difference between
the 2�1/2 CCSD(T) and CCSD results and multiply this by the
2�1/2 and 2�3/2 FSCC values.

Higher-order relativistic effects. In our calculations, the
electron-electron interaction is described using the nonrel-
ativistic Coulomb operator. Within the framework of the
DIRAC program, a rough estimate of the Breit contribution
can be extracted by including the Gaunt interaction in the
calculation [49]. However, this contribution can presently be
calculated only on the Hartree-Fock level, which is not ap-
plicable to the excited states considered here. For the ground
state we obtained a negligible effect of about 0.2% in the
Dirac-Hartree-Fock level, and, consequently, we will omit this
source of uncertainty in the current analysis.

2. Total theoretical uncertainties

The individual contributions to the uncertainties, obtained
using the strategy outlined above, are presented in Table V and
Fig. 2. We expect the individual uncertainties to be indepen-
dent of each other to a good approximation, and thus the total
uncertainty is obtained by a quadratic sum of the individual
uncertainties. This assumption can be expected to be valid

FIG. 2. Contribution of the different sources of uncertainty to
the total error bar in HFS constant, given in percentage of the final
values.

when the basis set and correlation effects are both treated on
a sufficient level, which is the case here.

We observe that the magnitude of the estimated uncer-
tainties is dramatically different between the ground and the
excited states, demonstrating the complexity of predicting
properties of molecular excited states and highlighting the
importance of a separate uncertainty evaluation for different
electronic states. This difference is mainly due to the large
and dominating contribution of the uncertainty due to the
basis set quality in the excited states, as indicated by the blue
bars in Fig. 2. For these states, the results are not converged
on the 4z level. For the ground state, on the other hand, the
uncertainty stemming from the higher-order excitations (red
bars) dominates.

V. COMPARISON OF THEORETICAL
AND EXPERIMENTAL RESULTS

Within the field of experimental molecular physics, the
HFS of diatomic molecules is often described in terms of
the Frosch and Foley (FF) parameters [33]. Consequently, we
will derive relations between the ab initio and FF parame-
ters for comparison of theoretical and experimental values.
Most equations needed for this analysis can be found in the
literature [33,50–53]; here we present a consistent and easy-
to-follow derivation. In addition, we note that, to the best
of our knowledge, the equations in terms of the ab initio
constants for the 2�3/2 state cannot be found elsewhere.

In order to compare the theoretical and experimental
parameters for the � states, we first need to extract the ex-
perimental HFS parameters from the measured results. These
are presented in Ref. [8] in terms of six measured hyperfine
energy splittings of in total four different rotational levels
within the excited 2� state manifold (see Table VII).

In Secs. V A and V B the energy splittings of the hyperfine
levels are derived starting from the FF and ab initio Hamilto-
nians, respectively. In Sec. V C, these energy splittings will be
used to derive relations between the two sets of parameters.
In Sec. V D, the experimental results will be fitted in order to
extract the HFS constants and in Sec. V E the resulting exper-
imental and theoretical HFS parameters will be compared.

A. Energy splittings in terms of the Frosch
and Foley parameters

To derive the energy splittings, we first review the Hamil-
tonian derived by Frosch and Foley [33]:

HFF = a�I · �L + (b + c)IzSz + b(IxSx + IySy)

+ 1
2 d (e2iφI−S− + e−2iφI+S+), (7)

where the internuclear axis is aligned with the z axis; a, b, c,
and d are the molecular HFS constants; and �I , �L, and �S are the
vectors describing nuclear spin, orbital angular momentum,
and electron spin, respectively. The term involving d in Eq. (7)
is dominated by � doubling. In the following, we will derive
specific Hamiltonians for the 2�, 2�1/2, and 2�3/2 states.

Since the 2� state has no electronic orbital angular mo-
mentum, the term involving a in Eq. (7) vanishes and the
�-doubling term involving d has no first-order contribution
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[51]. Therefore, the Hamiltonian reduces to

HFF
� = (b + c)IzSz + b(IxSx + IySy). (8)

For BaF in the � manifold, the spin-orbit coupling con-
stant, A, is much larger than the rotational constant, B (A =
632.161(1) cm−1 and B = 0.2117889(27) cm−1 [54]) and it
can be described best in Hund’s case (a). In Hund’s case (a),
the only well-defined component of �L is the z component,
denoted �, as it is strongly coupled to the internuclear axis.
The expectation value of the first two terms in Eq. (7) can
thus be simplified to h = [�a + �(b + c)]Iz, where � is the
projection of the electron spin onto the internuclear axis.

Within the � manifold, the operator (IxSx + IySy) couples
the �1/2 and �3/2 states. The term involving this operator can
be neglected due to the large spin-orbit splitting between these
two states. Consequently, for the 2�1/2 state, the Hamiltonian
becomes

HFF
2�1/2

= h1/2Iz + 1
2 d (e2iφI−S− + e−2iφI+S+), (9)

where h1/2 = a − 1
2 (b + c), since � = 1 and � = − 1

2 .
In the case of the 2�3/2 state, � doubling can only arise

from second-order coupling with the �1/2 state. Again, due
to the large splitting between the two states, this interaction
will be extremely small, resulting in a vanishing � doubling.
Consequently, the term involving d can be neglected and the
Hamiltonian is simply

HFF
�3/2

= h3/2Iz, (10)

where h3/2 = a + 1
2 (b + c), since � = 1 and � = 1

2 .
Finally, expressions for the energy splitting between two

hyperfine levels (F = J ± I) can be determined by taking the
expectation value of Eq. (9) and Eq. (10) over the appropriate
Hund’s case (a) functions [51]:

�EFF
2�1/2

=
[

h1/2 ∓ 1

2
d (2J + 1)

]
2J + 1

4J (J + 1)
(11)

and

EFF
2�3/2

= 3h3/2
2J + 1

4J (J + 1)
, (12)

with ∓ for e and f states, respectively. Here the identification
convention is related to the parity by pe = (−1)J−1/2 and
p f = −pe and follows from Ref. [55]. This is in agreement
with Refs. [50] and [56] and is consistent with the program
PGOPHER [57].

B. Energy splittings in terms of the ab initio parameters

The A‖ and A⊥ constants introduced in Sec. II [Eqs. (6),
(1), and (2)] can be defined by the following effective
Hamiltonian:

HAb initio = A‖IzS̃z + A⊥(IxS̃x + IyS̃y), (13)

where �̃S is the effective electronic spin. The Hamiltonian in
Eq. (13) applies to all of the three considered states.

In order to derive the energy splittings between the hyper-
fine levels, we again need to evaluate the expectation value
of HAb init io over the appropriate spin functions. The resulting

TABLE VI. Relations between the ab initio and the FF parameters.

Electronic state Ab initio FF

X 2� A‖ b + c
A⊥ b

A 2� A‖,1/2 2h1/2

A⊥,1/2 d
A‖,3/2

2
3 h3/2

energy splitting between two hyperfine levels (F = J ± I) for
a system with I = 1/2 and � = 1/2 can be found in Ref. [50]:

�EAb initio
�=1/2 (J ) =

( A‖
2J + 1

+ ηA⊥
) (2J + 1)2

8J (J + 1)
, (14)

where η = −1 for e (even, symmetric) states and η = +1 for
f (odd, asymmetric) states.

For an � = 3/2 state, the parity-depending term vanishes
due to the absence of � doubling and the equation for the
energy splitting takes the form

�EAb initio
�=3/2 (J ) = 9A‖(2J + 1)

8J (J + 1)
. (15)

C. Relations between ab initio and Frosch and Foley parameters

Comparing the expressions for the energy splitting for the
three states, we can derive the relations between the ab initio
and the FF parameters; these are shown in Table VI. While
there is one set (A‖ and A⊥) of ab initio parameters for each
electronic state, a single set of FF parameters (a, b, c, and d)
describes the entire �-state manifold.

D. Analysis of experimental energy splittings

In order to find the experimental best values for a, (b + c),
and d for the �-state manifold, a weighted nonlinear least
squares fit of Eqs. (11) and (12) was performed to the mea-
sured energy splittings shown in Table VII. The results of this
fit are given in Table VIII. The small residuals presented in

TABLE VII. Experimental results of the energy splitting between
the hyperfine states F = J + I and F = J − I of the A 2� state taken
from Ref. [8] together with the corresponding energy splittings and
residuals obtained from fitting Eqs. (11) and (12) to these data. All
results are in MHz. The fit parameters are given in Table VIII.

J Parity �E measured �E fitted Residual

A 2�1/2 1/2 f/− 21.87 ± 0.12 21.94 −0.07
e/+ 17.20 ± 0.17 17.16 0.04

3/2 f/+ 9.90 ± 0.15 9.73 0.17
A 2�3/2 3/2 e/− 19.14 ± 0.13 19.02 0.12

f/+ 18.83 ± 0.20 19.02 −0.19
5/2 f/− 12.19 ± 0.11 12.23 −0.04
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TABLE VIII. FF parameters as deduced from experimental hy-
perfine splittings. Values in MHz.

Electronic state

A 2� a 26.55 ± 0.10
b + c −5.54 ± 0.19

d 3.58 ± 0.14

Table VII show good agreement between derived equa-
tions and the measurements.

E. Comparison between theory and experiment

In Table IX, we present the experimentally determined
values for the A‖,1/2, A⊥,1/2, and A‖,3/2 of the � manifold,
derived from the fitted FF parameters and the relations shown
in Table VI. These results are compared to the ab initio values.
For the 2� ground state, the ab initio values are compared to
the experimental results of Ernst et al. [58].

For the ground state, the CCSD(T) method was used, and
the theoretical uncertainty was estimated to be around 3%
and 2.5% for A‖ and A⊥, respectively. The deviations from
the experimental results are −0.7% and 0.8% and thus well
within the theoretical uncertainty estimate. This is similar to
the accuracy we obtained in our earlier work for the HFS
parameters of the same state, but for the 137Ba nucleus [7].

For the excited states, the FSCC method was used, result-
ing in much larger uncertainties, namely, ∼17% and ∼31%
for A‖ in 2�1/2 and 2�3/2, respectively, and ∼85% for A⊥ in
2�1/2. These large uncertainties are mostly due to the fact that
the excited state parameters are much more sensitive to the
basis set quality. In the case of A‖ of both states, increasing
the size of the basis set resulted in an increase of the values
of A‖, which means that the final results can be expected to
underestimate the experimental values. This is indeed what
we observe, i.e., the A‖ is underestimated by 10% and 15%
for the 2�1/2 and 2�3/2 states, respectively. These deviations
also fall within the estimated uncertainties.

The basic idea of the theoretical uncertainty estimate is to
account for all effects which are neglected in the ab initio
calculation, i.e., an agreement is to be expected between the
theoretical and experimental values. This is not the case for
A⊥ in the 2�1/2 state.

TABLE IX. Final recommended ab initio values of A‖ and A⊥
of 19F in BaF with estimated uncertainties together with the values
obtained from experiment. All theoretical results were obtained with
the s-aug-cv4z basis set; the CCSD(T) method was used for the 2�

state and the FSCC method for the � states. All results are in MHz.

State Theory Experiment

2�1/2 A‖ CCSD(T) 71.22 ± 2.14 71.73 ± 0.09a

A⊥ 64.02 ± 1.62 63.51 ± 0.03a

2�1/2 A‖ FSCC 51.97 ± 8.25 58.64 ± 0.27b

A⊥ 2.02 ± 1.51 3.58 ± 0.14b

2�3/2 A‖ 13.40 ± 3.86 15.85 ± 0.09b

aReference [58].
bReference [8].

As can be seen in Fig. 2, the basis set effects dominate the
uncertainty, being as large as ∼80%. This indicates that the
4z quality basis set is insufficient for a proper description of
the A⊥ in the 2�1/2 state (and serves as further motivation for
the development of Dyall’s 5z quality basis sets [59]). Conse-
quently, the uncertainty estimate of this value can be expected
to be less reliable than for the other values presented here.

VI. CONCLUSIONS

We have carried out ab initio calculations of the 19F HFS
constants in the 2� ground and the 2�1/2 and 2�3/2 excited
states of BaF. For the ground state, the relativistic CCSD(T)
method was used, while for the excited states, which require
a multireference treatment, the relativistic FSCC(1,0) method
was employed.

A computational study of the effects of the basis set quality
and the treatment of electron correlation on the calculated
HFS constants was performed. We observed that the excited
state HFS constants were much more sensitive to the basis
set quality, compared to the ground state parameters. Further-
more, inclusion of perturbative triple excitations was found
to have a very large effect on the calculated ground state
HFS constants, much larger than that observed for the 137Ba
coupling in our previous study [7].

The performed computational study was used to determine
the uncertainties of the calculated values. These uncertainties
are much smaller for the ground state parameters (∼3%)
compared to the excited states (∼16–85%), mainly due to the
larger basis set dependence of the latter. We also present the
experimental HFS constants, obtained by fitting the measured
energy splittings [8] and the relations between the ab initio pa-
rameters and the FF parameters, required to connect between
experiment and theory. The ab initio values agreed with the
experimental results within the estimated uncertainties, except
for the A⊥ parameter of the 2�1/2 state, where higher-quality
basis sets are needed to produce accurate results.

This work demonstrates the predictive power of the FSCC
method and the reliability of the established uncertainty es-
timates. Uncertainty estimates based on purely theoretical
considerations can be crucial in cases where the calculated
property cannot be compared to experiment, and the findings
of this work provide an important validation of our computa-
tional procedure.
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