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Coherent multichannel optical theorem: Quantum control of the total scattering cross section
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The optical theorem is a fundamental aspect of quantum scattering theory. Here, we generalize this theorem
to the case where the incident scattering state is a superposition of internal states of the collision partners,
introducing additional interference contributions and, e.g., providing a route to control the total integral cross
section. As in its standard form, forward scattering plays an essential role in the multichannel optical theorem,
but with interference terms being related to the inelastic forward scattering amplitudes between states in the
initial superposition. Using the resultant control index, we show that extensive control is possible over ultracold
collisions of oxygen molecules in their rovibrational ground states, and of 85Rb -85Rb collisions, promising
systems for the experimental demonstration of the quantum interference control of the total scattering cross
section.
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I. INTRODUCTION

The multichannel optical theorem is a remarkable result in
scattering theory that relates the imaginary part of the elastic
forward amplitude to the total scattering cross section [1,2], a
consequence of probability conservation during the scattering.
No matter how complicated the scattering, all information
about the total cross section is contained in the elastic forward
scattering. Discovered first for light by Sellmeier [3] and
Rayleigh [4], the optical theorem was subsequently extended
to quantum mechanics by Feenberg [5] and Bohr et al. [6],
and has been used in many areas, such as atomic, molecular,
and optical physics [7,8], plasma physics [9], astrophysics
[8], atmospheric physics [7,8], nuclear physics [10–12], and
high-energy physics [13].

The standard optical theorem assumes an initial pure state
of fixed energy. Here we extend this theorem to a broader
class of initial states, a superposition at a fixed energy that
generates new and interesting interference contributions. We
then demonstrate the utility of the coherent optical theorem
in controlling the total scattering cross section. Examples of
efficient control of ultracold atomic and molecular collisions
are provided.

Over the past decades, progress in cooling techniques has
enabled the creation of ultracold gases of atoms and molecules
[14]. Nevertheless, loss of coherence is caused by collisions
between the atoms/molecules and limits their use in quan-
tum information science [15–18]. On the other hand, such
collisions are essential for understanding ultracold chemistry
[19,20]. Fortunately, some ultracold collisions can be con-
trolled due to the ability to fully define the internal states
of the atoms/molecules, and due to the small value of the
kinetic energy relative to the perturbations induced by external
fields. As a consequence, the vast majority of ultracold control

scenarios are based on external fields (magnetic, electric, or
optical) [21,22], with molecules/atoms prepared in a well-
defined internal state. In these strategies, the control knobs
are the field parameters (strength, frequency, etc.).

However, this approach, as noted below, has deficiencies,
motivating a different strategy. That is, the control of the in-
ternal degree of freedom at ultracold temperature enables the
preparation of quantum superpositions of internal states that
can be used to induce interferences between scattering am-
plitudes, in analogy with the double slit experiments [23,24].
Then, instead of control via variation of field parameters,
ultracold collisions are controlled by changing the nature of
the initial superposition. The resultant effect on the system is
the principle of coherent control [23].

In previous paper, we demonstrated that the ultracold
regime is ideal for coherent control and that control can
be achieved for resonant processes such as collisional spin
exchange [25], which can be completely suppressed (or ac-
tivated), via destructive (constructive) interference. Control is
achieved without persistent application of external perturba-
tions. In particular, the collision partners (atoms or molecules)
need not have electric and(/or) magnetic dipole moments
to be coherently controlled. For example, collisions of non-
magnetic homonuclear molecules, like H2 or Sr2, could be
manipulated. Moreover, the absence of external field could be
important for high-precision measurements (for example with
Sr2 molecules [26,27]) where suppressing external perturba-
tions is significant.

At present, contrary to the unimolecular processes [28],
the observation of coherent control of bimolecular processes
is still an open experimental challenge due to a number of
issues. First, the preparation of the initial superposition is ex-
perimentally challenging. Conditions on the coherent control
of scattering events require either entanglement of the external
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and internal degrees of freedom [29–32], or superposition
of degenerate magnetic sublevels (an m superposition) [33].
However, recently, some progress has been made in prepar-
ing m-superpositions in H2 molecules and its isotopologues
[34–36]. Secondly, our previous study of coherent control
at ultralow temperatures [25] focused on state-to-state cross
sections, and indicated a need for complicated coincidence
measurements of the two scattered molecules [37,38]. On the
other hand, the total cross section, considered here, could
be experimentally easier to measure and control. Below we
demonstrate the utility of the coherent multichannel theorem
in controlling the total scattering cross section. The theorem
allows to answer the following fundamental questions: How
does the standard optical theorem generalize when the scat-
tering is of an initial superposition of internal states? What
are the new insights for coherent control of the total cross
section arising from this generalization? And, with these new
insights, can we identify atomic and/or molecular collisions
promising for a first experimental demonstration of coherent
control of the total scattering cross section? Answering these
questions is important for the development of this completely
new control strategy for ultracold collisions and for applica-
tions in other scattering scenarios.

The structure of the paper is as follows. We first derive
the coherent multichannel optical theorem (Sec. II) and, in
the rest of the paper, use the resultant theorem to address the
control related issues raised above. In Sec. III, we compare
the derived formulas with the standard form of the optical
theorem. The coherent optical theorem allows us to define a
coherent control index for the total integral cross section (ICS)
in Sec. IV, which we then use to analyze promising systems
for experiments in Sec. V. Exact scattering calculations are
presented, which show impressive control over the total cross
section for the experimentally realizable ultracold 85Rb -85Rb
and 17O2 -17O2 collisions. We conclude in Sec. VI.

II. DERIVATION

Consider an initial superposition of Nsup degenerate inter-
nal states of the scattering partners denoted |i〉 = |νA〉 |νB〉.
Here νA,B are the quantum numbers characterizing the internal
states of the molecular or atomic collision partners A+B. The
initial state is:

�in(�r, ξ ) = eikz

Nsup∑
i=1

ai |i〉 , (1)

where the z axis is defined along the initial relative momentum
�k. Here ai are the superposition coefficients, �r = (r, θ, φ) is
the relative position between the two collision partners, and ξ

is composed of all internal coordinates contained in |i〉.
After the collision, the system is in a superposition of

scattered spherical waves in all open channels [1]:

�out (�r, ξ ) =
∑

j

fsup→ j (θ, φ)
eik j r

r
| j〉 , (2)

where k j is the final relative momentum in the state | j〉 and

fsup→ j (θ, φ) =
Nsup∑
i=1

ai fi→ j (θ, φ) (3)

is the scattering amplitude from the initial superposition to
the final state | j〉. Here, fi→ j is the scattering amplitude from
state |i〉 to | j〉. The overall wavefunction therefore obeys the
boundary condition:

�(�r, ξ ) −−−→
r→∞ eikz

Nsup∑
i=1

ai |i〉 +
∑

j

fsup→ j (θ, φ)
eik j r

r
| j〉 . (4)

The optical theorem can be derived by imposing conserva-
tion of probability via the continuity equation:∮

�j(�r) · êrr2d� = 0, (5)

where �j(�r) = ∫
dξ h̄

2iμ�∗(�r, ξ ) �∇�(�r, ξ ) + c.c is the current
density, μ is the reduced mass, êr is the unit radial vector,
d� = sin θdθdφ is the solid angle, and c.c denotes complex
conjugate. The continuity equation states that the scatter-
ing flux through any closed surface must vanish, which is
also the case for a sphere with radius r → ∞ where the
boundary condition (4) is imposed. This flux, defined as I ≡
limr→∞

∮ �j(�r).êrr2d�, can be expanded into three terms: the
incoming term Iin, the outgoing term Iout, and the interference
term Iint:

Iin + Iout + Iint = 0. (6)

The terms Iini, Iout, and Iint are derived in the appendices A, B,
and C, respectively, and their final values are:

Iin = 0, (7)

Iout = h̄k

μ
σ tot

sup, (8)

Iint = −4π h̄

μ

Nsup∑
i,i′=1

Im[a∗
i ai′ fi′→i(θ = 0)]. (9)

Introducing (7)–(9) in Eq. (6), one obtains the total integral
cross section (ICS):

σ tot
sup = 4π

k

Nsup∑
i,i′=1

Im[a∗
i ai′ fi′→i(θ = 0)]. (10)

Consider then the dependence of the total cross section on
the relative phases βi between the states of the initial super-
position, which can be explicitly illustrated by writing the
superposition coefficients in their polar form: ai = |ai|eiβi :

σ tot
sup = 4π

k

Nsup∑
i=1

|ai|2Im[ fi→i(θ = 0)]

+ 4π

k

∑
i

∑
i′ 
=i

|ai||ai′ |Im[ei(βi′ −βi ) fi′→i(θ = 0)]. (11)

Finally, the symmetric relation between the scattering ampli-
tudes fi′→i = fi→i′ can be exploited to obtain the coherent
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multichannel optical theorem:

σ tot
sup = 4π

k

Nsup∑
i=1

|ai|2Im[ fi→i(θ = 0)]

+ 8π

k

Nsup∑
i=1

∑
i′>i

|ai||ai′ |Im[ fi→i′ (θ = 0)] cos(βi′ − βi ).

(12)

The symmetric form is valid when the time-reversal symmetry
applies. When it does not, Eq. (11) should be used.

Equations (11) and (12) are the central result of this paper.
They establish a relation between the magnitude of the total
ICS and the preparation coefficients of the internal superpo-
sition, enabling coherent control of the total ICS. Note that
they are of the standard coherent control form [23], indirect
scattering terms plus interference between pairs of states.

III. AN EXTENSION OF THE STANDARD
OPTICAL THEOREM

The coherent multichannel optical theorem [Eq. (12)] es-
tablishes the total ICS as composed of a direct contribution
(upper line) and an interference contribution (lower line). The
direct contribution is related to the elastic forward scattering
amplitudes of individual states in the superposition, weighted
by their populations. This contribution would be the same for
a classical mixture with |ai| given, for example, by Boltzmann
populations. The standard optical theorem without superposi-
tion follows from the direct contribution in the limit Nsup = 1,
a1 = 1:

σ tot
1 = 4π

k
Im[ f1→1(θ = 0)]. (13)

For the purpose of control, the significance of the inter-
ference contribution is that it allows control over the total
ICS by varying the amplitude product |ai||ai′ | and the relative
phases (βi′ − βi ) between the states in the initial superposi-
tion. The interference contribution is related to the inelastic
forward scattering amplitudes between the states in the initial
superposition, and is the primary attribute of the coherent
multichannel optical theorem, corresponding to interference
between scattering events in different channels. It indicates
that inelastic scattering between the channels involved in the
initial superposition is a prerequisite for coherent control
of total ICS. Note that whatever the system, the interfer-
ence terms oscillate as cos(βi′ − βi ) and, that contrary to the
elastic component Im[ fi→i(θ = 0)], the inelastic component
Im[ fi→i′ (θ = 0)] can be negative.

Consider now the key quantity that determine the magni-
tude of the interference contribution to the total ICS, Eq. (11),
the imaginary part of the inelastic forward scattering ampli-
tude:

Im[ fi→i′ (θ = 0)] = 1

4k

∑
j

∑
�′,m′

T̃i→ j,�′,m′ T̃ ∗
i′→ j,�′,m′ , (14)

where T̃i→ j,�′,m′ = ∑
� i�

√
2� + 1Ti,�,0→ j,�′,m′ , � and �′ are

the initial and final partial wave, and Ti,�,0→ j,�′,m′ are the
T -matrix elements. Equation (14) provides an important per-
spective, that is: interference is a result of scattering of states

|i〉 and |i′〉 into the same states j, �′, m′. Further, the sum∑
j

∑
�′,m′ T̃i→ j,�′,m′ T̃ ∗

i′→ j,�′,m′ is seen to be real. Equation (14)
is required by conservation of probability and the coherent
multichannel optical theorem can also be proven via this rela-
tion.

IV. COHERENT CONTROL OF THE TOTAL
CROSS SECTION

A. Two-state superpositions

The coherent multichannel optical theorem allows for con-
siderable new insights into the quantum control of the total
ICS. First, consider the case where the initial superposition of
the scattering partners is composed of two states, �in(�r, ξ ) =
eikz(cos η |1〉 + sin ηeiβ |2〉). Here, control is achieved by
changing the amplitude and phase of the superposition by
varying η and β, respectively. The theorem [Eq. (12)] then
takes the form

σ tot
sup = 4π

k
{cos2(η)Im[ f1→1] + sin2(η)Im[ f2→2]}

+ 8π

k
cos η sin η Im[ f1→2] cos β. (15)

Insight is afforded by minimization and maximization of this
expression. The optimization with respect to β is straight-
forward; maximal for cos β = 1 (βmax = 0) and minimal for
cos β = −1 (βmax = π ) if Im[ f1→2(θ = 0)] is positive. It is
the opposite if Im[ f1→2(θ = 0)] is negative. The optimization
with respect to η gives:

ηmin = 1

2
arctan

(
2|Im[ f1→2]|

Im[ f2→2] − Im[ f1→1]

)
, (16)

ηmax = −1

2
arctan

(
2|Im[ f1→2]|

Im[ f2→2] − Im[ f1→1]

)
, (17)

Introducing ηmin, βmin, ηmax, and βmax in the Eq. (15), one
obtains the minimal and maximal values of the total ICS:

σ tot
min = 2π

k
(Im[ f1→1] + Im[ f2→2])

− 2π

k

√
(Im[ f2→2] − Im[ f1→1])2 + 4Im2[ f1→2],

(18)

σ tot
max = 2π

k
(Im[ f1→1] + Im[ f2→2])

+ 2π

k

√
(Im[ f2→2] − Im[ f1→1])2 + 4Im2[ f1→2].

(19)

The extent of the control is determined by the magni-
tude of Im[ f1→2], a quantity bounded between zero and√

Im[ f1→1]Im[ f2→2]. That leads us to define a control index:

Rc = |Im[ f1→2]|√
Im[ f1→1]Im[ f2→2]

, (20)

which ranges from zero to one. When Rc = 1, the Schwartz
equality (|Im[ f1→2]| = √

Im[ f1→1]Im[ f2→2]) holds. In this
case, the minimum value of the total cross section σ tot

min van-
ishes while the maximal value is the sum of the total cross
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sections in absence of superposition, σ tot
max = 4π

k (Im[ f1→1] +
Im[ f2→2]) = σ tot

1 + σ tot
2 . Hence, the value of Rc allows us to

quantify the extent of coherent control of the total ICS and
interpret when systems display the maximum possible degree
of control (which is realized for Rc = 1). An example of
complete control is the case of ideal resonance [32], where
the resonance occurs for all final states. Another favorable sit-
uation is when the number of channels significantly populated
in a collision is equal to (or less than) the number of states in
the superposition [39]. The latter case is illustrated below in
the Sec. V.

B. Nsup-state superpositions (Nsup>2)

The optimization can be generalized to a superposition
of Nsup states via a procedure similar to that introduced in
Ref. [39]. We define the matrix i j = 4π

k Im[ fi→ j (θ = 0)] and
rewrite the coherent multichannel optical theorem [Eq. (12)]
as

σ tot
sup = a†�a, (21)

where a is a vector with the components ai.
The optimization problem of finding σ tot

min and σ tot
max trans-

forms to the solution of an eigenvalue equation for �:

�a = σ tot
opt a, (22)

where the optimized coefficients are the corresponding eigen-
vectors. The matrix � is block diagonal with respect to the
symmetry of the scattering. For example, a superposition
of states with different projections Mint of the total internal
angular momentum does not display interference since the
imaginary part of the inelastic scattering amplitude between
these states is zero. Therefore, they occupy different blocks
of the matrix �. The resulting eigenvectors only contain the
states with the same value of Mint and correspond to entangled
superpositions thereof.

The best system controllability is obtained if the lowest
eigenvalue of � is equal to zero; i.e., if the determinant of � is
null. On the other hand, in absence of control, the determinant
is equal to the product of the diagonal elements. Then, we can
define a generalized control index Rc:

Rc = N

√
1 − det(�)∏

i ii
. (23)

For example, in the two-states case, the determinant is equal to
Im[ f1→1]Im[ f2→2] − (Im[ f1→2])2, and we recover expression
(20). For the three states case, for example, the matrix � is
then defined as

� = 4π

k

⎛
⎝Im[ f1→1] Im[ f1→2] Im[ f1→3]

Im[ f1→2] Im[ f2→2] Im[ f2→3]
Im[ f1→3] Im[ f2→3] Im[ f3→3]

⎞
⎠. (24)

The determinant of this matrix is given by

det(�) = 4π

k
(Im[ f1→1](Im[ f2→2]Im[ f3→3] − Im[ f2→3]2)

− Im[ f1→2](Im[ f1→2]Im[ f3→3]

− Im[ f2→3]Im[ f1→3])

+ Im[ f1→3](Im[ f1→2]Im[ f2→3]

− Im[ f2→2]Im[ f1→3])). (25)

Using the definition (23), the control index takes the form

Rc = 3

√
Rnum

c

Im[ f1→1]Im[ f2→2]Im[ f3→3]
, (26)

where

Rnum
c = 2Im[ f1→2]Im[ f2→3]Im[ f1→3]−Im[ f1→1](Im[ f2→3])2

− Im[ f2→2](Im[ f1→3])2 − Im[ f3→3](Im[ f1→2])2.

(27)

As stated previously, the value of Rc can be used to interpret
systems and coherent superpositions that give large control of
the total ICS, as is done in the next section. Specifically, Rc

close to one indicates the most efficient coherent control.

V. SYSTEMS WITH EXTENSIVE CONTROL
OF THE TOTAL CROSS SECTION

The theory above provides a foundation for coherent con-
trol of the total ICS. In the next section, we consider the
coherent control of realistic atomic and molecular collisions
at ultralow temperatures. In particular, we demonstrate the
possibility of extensive coherent control of total ICS for
O2 + O2 and Rb+Rb collisions. Note that although the two
examples correspond to collisions of indistinguishable par-
ticles, the derived optical theorem is general and valid for
collisions between either indistinguishable or distinguishable
particles.

A. O2 + O2 scattering

The first system considered is ultracold scattering of two
oxygen molecules in their rovibrational ground states at
10 μK. This system has been realized experimentally in a
magnetic trap at 50 mK [40], with further evaporative or sym-
pathetic cooling projected to achieve the μK regime. Hence,
it is an advantageous system for study. The oxygen molecules
have spin 1, and a spin-exchange processes can occur during
the scattering. Our calculations neglect the hyperfine struc-
ture. In addition to computational practicability, there are
some physical arguments to support it. First, the change of
hyperfine state F requires a collisional energy of 3.7 mK and
is forbidden at ultralow temperature. Second, the increase of
the number of m states (the lowest hyperfine state has F = 6)
has pros and cons for the control. On the one hand, there are
more final states to control. On the other hand, more states can
be included in the initial superposition.

The initial internal states considered here is an en-
tangled superposition between the symmetrized states
|SA = 1, MSA = −1, SB = 1, MSB = 1〉 and |SA = 1, MSA = 0,

SB = 1, MSB = 0〉:
�E (�r, ξ ) = eikz (cos η |1,−1, 1, 1〉 + sin ηeiβ |1, 0, 1, 0〉),

(28)
where MSA/B is the projection of the electronic spin SA/B along
the space-fixed z axis. The symmetrized initial states of iden-
tical bosons are defined as

|S1, m1, S2, m2〉 = 1√
2(1 + δ1,2)

[|S1, m1〉A |S2, m2〉B

+ |S2, m2〉A |S1, m1〉B], (29)
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FIG. 1. Coherent control of the total integral cross section for the
cold 17O2 + 17O2 collisions at 10 μK from the initial superposition
�E (upper panels) and �NE (lower panels). [(a),(c)] Control land-
scape; [(b),(d)] Control by the relative phase β with η = π/4 fixed.

where m2 � m1, and where the subscript on, for example,
|S1, m1〉A denotes the states of particle A. At ultracold tem-
perature, the main contribution in the total cross section only
involves the s-wave. Including higher partial wave would,
however, be necessary beyond 5 mK, reducing the control, as
shown previously for the state-to-state cross sections [25].

The scattering results (see Appendix D for computational
details) show that the control index is close to 1, i.e., Rc =
0.97 (Im[ f1→1] = 158.96 a.u., Im[ f2→2] = 162.39 a.u., and
Im[ f1→2] = −156.00 a.u.). Figure 1(a) shows the total ICS
as a function of the relative population η and phase β of the
initial superposition (28). The minimum value of the total
ICS is seen to be 68 times smaller than the maximum value
(11 745 and 79 5427 Å2, respectively), confirming the analysis
in terms of the control index. This control can also be ana-
lyzed by decomposing the total cross section into the different
state-to-state cross sections. The large extent of control can
be explained by three points. First, in accord with the Wigner
threshold law [41], only two final channels (|1,−1, 1, 1〉 and
|1, 0, 1, 0〉) substantially contribute to the total cross section.
Second, there is complete control of the state-to-state cross
sections to these two channels, as illustrated in our earlier

paper [25]. Thirdly, the optimizing parameters are similar,
allowing a simultaneous control for both final channel.

B. Rb+Rb scattering

A second system of interest is the ultracold scattering of
85Rb atoms in their lower hyperfine states F = 2 at 50 μK.
This system can be readily realized experimentally in either an
optical dipole trap [42,43] or an optical tweezer [44], allowing
for precise control over internal and external atomic states.

Here we consider s-wave scattering, consistent with
our preliminary studies that showed that contributions
from l = 1 partial waves contribute less that 4% at
50 μK. We first examine results for a scattering
state prepared in an entangled superposition of three
symmetrized states |F1 = 2, MF1 = −2, F2 = 2, MF2 = 2〉,
|F1 = 2, MF1 = −1, F2 = 2, MF2 = 1〉 , and |F1 = 2, MF1 =
0, F2 = 2, MF2 = 0〉:

�E (�r, ξ ) = eikz(cos η sin ε |2,−2, 2, 2〉
+ sin η sin ε eiβ |2,−1, 2, 1〉
+ cos ε eiγ |2, 0, 2, 0〉). (30)

Here, MF denotes the projection of the total angular mo-
mentum �F = �I + �S along the z axis. The states are chosen
recognizing that only the states with the same F value will
interfere. The angles η, ε ∈ [0, π/2] determine the relative
populations, and β, γ ∈ [0, 2π ] the relative phases of the su-
perposition.

In this case, the value of the control index [Eq. (26)] is
0.83, showing the robustness of control. We find that the
minimum value of the total cross section [see Fig. 2(a)] is 11
times smaller than the maximal value (24 669 and 263 065 Å2

respectively).
Here, the control is less effective than for the case of

the scattering of oxygen molecules, but the advantage of the
rubidium case is in experimental implementation. That is, ul-
tracold rubidium atoms are widely available in optical dipole
traps [42,43] or, more recently, in optical tweezer setups [44].
Furthermore, initial steps toward the creation of entangled
superposition similar to Eq. (30) between two 85Rb atoms
have been demonstrated in optical tweezers [44]. However,
in these experiments a magnetic field is applied to lift the
degeneracy, which would prevent the interference-based co-
herent control. In that case only the low-magnetic field regime
would be appropriate for control. In general, however, the
difficulty associated with coherent control from initial entan-
gled states is that it is a two-step process, collisional creation
of the entangled state followed by the subsequent controlled
collision. Despite the experimental challenges associated with
this approach we have examined the entangled case since it is
formally and conceptually instructive.

C. Nonentangled superpositions

The preparation of entangled superpositions [Eqs. (28) and
(30)] does pose an experimental challenge. However, entan-
glement is not a necessary condition for control. Below we
consider control in the scattering of independently prepared
molecules.
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FIG. 2. Coherent control of the total cross section for the ultracold 85Rb + 85Rb collisions in their lower hyperfine states F = 2 at 50 μK
from the initial superpositions (a) �E and (b) �NE . The relative phases β, γ are varied, while the relative populations η = 11π/32, ε = 3π/8
are fixed for achieving the best control.

For the case of O2 + O2 collisions, the two colliding
molecules are prepared in two different superpositions:

|ψA〉 = N
(√

cos η |1,−1〉 +
√

sin η ei β

2 |1, 0〉 )
eikAzA eiαA ,

(31)

|ψB〉 = N
(√

sin η ei β

2 |1, 0〉 +
√

cos η |1, 1〉 )
eikBzB eiαB , (32)

where N = (sin η + cos η)−1/2 is a normalization factor.
kA(kB) and zA (zB) are the momentum and the position of
the particle A (B), respectively. αA and αB are global phases
related to the preparation time of the superposition. Here, for
simplicity, we consider states of A and B with population and
relative phase in both being determined by the same parameter
η and β. Different choices of control parameters in A and B
are also possible.

The initial superposition is then obtained by symmetrizing
the product |ψA〉 |ψB〉 to give in the relative motion frame:

�NE (�r, ξ ) = N2eikzei(αA+αB )[cos η |1,−1, 1, 1〉
+ sin η eiβ |1, 0, 1, 0〉
+

√
cos η sin η ei β

2 (|1,−1, 1, 0〉 + |1, 0, 1, 1〉)].

(33)

Note that the phases αA and αB still act as global phases and
hence do not have any effect on the control.

Preparation at the level of the individual molecules implies
that the superposition contains a range of states with differ-
ent values of Mint. Here, there are two states with Mint = 0,

one state with Mint = 1, and one state with Mint = −1. Since
these supplementary states do not interfere, they are termed
satellite states [23]. The main difference with the entangled
cases is the elastic contributions from the initial satellite
states |1,−1, 1, 0〉 and |1, 0, 1, 1〉. This elastic scattering was
absent for the control of the state-to-state cross section to
|1,−1, 1,+1〉 and |1, 0, 1, 0〉 in our previous study [25] but
must be included in the control of the total cross section.
Fortunately, the elastic cross section is equal 782.7 Å2, almost
two orders of magnitude lower than the other contributions
in the total cross section. For example, with η = π/4 fixed
[see Fig. 1(d)], coherent control of the total cross section by
varying the relative phase is still extensive, with a factor of
41 between the maximal and minimal values. Therefore, even
with a nonentangled superposition, it is possible to substan-
tially control the total cross section for O2 + O2 scattering.

As an example in the Rb + Rb case, the two colliding
atoms are prepared in two different three-state superpositions:

|ψA〉 = N3
(√

sin η sin ε |2,−2〉
+

√
cos η sin ε ei β

2 |2,−1〉
+√

cos ε ei γ

2 |2, 0〉 )
eikAzA eiαA , (34)

|ψB〉 = N3
(√

sin η sin ε |2, 2〉
+

√
cos η sin ε ei β

2 |2, 1〉
+√

cos ε ei γ

2 |2, 0〉 )
eikBzB eiαB , (35)

where N3 = (sin η sin ε + cos η sin ε + cos ε)−1/2.

As in the oxygen case, the initial nonentangled superposition is obtained by symmetrizing the product |ψA〉 |ψB〉:

�NE (�r, ξ ) = N2
3 eikzei(αA+αB )

[
cos η sin ε |2,−2, 2, 2〉 + sin η sin ε eiβ |2,−1, 2, 1〉 + cos ε eiγ |2, 0, 2, 0〉

+
√

sin η cos η sin ε ei β

2 (|2,−2, 2, 1〉 + |2,−1, 2, 2〉) +
√

sin η sin ε cos ε ei γ

2 (|2,−2, 2, 0〉 + |2, 0, 2, 2〉)

+
√

cos η sin ε cos ε ei β+γ

2 (|2,−1, 2, 0〉 + |2, 0, 2, 1〉)
]
. (36)
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In this case, there are four groups of states: One group of
three states with Mint = 0, two groups of two states with
Mint = ±1 and two groups of one state with Mint = ±2. The
total cross section is the sum of the ICS correspondingly to
each group. The two last terms are uncontrollable and give a
large contribution due to the elastic cross section. Moreover,
the groups of initial states with Mint = ±1 have a different
control landscape than the group with Mint = 0, affecting the
control.

Coherent control by varying the relative phases is shown
in Fig. 2(b). Here, the ratio max/min is significantly reduced,
relative to the entangled case, to a factor of two (163 911 and
74 512 Å2 respectively). With the nonentangled superposition,
the quasivanishing of the total cross section is lost. This differ-
ence between the oxygen and rubidium cases arises from the
number of uncontrollable “satellite” terms [23], prevalent in
Eq. (36). Nevertheless, if the cross section can be accurately
measured, the predicted control is sufficiently large to be
experimentally measurable.

VI. CONCLUSIONS

We derived the coherent multichannel optical theorem for
the scattering of initial coherent superpositions, a fundamental
contribution to scattering theory, introducing new interference
contributions. As an example, it was then used to address three
issues. The first was to determine how the coherent multi-
channel optical theorem reflects contributions from an initial
superposition of internal states. As in the standard form of the
optical theorem, the forward scattering plays an essential role.
However, the extended theorem shows that inelastic scattering
between the states involved in the initial superpositions is
crucial in the optical theorem and here in applications to the
coherent control of the total integral cross section.

The second issue concerned optical theorem insights into
the coherent control of the total scattering cross section.
The maximal and the minimal values of the total cross sec-
tions were found to be directly related to the elastic and
inelastic forward scattering amplitudes. If these quantities
fulfill the Schwartz equality, the minimal value vanishes
and complete control is possible. Furthermore, the Schwartz
equality allowed us to define a control index through which
the extent of control can be understood. These statements
were generalized to include the initial superpositions of Nsup

internal states of the collision partners.
Finally, the third issue concerned identifying cold atomic

and molecular collision systems with a large extent coherent
control to motivate experimental demonstrations of coherent
control of scattering. Two interesting cases were examined:
O2 + O2 scattering in their rovibrational ground state, and
the scattering of rubidium atoms 85Rb. To examine exper-
imental requirements on the initial state preparation, we
considered both entangled and nonentangled superpositions,
where the latter could be created by preparation of the in-
dividual molecules. Although the entangled states display
greater control, the nonentangled initial superpositions show
sufficient control to be both significant and experimentally
observable. Ultracold O2 + O2 scattering was found to allow
better control, while ultracold 85Rb + 85Rb collisions could be
easier to probe experimentally, given widespread availability

of ultracold Rb atoms in either optical dipole traps [42,43]
or optical tweezers [44]. These two cases demonstrate that
a large degree of control can be obtained for multichannel
scattering, and motivate the experimental demonstration of the
quantum interference based control of the total cross section in
ultracold atomic and molecular collisions.
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APPENDIX A: CALCULATION OF THE INCOMING FLUX

The incoming current density for the superposition state
takes the form:

�jin(�r) =
[ ∫

dξ
h̄

2iμ

(Nsup∑
i=1

ai |i〉 eikz

)∗

× �∇
(Nsup∑

i′=1

ai′ |i′〉 eikz

)]
+ c.c. (A1)

Using the orthogonality of the channel basis states 〈i|i′〉 = δi,i′

and
∑Nsup

i=1 |ai|2 = 1, one obtains:

�jin(�r) = h̄k

μ
êz, (A2)

where êz is the unit vector along �z.
The integral on the closed surface gives:

Iin = lim
r→∞ r2 h̄k

μ

∫
êz · êrd�, (A3)

Iin = lim
r→∞ r2 h̄k

μ
2π

∫ π

0
sin θ cos θdθ. (A4)

Since
∫ π

0 sin θ cos θdθ = 0, the incoming contribution van-
ishes:

Iin = 0. (A5)

APPENDIX B: CALCULATION OF THE OUTGOING FLUX

The outgoing current density is:

�jout (�r) =
[ ∫

dξ
h̄

2iμ

(∑
j

fsup→ j (θ, φ)
eik j r

r
| j〉

)∗

× �∇
(∑

j′
fsup→ j′ (θ, φ)

eik j′ r

r
| j′〉

)]
+ c.c.

(B1)

Using the orthogonality relation, equation (B1) becomes:

�jout (�r) = h̄

μ

∑
j

k j

r2
| fsup→ j (θ, φ)|2êr + O

(
1

r3

)
. (B2)

Note that the angular components of the gradient operator [in-
cluded in O( 1

r3 )] have been neglected. Indeed, when the limit
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of r to infinity is taken, those angular components become
negligible in comparison to the radial component.

The integrated quantity takes the form:

Iout = h̄

μ

∑
j

k j

∫
| fsup→ j (θ, φ)|2d�. (B3)

Using the definitions of the differential cross section, dσsup

d�
=

k j

k | fsup→ j′ (θ, φ)|2, and of the total ICS, σ tot
sup = ∑

j

∫ dσsup

d�
d�,

Iout becomes

Iout = h̄k

μ
σ tot

sup. (B4)

APPENDIX C: CALCULATION OF THE
INTERFERING FLUX

The interference current density takes the form:

�jint (�r) =
[ ∫

dξ
h̄

2iμ

(Nsup∑
i=1

ai |i〉 eikz

)∗

× �∇
(∑

j

fsup→ j (θ, φ)
eik j r

r
| j〉

)

+ h̄

2iμ

(∑
j

fsup→ j (θ, φ)
eik j r

r
| j〉

)∗

× �∇
(Nsup∑

i=1

ai |i〉 eikz

)]
+ c.c. (C1)

After the applications of the gradient and the orthogonality
relation, the interference current density becomes

�jint (�r) =
[

h̄

2μ

Nsup∑
i

a∗
i fsup→i(θ, φ)eikr(1−cos θ )

×
[

k

r
(1 + cos θ ) + i

r2

]
êr

]
+ c.c. (C2)

As for the outgoing contribution, only the radial component of
the gradient is considered. The integral on the closed surface
is equal to:

Iint =
[

h̄

2μ

Nsup∑
i

a∗
i lim

r→∞

∫ 2π

0
dφ

∫ π

0
dθ sin θ fsup→i(θ, φ)

× eikr(1−cos θ )[rk(1 + cos θ ) + i]

]
+ c.c. (C3)

Due to the uniform convergence of the limit, the order of the
integral on φ and the limit on r can be interchanged. We focus
in the θ integral first. Then, two limits must be calculated:

lim
r→∞ rk

∫ π

0
dθ sin θ fsup→i(θ, φ)eikr(1−cos θ )(1 + cos θ ),

(C4)

lim
r→∞ i

∫ π

0
dθ sin θ fsup→i(θ, φ)eikr(1−cos θ ). (C5)

We consider the second limit (C5) and we make the changes
of variables x = 1 − cos θ and κ = kr. We also, for nota-
tional clarity, suppress the φ dependence of fsup→i(θ, φ) until
Eq. (C14). Equation (C5) then becomes

lim
r→∞

∫ π

0
dθ sin θ f (θ )eikr(1−cos θ )

= lim
κ→∞

∫ 2

0
dx f (x)eiκx. (C6)

By the Riemann-Lebesgue lemma, this limit vanishes:

lim
κ→∞

∫ 2

0
dx f (x)eiκx = 0. (C7)

Now, we focus on the limit (C4) and make the same change of
variables:

lim
r→∞ kr

∫ π

0
dθ sin θ f (θ )eikr(1−cos θ )(1 + cos θ )

= lim
κ→∞ κ

∫ 2

0
dx f (x)eiκx(2 − x). (C8)

After integration by parts, we obtain:

lim
κ→∞ κ

∫ 2

0
dx f (x)eiκx(2 − x)

= 1

i

(
lim

κ→∞[ f (x)(2 − x)eiκx]2
0

− lim
κ→∞

∫ 2

0
( f (x)(2 − x))′eiκxdx

)
. (C9)

Using the Riemann-Lebesgue lemma, the second term evalu-
ates to zero:

lim
κ→∞ κ

∫ 2

0
dx f (x)eiκx (2 − x)

= 1

i

(
lim

κ→∞[ f (x)(2 − x)eiκx]2
0

)
. (C10)

The first term gives:

lim
κ→∞ κ

∫ 2

0
dx f (x)eiκx (2 − x) = −2 f (x = 0)

i
, (C11)

lim
κ→∞ κ

∫ 2

0
dx f (x)eiκx(2 − x) = 2i f (x = 0). (C12)

x = 0 corresponds to θ = 0. Therefore, one obtains

lim
r→∞ kr

∫ π

0
dθ sin θ f (θ )eikr(1−cos θ )(1 + cos θ )

= 2i f (θ = 0). (C13)

Then, Iint becomes, where we restore the φ dependence in f
and consider the φ integral:

Iint = ih̄

μ

Nsup∑
i

a∗
i

∫ 2π

0
dφ fsup→i(θ = 0, φ) + c.c. (C14)

The forward scattering amplitudes from the superposition
fsup→i(θ = 0, φ) is then expanded in state-to-state scattering
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amplitudes [see Eq. (3)]:

Iint = ih̄

μ

Nsup∑
i,i′=1

a∗
i ai′

∫ 2π

0
dφ fi′→i(θ = 0, φ) + c.c. (C15)

The forward scattering amplitude does not depend on φ, so
that the integral on φ simply gives:

Iint = 2π ih̄

μ

Nsup∑
i,i′=1

a∗
i ai′ fi′→i(θ = 0) + c.c, (C16)

Iint = −4π h̄

μ

Nsup∑
i,i′=1

Im[a∗
i ai′ fi′→i(θ = 0)]. (C17)

APPENDIX D: DETAILS OF THE NUMERICAL
CALCULATIONS

1. O2 + O2 scattering

We perform quantum scattering calculations on O2 + O2

collisions using a coupled-channel (CC) methodology [45]
based on the expansion of the scattering wavefunction in an
uncoupled symmetrized space-fixed basis set composed of di-
rect products of molecular rotational and spin basis functions
and the orbital angular momentum eigenstates. Most of the
computational details are essentially the same as reported in
the previous paper of one of the authors [45]. The CC basis

set was composed of three rotational states (N = 0−4) and 6
partial waves (� = 0−10) at 10 μK. The hyperfine structure
of 17O2 was neglected to make the calculations computa-
tionally feasible. The CC equations were integrated on the
radial grid from Rmin = 4.0 a0 to Rmax = 150 a0 with a grid
step of 0.04 a0. The T-matrix elements are obtained from this
CC results and are used to calculate the forward scattering
amplitudes:

fi→ j (θ = 0)

= 1

2k

∑
�

∑
�′

i�−�′+1
√

(2� + 1)(2�′ + 1)Ti�0→ j�′0. (D1)

Finally, the total cross section is calculated using the coherent
multichannel optical theorem (Eq. 12).

2. Rb+Rb scattering

Quantum scattering calculations of ultracold 85Rb + 87Rb
collisions were performed following the same methodology
as in the previous studies [41,46,47]. The CC equations were
integrated on the radial grid from Rmin = 2.0 a0 to Rmax =
300 a0 with a grid step of 0.005 a0. The calculation of the
forward scattering amplitude and of the total cross section is
the same as that for O2-O2 scattering.
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