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Bound and resonance states near the critical charge region in two-electron atoms
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The critical nuclear charge Zc of the two-electron atoms below which the ground state transforms into a shape
resonance and the critical stability of the system around Zc have been well established. However, the behavior
of the shape resonance below Zc is still a mystery. By employing the complex-scaling method using Hylleraas
configuration-interaction basis functions, we trace the trajectory of the shape resonance from Zc down to a very
small nuclear charge. It is shown that at specific values of Z far below Zc the resonance crosses over higher-lying
one-electron thresholds, and when Z is decreased below 0.316, the shape resonance lies above the three-body
breakup threshold. We finally show that the imaginary part of the resonance energy at small nuclear charges can
be modeled by the dispersion relation with a high-order Padé approximant correction.
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I. INTRODUCTION

The critical stability and asymptotic behavior of atomic
systems with varying nuclear charge have long been of great
interest due to their important roles in our understanding
of quantum phase transitions and symmetry breaking of
electronic configurations [1–3]. Research of particular in-
terest is focused on, for example, the application of 1/Z
perturbation-expansion theory in atomic isoelectronic se-
quences [4–7], the interpretation of static correlation energy
and the symmetry-adapted (symmetry-broken) property in the
restricted (unrestricted) Hartree-Fock solutions [8–11], and
the critical nuclear charge Zc of a general N-electron sys-
tem, at which all bound states cease to exist [12–17]. The
two-electron atom which explicitly includes interelectronic
correlation and possesses critical stability around the corre-
sponding critical nuclear charge provides us an ideal prototype
for research on more complex atoms.

A systematic investigation of the electronic correlation ef-
fect in calculating the binding limit for two-electron atoms is
available in Stillinger and Weber’s classic 1974 paper [18].
Since then, the determination of the exact value of Zc has
become a subject of wide interest. The milestone of predicting
Zc with high accuracy and analyzing its analytic property
as an essential singularity was performed by Baker et al.
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[5] based on an extensive variational perturbation calculation
of the coefficients in the 1/Z expansion of system energy.
Their estimated value of Zc = 0.91103 was later improved to
0.91102826 by Ivanov [19] using a different fitting procedure
and confirmed alternatively to be 0.911029 by Neirotti et al.
[20] employing the finite-size scaling method. Two subse-
quent works made significantly different predictions about
both the value of Zc and its nature of singularity. They are
the convergence study of the 1/Z expansion by Zamastil
et al. [6] and the direct variational calculation of Guevara
and Turbiner [14], who gave estimates of Zc = 0.90223 and
0.910850, respectively. They both claimed that the singularity
at Zc is a branch point with exponent 3/2. This discrepancy
was unambiguously resolved by the triple-set Hylleraas-basis
calculation of Estienne et al. [21], whose prediction of Zc =
0.91102822407725573 still serves as the benchmark value.
Subsequently, this result was reproduced for the leading 11
decimal digits by Olivares-Pilón and Turbiner [22] with the
help of the Lagrange-mesh method and for 12 digits by Karr
[23] based on explicitly correlated Sturmian wave functions.
It is worth noting that an investigation of the critical nuclear
charge for the 2p2 3Pe metastable bound state of two-electron
atoms is also available in the literature [24,25].

Besides the numerical value of Zc, the critical behavior
of two-electron atoms around Zc has attracted considerable
interest in recent years. Ivanov [26] proposed that the ground-
state energy of the two-electron atoms has a second-order
pole at Z0 = 0 and a third singular point at about Z2 ≈ 0.106.
Based on the analytic properties, he successfully established a
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dispersion relation which is remarkably useful in deriving an
explicit form of the functional behavior of the imaginary part
of the resonance energy in the close vicinity of Zc [27,28].
In obtaining the benchmark value of Zc, Estienne et al. [21]
found that, before the ground state transforms into a shape
resonance, the system wave function at the critical point is
still square integrable and remains localized at a finite distance
from the nucleus. Such a conjecture was confirmed by King
et al. [29] in their calculations of the inner- and outer-electron
radial density distribution functions. At the critical nuclear
charge, the inner electron experiences a negative screening
effect due to the perturbation of the outer electron, and even-
tually, its distribution closely resembles that of a hydrogenic
atom, while the outer electron becomes very diffuse with a
large mean radius. An investigation of electron radial distri-
butions, correlation energies, Coulomb holes, and the finite
nuclear mass effect in either the fully correlated or Hartree-
Fock framework is also available from their group [30–32]. It
is worth mentioning that the Shannon entropy, which is a clas-
sical information-theoretic quantity to measure the extent and
concentration of the electron density distribution, has been
employed as a powerful tool in analyzing the critical behavior
of two-electron atoms. By calculating the one-electron density
distribution from the two-electron wave function expressed in
the Hylleraas basis set, Shi and Kais [33] predicted a steplike
sharp increase of the Shannon entropy as the nuclear charge
goes across Zc, while Lin and Ho [34], using a similar but
larger basis set, estimated a smooth and moderate increase
of the Shannon entropy at Zc. The smooth change in radial
entropy manifests the fact that exactly at or in the vicinity
of Zc, the system wave function exhibits a localized behavior
near the nucleus which is consistent with the predictions of
Estienne et al. [21] and King et al. [29]. Recent interest in this
system has been focused on the combined effect of varying
the nuclear attraction and electronic screened Coulomb inter-
action as well as the possible existence of Borromean bound
states due to their potential applications in plasma physics
[35–41].

When Z < Zc, where the system supports only quasi-
bound shape-type resonances, the asymptotic behavior of the
two-electron atoms is far from understood. A hypothetical
trajectory of the resonance state in the complex-energy plane
was proposed by Reinhardt [42] in 1977 in searching for
the isolated bound state in the continuum. However, no solid
conclusion can be drawn due to the lack of numerical calcu-
lations. Probably, the first explicit calculation of the complex
resonance energies of two-electron atoms was performed by
Dubau and Ivanov [28] for 1.11 � 1/Z � 1.14 by using the
complex-scaling method. It was shown that the resonance
width follows very well the dispersion relation obtained by the
authors based on the 1/Z expansion theory. In the subsequent
work of Sergeev and Kais [43], the authors reproduced the
numerical results of Dubau and Ivanov [28] by employing
the complex stabilization method and proposed a one-particle
Hellmann potential to qualitatively model the formation of
resonances. However, such a simplified model works only in
a range close to the critical nuclear charge. The most accurate
prediction of the resonance energies is available from the
recent complex-scaling calculation of Karr [23] for 0.905 �
Z � 0.9103. Based on the accurate numerical results, Karr

[23] validated the dispersion relation for the resonance width
with a high degree of confidence. To the best of our knowl-
edge, there are no other explicit calculations of the resonance
states available in the literature for nuclear charge lying be-
low the critical value, although in some interesting works
[34,40,44] the variational methods were extended to a lower
region where well-defined resonances are expected to survive.
Nevertheless, the complete trajectory of the resonance states
in the complex-energy plane is still a mystery.

In this work, we undertake a systematic investigation of
the shape resonances in two-electron atoms to figure out the
undiscovered critical behavior of resonances when the nuclear
charge lies far below the critical value. The present paper is
organized as follows. Section II presents a brief introduction
of the basis functions used in the expansion of system wave
functions and the variational (complex-scaling) method in the
calculation of bound (resonance) states. Section III analyzes
the variation of bound and resonance states, respectively, for
nuclear charge above and below the critical value. For the for-
mer we focus on the bound property of the two-electron atoms
in the vicinity of Zc, while for the latter we discuss in detail the
trajectory of the resonance pole in the complex-energy plane,
the anomalous behavior of the resonance position, and the
dispersion relation for the resonance width. Section IV gives
the conclusion of this work. Atomic units are used throughout
this paper unless otherwise specified.

II. THEORETICAL METHOD

The nonrelativistic Hamiltonian of the two-electron atom
with infinitely heavy nuclear mass is given by

H = −1

2
∇2

1 − 1

2
∇2

2 − Z

r1
− Z

r2
+ 1

r12
, (1)

where Z is the nuclear charge and can be any positive
fractional value in the present investigation. The explicitly
correlated Hylleraas configuration-interaction (HyCI) basis
functions are employed to expand the system wave function.
They are constructed in a manner similar to the Slater-type
orbital configuration-interaction (STOCI) basis sets, which
are expressed in terms of the product of one-electron STOs but
include further the power series of interelectronic coordinate
r12

�(�r1, �r2) = (
1 − P̂12

) kmax∑
k=0

lmax∑
la,b=0

∑
i, j

Cai,b j r
k
12φai (r1)φb j (r2)

×Y LM
la,lb (r̂1, r̂2)SS,MS (σ1, σ2), (2)

where φ(r) is the radial part of a one-electron STO,

φai (r) = rnai −1e−ξai r, (3)

in which ξ is the nonlinear parameter to be optimized for
each configuration state and the notation i denotes different
STOs with the same angular momentum l . Y LM

la,lb
(r̂1, r̂2) and

SS,MS (σ1, σ2) are the two-electron coupled orbital angular mo-
mentum and total spin wave functions, respectively. Cai,b j is
the expansion coefficient. The inclusion of positive powers
of the interelectronic coordinate plays a vital role in the sys-
tem wave functions fulfilling the Kato cusp condition at the
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two-electron coalescence. The use of kmax = 0 just reduces
the HyCI basis functions to the conventional STOCI ones
developed in our previous works [45,46]. The simplest and
most efficient way of constructing the HyCI basis set is to
set kmax = 1, provided that the largest angular momentum
lmax of coupled STOs is large enough [47]. The multipole
expansion of r12 in terms of Legendre polynomials, r< and r>

[where r< = min(r1, r2) and r> = max(r1, r2)], accounts at
least in part for the coupling of higher-lying angular momenta
[48]. The computation of the Hamiltonian and overlap matrix
elements is similar to that for the Hylleraas basis set due to
the explicit appearance of r12. The computational methods
developed by Drake [49,50] and Yan and Drake [51] can be
applied very well to the present two-electron systems.

The advantages and disadvantages of the HyCI basis set
compared to the original Hylleraas or STOCI basis sets have
been extensively discussed in the literature, and interested
readers are referred to the detailed discussion in Ref. [47]. In
the present work, the Rayleigh-Ritz variational and complex-
scaling [52] methods are employed, respectively, to estimate
the eigenenergies of bound and quasibound resonance states
for different nuclear charges. In the framework of complex
scaling, or, more specifically, the complex-coordinate rotation
[53], all radial coordinates in the Hamiltonian are rotated by
an angle θ , i.e.,

r j → r je
iθ , j = 1, 2, 12. (4)

The resulting Hamiltonian matrix H (θ ) is therefore complex
symmetric but not Hermitian. After resolving the energy spec-
tra of the rotated Hamiltonian, the resonance pole is exposed
by the rotated continuum cuts with a complex energy given by

Eres = Er + iEi ≡ Er − i
Γ

2
, (5)

where Er is the resonance position and Γ is the total width,
provided that θ is larger than arg(Eres)/2.

The two-electron HyCI functions used in the present vari-
ational and complex-scaling calculations are constructed in
the same way but optimized differently. We first use two
groups of STOs to form a near-complete one-electron basis,
with each group sharing the same parameter ξ . Suppose the
maximum principal quantum numbers of STOs in the first and
second groups are n1 and n2, respectively; then all possible
orbitals with angular momenta l1 (<n1) and l2 (<n2) in the
first and second groups are coupled together to build the
two-electron configuration state function. Finally, the entire
CI basis set is doubled by setting kmax = 1, where the second
set is additionally multiplied by r12. Such a HyCI basis set is
labeled by (n1, n2)kmax. By systematically increasing n1 and
n2 the convergence of calculations can be estimated, although
the nearly linear dependence in the basis set will become
more serious. Like other explicitly correlated basis functions,
HyCI suffers more from the linear dependence problem due to
some double counting of radial and angular couplings in the
wave functions, or, from the viewpoint of the wave function,
overlapping in the configurational spaces. In our previous
work [54,55], Löwdin’s canonical orthogonalization method
[56] was shown to be a powerful method in reconstructing
the nonorthogonal basis functions into orthogonal ones and
simultaneously removing the redundant part of the basis set in

an optimal way. This method is employed here to refine the
HyCI basis set.

In the Rayleigh-Ritz variational calculation of the ground
state, only two parameters, ξ1 and ξ2, are need to be opti-
mized independently. The Bound Optimization BY Quadratic
Approximation (BOBYQA) algorithm [57] for bound con-
strained optimization without derivatives is found to be very
efficient. Since all numerical calculations are performed in
real space and only the lowest eigenvalue of the Hamiltonian
is required, we use an efficient inverse-iteration method [58]
to solve the generalized symmetric eigenvalue problem. In the
complex-scaling calculation, however, the situation becomes
more complicated because one has to locate the most stabi-
lized energy in the complex-energy plane by varying both the
basis set and rotational angle. In doing so, we tentatively set
ξ1 = α and ξ2 = α/n1 to evenly distribute the two groups of
STOs. For each resonance state, the optimized values of the
scaling parameter αopt and rotational angle θopt are determined
formally by [53]∣∣∣∣∂Eres

∂θ

∣∣∣∣
α=αopt

= min,

∣∣∣∣∂Eres

∂α

∣∣∣∣
θ=θopt

= min. (6)

However, as we will show in the following, the above con-
ditions are not easily satisfied in practical calculations due to
the incompleteness of the truncated HyCI basis set employed
here, and for this reason, careful attention is needed in locating
the resonance pole.

III. RESULTS AND DISCUSSION

A. Bound states

To test the flexibility and accuracy of the HyCI basis set,
we first calculate the ground-state energies of two-electron
atoms with nuclear charge in the range Zc � Z � 1, where the
system is still bound and the Rayleigh-Ritz variational method
can be applied. Because we solve the eigenvalue problem
by using an inverse-iteration algorithm, all basis functions
in the HyCI basis set must be retained in each iteration. All
numerical calculations are performed in quadruple-precision
arithmetic (≈34 digits after the decimal point). The largest
basis set which is stable for all Z’s investigated here is (9,10)1,
and it produces a total of 1320 terms in the expansion of
system wave functions in the 1Se symmetry. The calculated
results and a detailed comparison with other state-of-the-art
theoretical predictions are included in Table I at selected val-
ues of Z .

For Z = 1, i.e., the H− anion, our result differs from the
benchmark value existing in the literature [50,59–61] by 9.7 ×
10−14 a.u. Keeping in mind that the HyCI basis set employed
here has only two independent variational parameters and the
number of terms is restricted to 1320, the flexibility of the
constructed basis set in representing this loosely bound system
is noticeable. The fast convergence of the present calculations
can be estimated by comparing the (9,10)1 result with those of
the smaller basis sets (8,9)1, (8,10)1, and (9,9)1, whose total
numbers of terms are 960, 1032, and 1230, respectively.

With continuously decreasing Z , the interelectronic cor-
relation effect makes a larger contribution to the system
Hamiltonian, and the accuracy of the present calculation
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TABLE I. The ground-state energies of the two-electron atoms
for selected values of Z above the critical nuclear charge Zc calcu-
lated by using the Ritz variational method based on HyCI basis set
(9,10)1. Ie represents the ionization energy.

Z E Ie

1.0 (8, 9)1 −0.52775101654188
1.0 (8,10)1 −0.52775101654271
1.0 (9, 9)1 −0.52775101654339
1.0 (9,10)1 −0.52775101654428 2.77510(-2)

−0.527751016544377a

−0.52775101654438b

−0.52775101654c

−0.5277510151d

−0.527751013e

0.98 −0.5008471800378 2.06472(-2)
−0.50084718003c

−0.5008471781d

0.95 −0.4621246996833 1.08747(-2)
−0.4621246996838b

−0.46212469967c

−0.4621246954d

−0.462124697e

0.92 −0.425485281672 2.28528(-3)
−0.425485281676b

−0.4254852816c

−0.4254852567d

−0.42548527e

0.912 −0.416111395518 2.39396(-4)
0.9111 −0.415069209902 1.76049(-5)
0.91103 −0.414988265855 4.35405(-7)
0.911029 −0.414987109633 1.90213(-7)
0.9110283 −0.414986300280 1.8580(-8)
0.91102823 −0.414986219345 1.417(-9)
0.911028225 −0.414986213564 1.91(-10)
0.9110282245 −0.414986212986 6.8(-11)
0.9110282244 −0.414986212870 4.4(-11)
0.9110282243 −0.414986212755 1.9(-11)

−0.4149862128c

0.9110282242 −0.414986212639 −5(-12)
−0.4149862126c

Zc −0.41498621251
−0.414986212532679f

−0.41498621253b

0.911028223 −0.41498621125
0.91102822 −0.41498620778
0.9110282 −0.41498618466
0.911028 −0.41498595342
0.91102 −0.41497670379
0.9110 −0.41495358070
0.9103 −0.41414514955

−0.41414514963839g Ei=-3.9(-14)
0.910 −0.41379921115

−0.41379921124956g Ei=-3.97(-12)
−0.4137989542d

−0.413799e

aDrake [50], Frolov [59], Nakashima and Nakatsuji [60], and
Aznabaev et al. [61].
bOlivares-Pilón and Turbiner [22].
cKar et al. [38].
dLin and Ho [34].
eSadhukhan et al. [40].
fEstienne et al. [21].
gKarr [23].

is slightly reduced. At the critical value Zc, our result is
larger than the most accurate calculation of Estienne et al.
[21] by 2.3 × 10−11 a.u. Actually, the critical nuclear charge
where the ionization energy of the outer electron becomes
zero predicted under the present HyCI basis set is about
0.9110282242, which is accurate to nine digits. For the two-
electron systems between Z = 1 and Zc, Olivares-Pilón and
Turbiner [22] reported a very accurate estimate of the ground-
state energy by employing the Lagrange-mesh method. The
exponentially correlated basis calculations of Kar et al. [38]
are generally on the same level of accuracy as ours. The
predictions of Lin and Ho [34] and Sadhukhan et al. [40]
based on Hylleraas wave functions are less accurate in the last
few digits.

It has been shown by many authors that exactly at Zc,
the two-electron system is still bound and the inner electron
[whose density distribution can be obtained by calculating
ρ(r<)] can be considered as in the hydrogenic 1s orbital and
the outer electron [which is characterized by ρ(r>)] remains
localized near the nucleus. Then for Z < Zc, the bound state
changes smoothly into a shape resonance lying above the
Z (1s) threshold. However, when Z is very close to Zc from
below, the resonance width is so small that the system can still
be treated as in a bound state due to its extremely long life-
time. At Z = 0.9103, for example, the calculation of Karr [23]
based on Sturmian wave functions in perimetric coordinates
successfully predicted the resonance energy with an imagi-
nary part of −3.9 × 10−14 a.u. When Z increases from 0.9103
to Zc, the magnitude of imaginary resonance energy decreases
exponentially to zero, and extraction of its quantity from a
limited-accuracy numerical calculation is a formidable task.
Also shown in Table I are the present variational calculations
of the lowest eigenenergy for Z < Zc. Our calculation based
on the HyCI basis set is generally accurate within 10 digits,
and this is why the imaginary part of the resonance energy
for 0.910 < Z < Zc cannot be detected in the present work
[Ei(0.910) = −3.97 × 10−12 a.u.]. Even so, our prediction of
the bound-state energy agrees fairly well with the real part
of the resonance energy in the complex-scaling calculation by
Karr [23]. The variational calculations by Lin and Ho [34] and
Sadhukhan et al. [40] for Z < Zc are supposed to be feasible
for the same reason. Their results are generally accurate to
six digits at Z = 0.910, so the small imaginary part is totally
covered up by the numerical uncertainties. In the latter work,
the authors extended the variational calculations for Z as small
as 0.80, and in such a situation the convergence is further
suppressed due to the non-negligible resonance width.

B. Resonance states

For Z � 0.910, the complex-scaling method is applied to
extract the resonance energy. The HyCI basis sets (10,11)1
and (11,11)1 are employed in the present calculations, and
they are coupled to a total number of 1760 and 2156 terms,
respectively, in the expansion of system wave functions. For
such large basis sets, Löwdin’s canonical orthogonalization
method [56] is employed to overcome the serious linearly
dependent problem. The truncation threshold is set to be
ε = 10−20 (interested readers are referred to Ref. [54] for
the exact meaning of the truncation threshold), and the basis
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sets will generally be reduced by 8%–15% according to the
scaling parameters used. The complex-scaling calculations
are performed for a large number of scaling parameters (α =
0.6–1.4) with different rotational angles (θ = 0.3–0.9). Their
optimized values are determined by Eq. (6), where the most
stabilized resonance pole can be located.

Our numerical results are included in Tables II and III
at some selected values of nuclear charge. The variations of
the real and imaginary parts of the resonance energy with
respect to Z are depicted in Figs. 1(a) and 1(b), respectively.
To the best of our knowledge, the smallest nuclear charge
whose resonance energy has been predicted in the literature
is Z = 0.80. A detailed comparison with all previous works
is summarized in Table II. The most accurate prediction of
the resonance energy comes from the complex-scaling cal-
culations of Karr [23] based on Sturmian wave functions in
perimetric coordinates. Such a basis set does not suffer from
the linear dependence problem due to the orthogonality of the
Sturmian wave functions, and therefore, extremely large basis
sets (several hundreds of thousands of terms) can be used.
Resonance energies with 14 converged digits were reported
by the author for 0.905 � Z � 0.9103. Our calculations show
full agreement with these results for the leading 10 digits after
the decimal point in the real part and 9 digits in the imag-
inary part. Another complex-scaling calculation comes from
Dubau and Ivanov [28] for 1/1.14 � Z � 1/1.11, and their
results were verified by Sergeev and Kais [43], who employed
the complex stabilization method. From the comparison at
Z = 1/1.11, our result clearly shows better agreement with
the benchmark prediction of Karr [23]. Three variational cal-
culations have also been performed for Z < Zc. The physical
reason for the application of variational methods in this region
was discussed above. The drawbacks of these methods are
obvious, e.g., the lack of prediction of the resonance width
and the continuous loss of accuracy as the nuclear charge is
further decreased. For Z < 0.80, no comparison can be made,
and we tabulate only our results in Table III. The convergence
of our calculations is also slower at smaller values of Z due to
the increasingly large contribution of the electron correlation.
At Z = 0.26, the resonance energy can be determined to only
four digits even with the (11,11)1 basis set.

For illustrative purposes, we show in Fig. 2 the trajectories
of the resonance energy of the system at Z = 0.80, 0.381, and
0.316 in the complex-energy plane with respect to changing
the basis-set parameter α and rotational angle θ . Those in
Figs. 2(a) and 2(b) are, respectively, the complex resonance
energies at Z = 0.80 for fixed values of θ (with varying α) and
fixed values of α (with varying θ ). Figures 2(c) and 2(d) are
the same as Fig. 2(a), but for Z = 0.381 and 0.316. Due to the
truncated and thus incomplete nature of the HyCI basis sets
used in the present work, the stabilization conditions shown
in Eq. (6) cannot be completely fulfilled. We can observe only
a stabilized behavior of the rotated eigenenergies around the
resonance pole. All resonance energies reported in Tables II
and III are determined by locating the central point, and as a
result, the last digits may have rounding-off errors.

The systematic variations of the real and imaginary parts
of the resonance energy predicted in this work are shown
in Figs. 1(a) and 1(b), respectively. For a better view of
the contribution of the electron correlation effect at different

TABLE II. The complex resonance energies of the two-electron
atoms for selected values of Z below the critical nuclear charge Zc

calculated by using the complex-scaling method based on HyCI basis
set (10,11)1.

Z Er Ei

0.910 −0.4137992113 ≈0
−0.41379921124956a −3.97(-12)a

−0.4137989542b

−0.4137992c

−0.413799d

0.9098 −0.4135687676 −6(-11)
−0.41356876751044a −3.187(-11)a

0.9095 −0.4132233803 −5(-10)
0.909 −0.4126484991 −4.7(-9)

−0.41264849904865a −4.46020(-9)a

−0.4126485c

0.9085 −0.4120746158 −2.69(-8)
−0.41207461578607a −2.668457(-8)a

0.908 −0.4115017822 −9.93(-8)
−0.41150178223000a −9.9252439(-8)a

−0.411502c

0.907 −0.4103594335 −6.158(-7)
−0.41035943353204a −6.1554527(-7)a

0.906 −0.4092216332 −2.0952(-6)
−0.40922163330544a −2.09507497(-6)a

0.905 −0.4080883006 −5.0977(-6)
−0.40808830062175a −5.09763393(-6)a

−0.4081c

1/1.11 −0.4034828442 −4.05593(-5)
−0.40348284422335a −4.05591446(-5)a

−0.403483e −4.1(-5)e

−0.40351f −4.9(-5)f

0.90 −0.4024778066 −5.39585(-5)
−0.4025301585b

−0.402971d

1/1.12 −0.3945735586 −2.281473(-4)
−0.394574e −2.28(-4)e

−0.39456f −2.23(-4)f

0.89 −0.3914371485 −3.275253(-4)
−0.3928805004b

−0.393854d

1/1.13 −0.3859281753 −5.369073(-4)
−0.385928e −5.37(-4)e

−0.38592f −5.48(-4)f

0.88 −0.3805476120 −7.784237(-4)
−0.3837953968b

−0.384855d

1/1.14 −0.3775130734 −9.286718(-4)
−0.377513e −9.29(-4)e

−0.37750f −9.31(-4)f

0.87 −0.369778680 −1.351105(-3)
−0.375957d

0.85 −0.348582232 −2.733932(-3)
−0.358467d

0.80 −0.297672438 −6.840979(-3)
−0.316508d

aKarr [23] complex-scaling method with perimetric coordinates.
bLin and Ho [34] variational method with the Hylleraas basis.
cTurbiner and Lopez Vieyra [44] Lagrange-mesh method.
dSadhukhan et al. [40] variational method with the Hylleraas basis.
eSergeev and Kais [43] complex stabilization method.
fDubau and Ivanov [28] complex scaling with the Laguerre-CI basis.
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TABLE III. Same as Table II, but for selected values of Z below 0.80. Calculations for Z above and below 0.32 are performed on HyCI
basis sets (10,11)1 and (11,11)1, respectively.

Z Er Ei Z Er Ei Z Er Ei

0.80 −0.297672438 −0.006840979 0.42 −0.0320208 −0.0239524 0.32 −0.000874 −0.019405
0.75 −0.250025756 −0.011121537 0.41 −0.0281817 −0.0237016 0.317 −0.00019 −0.01920
0.70 −0.20594040 −0.01511703 0.40 −0.0245051 −0.0234055 0.316 0.00005 −0.01913
0.65 −0.16563025 −0.01858290 0.39 −0.0209909 −0.0230640 0.315 0.00027 −0.01906
0.60 −0.12924737 −0.02136003 0.381 −0.017966 −0.022718 0.31 0.00136 −0.01870
0.55 −0.09689721 −0.02332803 0.38 −0.017638 −0.022677 0.30 0.00345 −0.01796
0.50 −0.0686457 −0.0243845 0.37 −0.014446 −0.022245 0.29 0.00540 −0.01718
0.48 −0.0585003 −0.0245309 0.36 −0.011413 −0.021765 0.28 0.00715 −0.01635
0.47 −0.0536754 −0.0245421 0.35 −0.008541 −0.021241 0.27 0.0088 −0.0155
0.45 −0.0445203 −0.0244371 0.34 −0.005827 −0.020673 0.26 0.0103 −0.0146

nuclear charges, we draw in the inset of Fig. 1(a) the Z-scaled
resonance positions Er (Z )/Z2 and hydrogenic thresholds
−1/(2n2), where n is the principal quantum number. It is

FIG. 1. The bound and resonance energies of the two-electron
atoms as a function of nuclear charge Z . (a) Real part of the energies
and (b) imaginary part of the energies. In each plot, the inset shows
the variation of Z-scaled energies E/Z2 as a function of Z . Z (n)
in (a) represents the threshold energy of a one-electron atom with
principal quantum number n.

clearly seen that the resonance position increases rapidly and
monotonically as the nuclear charge is decreased, while the
imaginary part of the resonance energy first decreases, shows
a minimum at about Z = 0.472, and then increases towards
zero. An unexpected feature observed here is that at about Z =
0.381 the shape resonance will surpass the Z (n = 2) threshold
and, furthermore, at about Z = 0.316 it even lies above the
zero energy, which is the three-body breakup threshold. We
would like to discuss these phenomena from the following two
aspects.

(i) The crossing of the shape resonance associated with a
lower-lying threshold over higher-lying thresholds was ob-
served in our previous investigation of the supermultiplet
structures of intrashell resonances in H− [45]. In such a
negative-ion system, the 4 f 2 1Se shape resonance (which
is also labeled by 4[−3, 0]4 in the more physical N [K, T ]n

representation [62]) lies above the H(n = 5) threshold (see
Fig. 2(c) in Ref. [45] and the corresponding discussion for
more details), and the 5g2 1Se shape resonance (labeled by
5[−4, 0]5) even lies above the H(n = 7) threshold [63]. For
such extremely high-lying shape resonances, the electron cor-
relation effect plays a dominant role over the nucleus-electron
attraction interaction, which is similar to the present situation.
Decreasing the nuclear charge Z in the two-electron atoms
results in a loose capture of the outer electron and manifests
an effect similar to increasing the excitation (decreasing the K
quantum number) of intrashell resonances in the N = n series.
A consequence is that one would not observe these higher-
threshold-lying resonances or even the above-threshold shape
resonances in the neutral He atom and any positive He-like
ions where the nucleus-electron attraction dominates, result-
ing in all the above-threshold shape-type resonances being
pushed down to lie below thresholds and to become Fes-
hbach resonances. Therefore, it is not surprising that the
1s2 1Se shape resonance (which can alternatively be labeled
by 1[0, 0]1) would lie above the Z (n = 2) and even higher
thresholds at very small values of Z , taking into account the
increasingly important interelectronic interaction.

(ii) The existence of positive-energy shape resonances in
the two-electron systems for Z < 0.316 is counterintuitive.
To understand such anomalous behavior we seek help from
the simplified model proposed by Estienne et al. [21]. When
the outer electron is located far away from the residual ion,
it experiences the combination of a long-range fully screened
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FIG. 2. The complex rotated eigenenergies of the system Hamiltonian at different values of rotational angle θ and scaling parameter α.
Solid lines in (a), (c), and (d) are drawn at fixed values of θ with varying α, while in (b) they are at fixed values of α with varying θ . The
resonance energy is expected to be located at the center of the rotated spectra. (a) Z = 0.80 with θ = 0.72–0.82 and α = 1.02–1.30 both
at intervals of 0.02, (b) Z = 0.80 with α = 1.02–1.24 and θ = 0.70 − 0.84 both at intervals of 0.02, (c) Z = 0.381 with θ = 0.58–0.68 and
α = 0.70–0.98, and (d) Z = 0.316 with θ = 0.44–0.54 and α = 0.68–0.94. The dashed line in (d) demonstrates the E = 0 three-body breakup
threshold above which a well-isolated resonance is clearly observed.

Coulomb repulsion of the form −(Z − 1)/r and a short-range
attractive polarization potential which in the dipole approxi-
mation reads −9/(4Z4r4). The resulting model potential is

V (r) = −Z − 1

r
− 9

4Z4r4
. (7)

It has both a potential well and a barrier which can capture
the electron to form a resonance state with a finite lifetime
before it escapes via tunneling. (However, this potential can-
not be directly used in the numerical calculation of resonance
energies because of the divergent 1/r4 term near the origin.
A more physical model potential should not be more singular
than −Z/r2 at the origin.) The height of the potential barrier
can be obtained by substituting

rtop =
(

9

(1 − Z )Z4

)1/3

, (8)

which is obtained from dV (r)/dr = 0, into Eq. (7). In Fig. 3
we show a comparison of the resonance position, the Z (n = 1)

threshold energy, and the height of the model potential bar-
rier. The variation of the resonance position shows qualitative
agreement with the increase of the potential height, which
demonstrates very well the physical nature of the origin of
the shape resonance. At intermediate and large values of Z
the resonance energy is found to be located above the thresh-
old but below the height of the potential barrier. However,
for Z < 0.482 the resonance position slightly surpasses the
potential barrier, and for Z < 0.316 it lies above the zero
energy. Such a phenomenon is probably related to the large
width of the shape resonance. Based on the complex-scaling
theory and the definition of Berggren [64], the real part of the
complex expectation value of the Hamiltonian is treated as
the resonance position, while its imaginary part contributes
to the uncertainty of such an expectation value, which is
due to the coupling of the resonance state to the continuum
[65,66]. Therefore, a large resonance width would lead to a
non-negligibly large variance of the distribution of the res-
onance position. A full understanding of this phenomenon
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FIG. 3. Comparison among the resonance position, the autoion-
ization threshold, and the top of the model potential barrier. Er is
the real part of the complex resonance energy, EZ (n=1) is the ground-
state energy of the one-electron atom, and Vtop represents the absolute
height of the potential barrier including the threshold energy. The
inset shows the corresponding Z-scaled energies as a function of Z .

still needs further rigorous theoretical consideration. From
the scattering point of view, the existence of positive-energy
shape resonances in the two-electron atoms is responsible for
the modulation of ionization cross sections in the electron-
(Z, e) atom scatterings. However, due to the near-threshold
phenomena, a shape resonance with a large width would give
a very broad and weak structure in the background cross sec-
tions [67], which makes it hard to detect from direct scattering
calculations.

The unusual phenomenon of resonances lying above the
ionization threshold can be reasonably related to the shape
resonances in the realistic system of H2−, which have attracted
considerable interest for both theoretical and experimental
aspects [53,68–73]. By using different theoretical methods,
several authors [71,72] have shown that at least one 4S shape
resonance lying above the H(n = 2) threshold exists. From a
similar scattering analysis of the H2− system and a compari-
son to the present two-electron atom with fractional nuclear
charge, it is obvious that this resonance lies close to, but
energetically above, the ionization threshold (breaking up into
[H(2p), e, e] pieces) in the electron-H−(2p2) 3Pe scatterings.
A similar question raised in Refs. [68,72] is “Can we expect
with certainty that this broad state close to the threshold is
observable and how—and to what extent will the calculated
property be related to the expected energy-dependent features
of the resonance structure?” Such a common question does
not have a certain answer yet.

It is also of great interest to trace the movement of reso-
nance poles in the complex-energy plane with varying nuclear
charge. This is shown in Fig. 4 together with an inset dis-
playing the Z-scaled complex energies. The trajectory of the
resonance in the complex momentum plane as the pole of
the scattering S matrix [74] can be drawn correspondingly by
utilizing the energy-conservation law Eres = p2/2 + EZ (n=1),
which is understood from the scattering of an electron with

FIG. 4. Trajectory of the eigenvalue of the two-electron atoms in
the complex-energy plane with decreasing Z . States for Z < 0.3162
are expected to be the positive-energy shape resonances with central
positions lying above the three-body breakup threshold. The inset
shows the trajectory of the Z-scaled eigenvalues.

momentum p from the one-electron system in the ground
state. An attempt to depict a figure like Fig. 4 was made in
1977 by Reinhardt [42] in searching for the possible bound
states embedded in the continuum. He proposed a hypothet-
ical trajectory of the eigenvalue of the Z-scaled Hamiltonian
H (θ )/Z2 in the complex-energy plane based on the dilatation
analyticity of the complex-scaling transformation (see Fig. 3
in Ref. [42]). Reinhardt [42] also conjectured that the Z-scaled
resonance energy would probably touch the Ei = 0 line at a
single value of Z̃ where a bound state in the continuum occurs
between the threshold energies with a real-valued negative
eigenenergy. From the inset in Fig. 4, it is clear that the
trajectory of the resonance pole in the Z-scaled energy plane
moves off the real axis monotonically and passes through
all threshold energies including zero at about Z = 0.3162. In
conjunction with the theorem proposed by Simon [75] that for
an N-particle Coulomb system bound states in the continuum
cannot occur for E > 0, we conclude that such a phenomenon
would not appear in the two-electron Coulomb systems with
any fractional nuclear charge.

Another interesting question raised here is about the full
trajectory of the resonance pole for Z > 0. Due to the slow
convergence of the present calculations at very small nu-
clear charges, little information is known in the region 0 <

Z < 0.26. Based on the Rayleigh-Schrödinger perturbation
expansion of the ground-state energy in powers of λ = 1/Z ,
Stillinger [76] supposed E (λ) has a second-order pole at
λ∞ = ∞ (Z0 = 0) and also conjectured that another singular
point which terminates the cut in the complex λ plane exists.
These hypotheses were confirmed by Ivanov [26,27], who
showed that E (λ) has a third singular point at λ2 ≈ 9.41, i.e.,
Z2 ≈ 0.106. Unfortunately, we are not in a position to explore
such a singular point in the present work. More sophisticated
techniques, such as the complex-scaling method based on
Sturmian wave functions in perimetric coordinates employed
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by Karr [23], might be able to shed light on such an elusive
region.

C. Dispersion relation for resonance width

Based on the analytic properties of the system energy as
a function of nuclear charge and the asymptotic behavior of
the expansion coefficients in the 1/Z perturbation expansion,
Dubau and Ivanov [27,28] proposed a dispersion relation
which connects the real part of the system energy for Z > Zc

to the imaginary part of the system energy for Z < Zc. For
convenience, we will use E ′(Z ) = E (Z )/Z2 in the following
discussion. It was shown by the authors [27,28] that as Z
approaches the critical point Zc from below, the imaginary part
of the resonance energy behaves as

ImE ′(Z ) ≈ Axpe− c
x , (9)

where

x ≡ 1 − Z/Zc. (10)

The fitting parameters are given by

A ≈ −13, p = 2.2397, c = 0.018446. (11)

To extend the applicability of the formula shown above for Z
moving away from Zc, one must include higher-order correc-
tions which are expressed in a series expansion over x

ImE ′(Z ) = Axpe− c
x (1 + e1x + e2x2 + · · · ). (12)

The parameter e1 can be analytically obtained [28] and ac-
quires the significantly large value of e1 ≈ −123 due to the
presence of a small parameter c in the exponent. The large
magnitude of e1 leads to slow convergence of the Taylor series
even if x is small.

The Padé approximant method is known as a powerful
technique to improve the convergence properties of the Tay-
lor series and extend the convergence radius [77,78]. Dubau
and Ivanov [28] adopted the simplest Padé[0,1] approximant,
which reads

ImE ′(Z ) = Axpe− c
x

1

1 − e1x
. (13)

They showed that for 0.011 < x < 0.037 the Padé[0,1] ap-
proximant considerably improves the agreement between
numerically calculated imaginary resonance energies and val-
ues predicted using the above approximate formula.

With higher-accuracy imaginary resonance energies ob-
tained in a region closer to Zc, Karr [23] further examined
the dispersion relation at smaller values of x (0.001 < x <

0.007). It was found that by further taking Zc as a fitting
parameter (Z∗), the complex-scaling calculation shows very
good agreement with the dispersion relation in Eq. (9) with
parameters

p = 2.42, c = 0.0180, Z∗ = 0.911276. (14)

The unreported value of A probably is −14.68, which we
obtained by repeating Karr’s fitting procedure. Considering
that the fitting performed by Karr [23] was primarily focused
on the region near Zc, where the imaginary resonance energies
are extremely small, and that the uncertainties in other fitting

FIG. 5. Fitting of the numerical calculation of the imaginary part
of the resonance energies as a function of 1 − Z/Zc. The fitting
parameters obtained by Karr [23] and Dubau and Ivanov [28] are
given in Eqs. (11) and (14), respectively. Padé[M, N] represents the
improved asymptotic law of Eq. (15), which includes the correction
of Padé[M, N] approximants.

parameters are quite large, the small difference between Zc

and Z∗ is reasonably acceptable.
In Fig. 5, we display the applicability of the asymptotic

formulas in Eqs. (9) and (13) at larger values of x, i.e., smaller
Z . The use of either Zc or Z∗ in x does not change much in
the figure. It is clearly seen that the leading-order formula in
Eq. (9) significantly overestimates the imaginary part of the
resonance energy, while the incorporation of the Padé[0,1]
correction, on the contrary, underestimates the numerical re-
sults to a large extent. The use of different fitting parameters
listed in Eqs. (11) and (14) has a small effect at large x,
although the latter performs better in the near-zero region (see
Fig. 1 in Ref. [23]). In the present work, we perform a different
fitting formula by incorporating the higher-order Padé[M, N]
correction, which yields

ImE ′(Z ) = Axpe− c
x

∑M
k=0 akxk

1 + ∑N
k=1 bkxk

. (15)

The parameters given by Karr [23] are used for p, c, and Z∗.
Other parameters used in the present work are A = −14.68,
a0 ≡ 1, and b1 ≡ −e1 = 123. It is found that the lowest or-
der of Padé approximant which can reproduce the numerical
calculations in the entire x region investigated here fairly well
is Padé[2,2] (see Fig. 5). The corresponding coefficients read
a1 = 165.8 and a2 = 146.5, which are the same magnitude
as b1, while b2 = 10560 is two orders of magnitude larger
than the others. These parameters may vary if one uses the
parameters in Eq. (11) or employs a higher-order Padé ap-
proximant. It is worth noting that the fitting procedure adopted
here is quite different from the usual application of Padé
approximants, where one first calculates the coefficients of
the Taylor expansion [e.g., en in Eq. (12)] and then solves the
linear equations iteratively to get the Padé coefficients [77].
When Eq. (12) is directly used in the fitting process, it is
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found that e2 is one order of magnitude larger than e1 and so
forth between en and en−1, which is in qualitative agreement
with the prediction of Dubau and Ivanov [28]. Considering
the divergent behavior of the expansion coefficients, the usual
procedure is a formidable task in the present case.

IV. CONCLUSION

In this work, we have performed systematic research on
the shape resonances of two-electron atoms below the crit-
ical nuclear charge Zc by employing the complex-scaling
method based on explicitly correlated HyCI basis functions.
For Z lying below but very close to Zc, the imaginary part of
the resonance energy is so small that one can still estimate
the resonance position by employing conventional variational
methods. However, when Z is decreased farther away from Zc,
the complex-scaling or similar methods are well developed to
extract the resonance energy from the stabilization criteria.

We traced the variation of the shape resonance from Zc

down to very small values of Z and found that the resonance
position will go across the hydrogenic Z (n = 2) thresholds
at about 0.381 and even the three-body breakup threshold
at about 0.316. The crossing of the shape resonance over
higher-lying thresholds is attributed to the increasingly im-
portant role of the interelectronic correlation effect along with
decreasing nuclear charge. The formation of shape resonances
can reasonably be modeled by a simplified model potential
containing both a static repulsive potential and an attrac-

tive dipole interaction. It is conjectured that the existence of
positive-energy resonance is related to the large magnitude of
the resonance width. We finally showed that the dispersion
relation can be applied to estimate the asymptotic behavior
of the imaginary resonance energy fairly well, but for smaller
values of Z one must include higher-order corrections, e.g.,
through a higher-order Padé approximant.

We believe that the present conclusion about two-electron
atoms with fractional nuclear charge could be extended to
multielectron atomic and molecular systems, especially an-
ions. It has been shown by many authors that the asymptotic
behavior and stability of multielectron atoms near the criti-
cal region can be simulated by a one-electron model [13,43]
which is similar to the one employed here and that the binding
energy of the outermost electron can be expressed in terms of
a Rydberg-like hydrogenic energy formula with an additional
quantum defect [16,17]. Therefore, one may expect similar
shape resonances crossing higher-lying thresholds or even
the existence of positive-energy resonances in these loosely
bound systems. Such investigations would provide new infor-
mation in our understanding of the resonance structures and
related scattering dynamics.
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