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Optical two-dimensional coherent spectroscopy (2DCS) has become a powerful tool for studying energy-
level structure, dynamics, and coupling in many systems including atomic ensembles. Various types of
two-dimensional (2D) spectra, including the so-called single-quantum, zero-quantum, and double-quantum
2D spectra, of both D lines (D1 and D2 transitions) of potassium (K) atoms have been reported previously.
For rubidium (Rb), a major difference is that the D lines are about 15 nm apart as opposed to only about
3 nm for K. Simultaneously exciting both D lines of Rb atoms requires a broader laser bandwidth for the
experiment. Here, we report a broadband optical 2DCS experiment in a Rb atomic vapor. A complete set
of single-quantum, zero-quantum, and double-quantum 2D spectra including both D lines of Rb atoms were
obtained. The experimental spectra were reproduced by simulated 2D spectra based on the perturbation solutions
to the optical Bloch equations. This work in Rb atoms complements previous 2DCS studies of K and Rb with a
narrower bandwidth that covers two D lines of K or only a single D line of Rb. The broadband excitation enables
the capability to perform double-quantum and multiquantum 2DCS of both D lines of Rb to study many-body
interactions and correlations in comparison with K atoms.

DOI: 10.1103/PhysRevA.105.052810

I. INTRODUCTION

Optical two-dimensional coherent spectroscopy (2DCS)
[1,2] is an optical analog to two-dimensional nuclear magnetic
resonance (NMR) spectroscopy [3]. The idea of implement-
ing 2DCS in the optical regime was proposed by Tanimura
and Mukamel in 1993 and was realized experimentally first
by using infrared ultrafast pulses [4,5]. Since then, various
approaches [6–15] have been developed in the near-infrared
and visible range. By unfolding a potentially congested one-
dimensional (1D) spectrum onto a two-dimensional (2D)
plane and correlating the dynamics in two different frequency
dimensions, optical 2DCS excels for studying optical re-
sponse of complex systems. The technique has become a
powerful spectroscopic tool to study energy-level structure,
dynamics, and coupling in various systems, such as struc-
tural information in proteins [5], dynamics of hydrogen bonds
in water [16], energy-transfer processes in photosynthesis
[17–21], many-body interactions and correlations in atomic
ensembles [22–29], ultrafast dynamics and couplings of ex-
citons in semiconductor quantum wells [30–36], quantum
dots [37–40], 2D materials [41,42], and perovskites [43–50].
2DCS proves to be a robust technique for studying a broad
range of physics from atomic to solid-state physics.

Potassium (K) and rubidium (Rb) atomic vapors were
initially used as model systems to validate optical 2DCS tech-
niques. The energy-level structures and other parameters are
well characterized and the D lines can be excited by a typical
Ti:sapphire femtosecond oscillator, making K and Rb ideal
samples to test optical 2DCS implementations. Several early
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approaches of optical 2DCS were first demonstrated in Rb
[13,51] and K [52] vapors. Atomic vapors were also used
to develop new advances such as optical 3D coherent spec-
troscopy [53], frequency-comb-based optical 2DCS [54,55],
and quantitative analyses such as pulse propagation effects
[56,57] and lineshape analysis [58] in 2D spectra.

Despite being considered initially as a model system, later
optical 2DCS measurements of atomic vapors provided inter-
esting insights into many-body interaction and correlation in
atoms. Double-quantum 2DCS revealed two-atom collective
resonances due to dipole-dipole interaction in both K [22]
and Rb [23,24] vapors. The method provides an extremely
sensitive and background-free detection to probe interatomic
dipole-dipole interaction even in a dilute vapor with a den-
sity as low as 4.81 × 108 cm−3, corresponding to a mean
interatomic separation of 15.8 μm [26]. The technique was
also extended to multiquantum 2DCS to probe multi-atom
Dicke states with up to eight atoms [25,27]. Optical 2DCS can
potentially be a useful tool to study many-body physics in cold
atoms. For K vapor, a complete set of single-quantum, zero-
quantum, and double-quantum 2D spectra involving both D1

and D2 lines have been reported [22,52]. However, previous
2DCS studies of Rb vapor measured only single-quantum 2D
spectra [13,51] of both D lines or double-quantum 2D spectra
of an individual D line [23,24]. Compared with K, a major
difference in Rb is that the D lines are 15 nm apart, requiring a
broader laser bandwidth to cover both D lines simultaneously.

Here, we implemented broadband optical 2DCS in a Rb
atomic vapor and obtained a complete set of single-quantum,
zero-quantum, and double-quantum 2D spectra of both D
lines of the Rb atom. The single-quantum and zero-quantum
2D spectra show the coherent coupling between the two
D line transitions, while the double-quantum 2D spectrum
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FIG. 1. Schematic of the collinear optical 2DCS experimen-
tal setup. BS: beam splitter, AOM: acousto-optic modulator, PD:
photodetector.

reveals the collective resonances involving both 5P1/2 and
5P3/2 states. We also present a theoretical treatment based on
the perturbative solution to the optical Bloch equation (OBE).
The simulated 2D spectra agree well with the experimen-
tal spectra. The rest of the paper is organized as follows:
Section II describes the experimental setup of a collinear
2DCS implementation. Section III introduces the theoreti-
cal approach based on the OBE. Section IV describes the
experimental and theoretical details of single-quantum and
zero-quantum 2D spectra. Section V gives the experimen-
tal and theoretical details of double-quantum 2D spectra.
Section VI is the conclusion.

II. EXPERIMENTAL SETUP

The optical 2DCS experiment was performed in a collinear
setup based on acousto-optic modulators (AOM) [11]. As
shown in Fig. 1, the primary apparatus consists of an inter-
ferometer of two Mach-Zehnder interferometers. This nested
interferometer splits an input fs laser pulse into four pulses (A,
B, C, and D) and then combines them in one beam with three
time delays between the pulses. The delays are controlled by
three translation stages. Each pulse goes through an AOM and
is phase modulated at a slightly different frequency �i (i = A,
B, C, and D). The first-order diffraction from the AOM out-
put is used for the experiment while the zeroth-order output
is terminated. Meanwhile, the output of a continuous-wave
(cw) laser (an external cavity diode laser) is injected into the
interferometer and propagates through the same optical path
and the AOMs as the fs laser pulses. The fs laser and cw laser
beams are offset such that they can be separated after exiting
the interferometer at beam splitter 6 (BS6). The cw laser
signal is detected by a photodetector (PD1). The cw signal
carries the AOM modulation frequencies and their beating
frequencies, which can be used as the reference for lock-in
detection. The cw laser beam also monitors the optical path

fluctuations in real time. The fs pulse sequence is incident
on the window of a Rb atomic vapor cell which is placed in
an oven for temperature control. The resulting fluorescence
signal is collected and directed to a photodetector (PD2) by a
pair of lenses.

The fourth-order nonlinear fluorescence signal can be
measured by lock-in detection using a proper combination
of cw laser beating frequencies as the reference. The non-
linear signal associated with different pulse sequences and
phase-matching conditions can be selectively detected by ref-
erencing to the proper mixing frequency. For instance, for the
rephasing single-quantum signal in the phase-matched direc-
tion kS = −kA + kB + kC − kD, where kA, kB, kC, and kS are
the wave vectors for pulses A, B, C, and the signal, the refer-
ence frequency for lock-in detection should be �S1 = −�A +
�B + �C − �D. To obtain this reference frequency, the cw
laser signal is processed by a digital wave mixer so that the
beating frequencies �AB = �A − �B and �CD = �C − �D

are extracted by filtering and subsequently mixed to generate
�S1 = �CD − �AB. The rephasing single-quantum signal can
be measured by lock-in detection referencing to �S1. Other
types of 2DCS signal can be obtained similarly by using
different mixing frequencies as the lock-in reference. The time
delay of each pulse can be controlled independently. There
are three time periods: τ between the first and second pulse,
T between the second and third pulse, and t between the third
and fourth pulse. During the experiment, the signal is recorded
while scanning two or three time delays. For instance, if both
τ and t are scanned, the signal can be represented in the time
domain as S(τ, t ) with a fixed T . A 2D spectrum S(ωτ , ωt ) is
generated by 2D Fourier-transforming the time-domain signal
S(τ, t ) into the frequency domain. Depending on the time
ordering of the excitation pulses and which time delays are
scanned, the experiment can generate single-quantum, zero-
quantum, and double-quantum 2D spectra. The experimental
detail and interpretation of these 2D spectra are described in
the following sections.

In the current work, the fs laser pulse is provided by
a Ti:sapphire oscillator (Coherent Vitara). The output pulse
spectrum has a bandwidth (FWHM) of 67.45 nm with a cen-
tral wavelength of 810.89 nm. The repetition rate is 80 MHz.
The fs laser power at the sample is 18 mW in total. The fs
pulses have sufficient bandwidth to simultaneously excite two
D lines of Rb atoms to obtain 2D spectra of both D lines.

III. THEORETICAL APPROACH

Using the density-matrix formalism, the light-matter inter-
action in this experiment can be described by the equation of
motion [59]

ρ̇i j = − i

h̄

∑
k

(Hikρk j − ρikHk j ) − �i jρi j, (1)

where ρi j are the density-matrix elements. The Hamiltonian
has matrix elements Hi j = h̄ωiδi j − μi jE (t ), where h̄ωi is the
energy of state |i〉, E (t ) is the electric field, μi j (i �= j) is the
dipole moment of the transition between |i〉 and | j〉, and δi j
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FIG. 2. Four different types of vertices in double-sided Feynman
diagrams.

is the Kronecker δ function. The relaxation operator � has
matrix elements �i j = 1

2 (γi + γ j ) + γ
ph

i j , where γi and γ j are
the population decay rates for states |i〉 and | j〉, respectively,
and γ

ph
i j is the pure coherence dephasing rate (γ ph

i j = 0 for i =
j).

The equations of motion represented by Eq. (1) include a
series of coupled differential equations. To solve these equa-
tions perturbatively, we substitute E with λE and expand the
density-matrix elements as

ρi j = ρ
(0)
i j + λρ

(1)
i j + λ2ρ

(2)
i j + λ3ρ

(3)
i j + · · · , (2)

where λ is a constant to track the order. Plug them into
Eq. (1) and collect coefficients of λn (n = 0, 1, 2, . . . ), we
can find the perturbative solutions for each order. In general,
the nth order solution of density-matrix element is related to
the (n − 1)st-order solution. Under the excitation of a field
E(t ) = Êneikn·r−iωnt + c.c., the (n − 1)st-order density-matrix
element ρ

(n−1)
ik evolves to the nth-order density-matrix ele-

ment ρ
(n)
jk or ρ

(n)
il . There are four possibilities that can be

calculated by the following integrals:

(a) ρ
(n)
jk = iμi j

2h̄
eikn·r

∫ t

−∞
Ên(t ′)e−iωnt ′

× e−i� jk (t−t ′ )ρ
(n−1)
ik (t ′)dt ′, (3)

(b) ρ
(n)
jk = iμi j

2h̄
e−ikn·r

∫ t

−∞
Ê∗

n (t ′)eiωnt ′

× e−i� jk (t−t ′ )ρ
(n−1)
ik (t ′)dt ′, (4)

(c) ρ
(n)
il = − iμkl

2h̄
e−ikn·r

∫ t

−∞
Ê∗

n (t ′)eiωnt ′

× e−i�il (t−t ′ )ρ
(n−1)
ik (t ′)dt ′, (5)

(d) ρ
(n)
il = − iμkl

2h̄
eikn·r

∫ t

−∞
Ên(t ′)e−iωnt ′

× e−i�il (t−t ′ )ρ
(n−1)
ik (t ′)dt ′, (6)

where �i j = ωi − ω j − i�i j . A convenient way to track the
time evolution of density-matrix elements in the perturbation
calculation is to use double-sided Feynman diagram. The in-
teraction with a field is described by the vertex of an arrow
with a vertical line. These four integrals can be represented
by four vertices, as shown in Figs. 2(a)–2(d), respectively.

An arrow represents a field that changes one index of the
density-matrix element. A photon is absorbed (emitted) if the
arrow points towards (away from) the vertical lines. An arrow
pointing to the right indicates that the field is E (t ), while an
arrow pointing to the left means that the field is conjugated,
E∗(t ).

A doubled-side Feynman diagram representing an excita-
tion quantum pathway may include multiple orders of these
four vertices. The corresponding nonlinear signal can be cal-
culated order by order by using the integrals in Eqs. (3)–(6).
In an experiment, the nonlinear signal usually includes con-
tributions from multiple excitation pathways represented by
multiple double-sided Feynman diagrams. The contributions
from individual diagrams can be calculated separately and
added together to obtain the overall nonlinear signal.

IV. SINGLE-QUANTUM AND ZERO-QUANTUM
TWO-DIMENSIONAL SPECTRA

Single-quantum and zero-quantum rephasing 2D spectra
were obtained by using the pulse sequence shown in Fig. 3(a),
in which pulses A and D are considered conjugated. The Rb
atom is considered a three-level V system with the relevant en-
ergy levels shown in Fig. 3(b). A fourth-order nonlinear signal
is generated in the sample by the excitation of the four-pulse
sequence. Briefly, the first pulse A creates coherence between
the ground and excited states. The second pulse B converts
the coherence to a population in either the ground state or the
excited states, depending on the relative phase between the
first pulses. For a three-level V system, the first two pulses also
create a Raman-like coherence between the two excited states.
The third pulse, C, converts the population and the “Raman”
coherence to a third-order coherence between the ground and
excited states. The fourth pulse D converts the third-order
coherence to a population in the excited states which emits
fluorescence as the fourth-order nonlinear signal. The dynam-
ics measured during the first time delay τ reveal the time
evolution of the coherence between the ground and excited
states and the corresponding coherence dephasing time T2.
During the second time delay T , the dynamics include the
population decay term and the “Raman” term. The population
term leads to a spectral signal at ωT = 0 which can reveal the
population decay time T1, while the “Raman” term results in a
signal at ωT = ±ωe2e1 . The process consists of eight specific
excitation quantum pathways represented by the double-sided
Feynman diagrams shown in Fig. 3(c).

Pulse D can be seen as a local oscillator for heterodyne
detection of the third-order coherence within the sample
itself. The resulting signal is fluorescence emitted by the
fourth-order population. To selectively detect the fourth-order
fluorescence signal that is a specific response to the pulse se-
quence in Fig. 3(a), the output of PD2 in Fig. 1 is demodulated
by a lock-in amplifier referenced to the mixing signal �S1 =
−�A + �B + �C − �D generated from the cw laser signal.
The AOM modulation frequencies used in this experiment
are �A = 80 MHz, �B = 80.0173 MHz, �C = 80.104 MHz,
and �D = 80.107 MHz so the reference frequency is �S1 =
14.3 kHz.

Single-quantum rephasing 2D spectra can be obtained by
scanning time delays τ and t , while fixing the second time
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FIG. 3. (a) Time ordering of excitation pulses for performing zero-quantum and single-quantum 2DCS. (b) Relevant energy levels of Rb
atoms. (c) Double-sided Feynman diagrams representing possible excitation quantum pathways in zero-quantum and single-quantum 2DCS
using the pulse sequence from panel (a).

delay T , and 2D Fourier-transforming the signal into the
frequency domain. A typical single-quantum 2D spectrum
is shown in Fig. 4(a), where the spectral amplitude is plot-
ted with the maximum normalized to 1. The x and y axes
are the emission frequency ωt and the absorption frequency
ωτ corresponding to the time delays t and τ , respectively.
The absorption frequency has a negative sign because the
excitation pulse A is conjugated. The dotted diagonal line
indicates that the absorption and emission frequencies have
the same absolute value (|ωτ | = ωt ). Peak SA (SB) on the
diagonal line is due to the D1 (D2) transition, absorbing and
emitting at the same frequency. In contrast, the off-diagonal
peak SC (SD) absorbs at the D1 (D2) frequency and emits
at the D2 (D1) frequency, revealing the coupling between the
D1 and D2 transitions. Each peak has contributions from two
of the double-sided Feynman diagrams in Fig. 3(c) which
are grouped and labeled accordingly. For peaks SA and SB,
the two diagrams represent similar processes. For peaks SC
and SD, the two diagrams describe two different dynamics,
ground-state depletion and “Raman” coherence, during the
second time delay T . The process involving “Raman” coher-
ence can be isolated in a zero-quantum 2D spectrum.

Zero-quantum 2D spectra can be obtained by scanning
time delays T and t , while fixing the first time delay τ , and
2D Fourier-transforming the signal into the frequency domain.
A typical zero-quantum 2D spectrum is shown in Fig. 5(a),
where the amplitude is plotted with the maximum normalized
to 1. The x axis is the emission frequency ωt . The y axis is the
mixing frequency ωT corresponding to the second time delay
T . There are four peaks in the spectrum. Peaks ZA and ZB
are located on the ωT = 0 line. They each are contributed by
the three pathways involving a population decay during the
second time delay T , as labeled in Fig. 3(c) accordingly. Peak
ZC (ZD) has a mixing frequency of ωT = 7.12 (ωT = −7.12)
THz, the frequency difference between the 5 2P1/2 and 5 2P3/2

states.

The experimental 2D spectra can be reproduced in simula-
tion based on the theoretical approach described in Section III.
The contribution from each pathway in Fig. 3(c) needs to
be calculated. As an example, assuming the excitation pulses
are Delta pulses, the signal from the fourth diagram [SD2
shown in Fig. 3(b)] can be calculated by using the integrals
in Eqs. (3)–(6) as

ρ (4)
e1e1

(τ, T, t ) = S0μ
2
e1gμ

2
e2ge−�e1e1 τ ′

e(−iωe1g−�e1g)t

× e(−iωe1e2 −�e1e2 )T e(−iωge2 −�ge2 )τ

× 
(τ ′)
(t )
(T )
(τ ), (7)

where

S0 = −EAEBECED

16h̄4 ρ (0)
gg e−i(kD−kC−kB+kA )·r. (8)

Here τ ′ is the fluorescence emission time, Ei (i = A, B, C, D)
is the electric-field amplitude for each pulse, ρ (0)

gg is the initial
population in the ground state, ki is the wave vector, and 


is Heaviside step function. Taking the 2D Fourier Transform
(2DFT) of Eq. (7) gives the fourth-order frequency-domain
signal with τ ′ = 0 as follows:

S(4)
e1e1

(ωτ , ωT , ωt ) = S0μ
2
e1gμ

2
e2g

[
1

ωt − ωe1g + i�e1g

× 1

ωT − ωe1e2 + i�e1e2

1

ωτ − ωge2 + i�ge2

]
.

(9)

Repeating the above derivation for each pathway shown
in Fig. 3(c) and summing each contribution gives the over-
all nonlinear signal in the frequency domain. Evaluating

052810-4



BROADBAND OPTICAL TWO-DIMENSIONAL COHERENT … PHYSICAL REVIEW A 105, 052810 (2022)

FIG. 4. (a) Red curve shows the laser spectrum between 375.107
THZ and 386.23 THz. Note that the laser spectrum is much broader
than the spectra range shown here. The projection of the single-
quantum spectra onto the emission axis is shown as the blue curve.
The D1 and D2 transitions are shown respectively. (b) Experimental
measured single-quantum 2D spectrum of Rubidium vapor at 160 ◦C.
(c) Simulated single-quantum 2D spectrum matched to experimental
data.

the 2DFT of the time-domain expression at T = 0 gives
the single-quantum 2D frequency-domain spectrum solution
shown in Eq. (10), while evaluating at τ = 0 gives the zero-
quantum 2D frequency-domain solution shown in Eq. (11).
Simulations for each spectra are shown in Figs. 4(c) and 5(b),
respectively:

S(4)
1Q (ωτ , ωt ) = 2S0μ

4
e1g

ωt − ωe1g + i�e1g

1

ωτ − ωge1 + i�ge1

+ 2S0μ
2
e1gμ

2
e2g

ωt − ωe1g + i�e1g

1

ωτ − ωge2 + i�ge2

FIG. 5. (a) Experimental and (b) simulated zero-quantum 2D
spectra of a Rb vapor. The spectral amplitude is plotted with the
maximum normalized to 1.

+ 2S0μ
2
e1gμ

2
e2g

ωt − ωe2g + i�e2g

1

ωτ − ωge1 + i�ge1

+ 2S0μ
4
e2g

ωt − ωe2g + i�e2g

1

ωτ − ωge2 + i�ge2

, (10)

S(4)
0Q (ωT , ωt ) = μ4

e1g + μ2
e1gμ

2
e2g

ωt − ωe1g + i�e1g

S0

ωT − ωgg + i�e1e2

+ μ4
e1g

ωt − ωe1g + i�e1g

S0

ωT − ωe1e1 + i�e1e2

+ μ2
e1gμ

2
e2g

ωt − ωe1g + i�e1g

S0

ωT − ωe1e2 + i�e1e2

+ μ2
e1gμ

2
e2g

ωt − ωe2g + i�e2g

S0

ωT − ωe2e1 + i�e2e1

+ μ4
e1g + μ2

e1gμ
2
e2g

ωt − ωe2g + i�e2g

S0

ωT − ωgg + i�e1e2

+ μ4
e1g

ωt − ωe2g + i�e2g

S0

ωT − ωe2e2 + i�e1e2

.

(11)

To conduct the single-quantum and zero-quantum simu-
lations, the center frequencies ωi j for each resonance and
their associated relaxation linewidths �i j were extracted from
the experimental spectra. A diagonal slice centered on each
resonance in a 2D spectra is fit with a Lorentzian curve to
extract �i j and ωi j . Emission center frequencies ωe1g = 2π ×
377.210 THz and ωe2g = 2π × 384.245 THz were extracted
for resonances SA and SB shown in Fig. 4. The relaxation
linewidths �e1g = 2π × 0.2446 THz and �e2g = 2π × 0.1450
THz were extracted by slicing along the diagonal of SA
and SB, respectively. Slicing along the diagonal through SC
and SD extracted parameters �e1e2 = 2π × 0.1446 THz and
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FIG. 6. (a) Time ordering of excitation pulses for performing double-quantum 2DCS. (b) Relevant energy levels of Rb atoms including
single-atom (e1, e2) and two-atom states (d1, d2, d3). Two-atom interactions cause an energy shift (�ω) to the two-atom states shown as the
green dashed lines. No interactions would be described by the solid black lines. Shown are two example transitions between states g → d1

with energy ωd1g and another transition between states e2 → d2 with energy ωd2e2 . (c) Double-sided Feynman diagrams representing possible
excitation quantum pathways in double-quantum 2DCS using the pulse sequence in panel (a).

�e2e1 = 2π × 0.0716 THz, respectively. The zero-quantum
simulated spectra utilized the same parameters as the single-
quantum simulation. The transition dipole moments were
μe1g = 2.537 × 10−29 C m and μe2g = 3.584 × 10−29 C m.

V. DOUBLE-QUANTUM TWO-DIMENSIONAL SPECTRA

Double-quantum 2D spectra were acquired by using the
pulse sequence shown in Fig. 6(a), where the conjugated
pulses A and D arrive after pulses B and C. The first two
pulses can excite double-quantum coherence between the
ground state and doubly excited states. The relevant energy
levels, as shown in Fig. 6(b), include the ground state |g〉,
two singly excited states |e1〉 = |5 2P1/2〉 and |e2〉 = |5 2P3/2〉,
and three doubly excited states which are two-atom states
|d1〉 = |5 2P1/2, 5 2P1/2〉, |d2〉 = |5 2P1/2, 5 2P3/2〉, and |d3〉 =
|5 2P3/2, 5 2P3/2〉. For convenience, the frequencies of |e1〉 and
|e2〉 are labeled D1 and D2, respectively. The frequencies
of the doubly excited states |d1〉, |d2〉, and |d3〉 are 2D1,
D1 + D2, and 2D2, respectively. Using this pulse sequence,
the excitation process is different from the single-quantum
excitation. The first pulse B creates single-quantum coherence
between the ground state and the singly excited states. The
second pulse C converts the single-quantum coherence to
double-quantum coherence between the ground state and the
doubly excited states. The third pulse A converts the double-
quantum coherence back to single-quantum coherence. The
fourth pulse D converts the single-quantum coherence to a
population in the singly or doubly excited states, which emits

a fluorescence signal. To detect the double-quantum signal,
the fluorescence is measured by PD2 and its output is de-
modulated by a lock-in amplifier referenced to the mixing
signal �S2 = �B + �C − �A − �D. For the energy levels
in Fig. 6(b), this excitation process includes 18 pathways
represented by the double-sided Feynman diagrams shown
in Fig. 6(c). In all pathways, a double-quantum coherence
between the ground state and one of the doubly excited states
evolves during the second time delay T . The dynamics of
double-quantum coherence can be measured by scanning T
in double-quantum 2DCS. For two independent, noninteract-
ing Rb atoms, the contributions from all 18 pathways cancel
out, leading to a vanishing double-quantum signal. However,
the cancellation is not complete if there is the interaction
between the Rb atoms that breaks the symmetry, resulting
in a nonzero double-quantum signal. Double-quantum 2DCS
has been proven to be extremely sensitive detection to dipole-
dipole interactions and collective resonances in dilute K and
Rb atomic vapors [22–24,26,27,29].

The double-quantum signal was measured as time delays
T and t are scanned while time delay τ is fixed. Fourier-
transforming the signal into the frequency domain generates
double-quantum 2D spectra. A typical double-quantum 2D
spectrum is shown in Fig. 7(a), where the spectral ampli-
tude is plotted with the maximum normalized to 1. The x
and y axes are the emission frequency ωt and the double-
quantum frequency ωT , corresponding to the time delays
t and T . There are four peaks in the double-quantum 2D
spectrum. The double-quantum frequencies of these peaks
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FIG. 7. (a) Experimental and (b) simulated double-quantum 2D
spectra of a Rb vapor. The spectral amplitude is plotted with the
maximum normalized to 1.

match the frequencies of the two-atom doubly excited states
2D1, D1 + D2, and 2D2, since the double-quantum coher-
ence oscillates at these frequencies during time delay T . The
emission frequencies of these peaks are D1 and D2. Each
peak has contributions from multiple pathways represented
by double-sided Feynman diagrams labeled accordingly in
Fig. 6(c). The double-quantum 2D spectrum reveals the
two-atom collective resonances and dipole-dipole interactions
involving both 5 2P1/2 and 5 2P3/2 states. For Rb atoms, there
is also a single-atom doubly excited state 5 2D at 2π × 770.5
THz. The double-quantum signal associated with 5 2D has
been observed before [23] as two off-diagonal peaks with
the double-quantum frequency at ωT = 2π × 770.5 THz and
the emission frequency at ωt = 2π × 384.2 and 2π × 386.3
THz. However, in the current experiment, the laser spec-
trum was centered at ≈810 nm and does not have sufficient
intensity at the wavelength required for exciting 5 2D. The
double-quantum signal associated with 5 2D was not observed
here.

The experimental frequency-domain double-quantum 2D
spectrum can be reproduced by calculating contributions from
all pathways in Fig. 6(c):

S(4)
DA(ωT , ωt ) = S0(μe1gμd2e1 + μe2gμd2e2 )

ωT − ωd2g + i�d2g

×
(

μe2gμd2e2

ωt − ωd2e2 + i�d2e2

− μd2e1μge1

ωt − ωe1g + i�e1g

)
,

(12)

S(4)
DB(ωT , ωt ) = S0(μe1gμd2e1 + μe2gμd2e2 )

ωT − ωd2g + i�d2g

×
(

μe1gμd2e1

ωt − ωd2e1 + i�d2e1

− μd2e2μe2g

ωt − ωe2g + i�e2g

)
,

(13)

S(4)
DC(ωT , ωt ) = S0μ

2
e2gμ

2
d3e2

ωT − ωd3g + i�d3g

×
(

1

ωt − ωd3e2 + i�d3e2

− 1

ωt − ωe2g + i�e2g

)
,

(14)

S(4)
DD(ωT , ωt ) = S0μ

2
e1gμ

2
d1e1

ωT − ωd1g + i�d1g

×
(

1

ωt − ωd1e1 + i�d1e1

− 1

ωt − ωe1g + i�e1g

)
.

(15)

The simulated double-quantum spectra used parameters
extracted from the experimental spectra with fitted Lorentzian
curves. The double-quantum center frequencies extracted
from the experimental spectra were ωd1g = 2π × 754.213
THz, ωd2g = 2π × 761.358 THz, and ωd3g = 2π × 768.509
THz. The emission center frequencies (ωe1g, ωe2g) were iden-
tical to those extracted from the single-quantum spectra. The
remaining frequency terms are

ωd3e2 = ωe2g − �ω, (16)

ωd2e2 = ωe1g − �ω, (17)

ωd2e1 = ωe2g − �ω, (18)

ωd1e1 = ωe1g − �ω, (19)

where �ω = 2π × 100 MHz. The terms ωe1g and ωe2g are the
same used for the single-quantum spectra simulation. The
remaining relaxation terms are

�d3e2 = �e2g + ��, (20)

�d2e2 = �e1g + ��, (21)

�d2e1 = �e2g + ��, (22)

�d1e1 = �e1g + ��, (23)

where �� = 2π × 15 GHz. The terms �e1g and �e2g were
the values extracted from the experimental single-quantum
spectra.

The energy splitting �ω and relaxation shift �� are
brought about by the interaction of individual atoms. A case
where �ω = �� = 0 would suggest no interactions between
individual atoms. This would lead to a double-quantum spec-
tra with S(4)

DD = S(4)
DC = 0 and S(4)

DA = S(4)
DB �= 0 which is not

reflected by the spectra in Fig. 7.

VI. CONCLUSION

In conclusion, we have implemented a broadband collinear
optical 2DCS experiment on Rb atoms and obtained a
complete set of single-quantum, zero-quantum, and double-
quantum 2D spectra including both D-line transitions of
Rb. The single-quantum 2D spectrum shows the coherent
coupling between two D-line transitions. The zero-quantum
2D spectrum reveals the coherence between two excited
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states. The double-quantum 2D spectrum is a result of the
dipole-dipole interaction and collective resonance between
two atoms. Simulated 2D spectra based on the perturbative so-
lutions to the OBEs agree well with the experimental spectra.
The measurements in Rb atoms complement previous 2DCS
studies of K and Rb with a narrower bandwidth that covers
two D lines of K or only a single D line of Rb. The broad-
band excitation enables the possibility of double-quantum

and multiquantum 2DCS of both D lines of Rb to study
many-body interactions and correlations in comparison with
K atoms.
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