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Combination of perturbation theory with the configuration-interaction method
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The present atomic theory provides accurate and reliable results for atoms with a small number of valence
electrons. However, most current methods of calculations fail when the number of valence electrons exceeds
four or five. This means that we cannot make reliable predictions for more than half of the periodic table. Here
we suggest a modification of the configuration interaction plus many-body perturbation theory, which may be
applicable to atoms and ions with partly filled d and f shells.

DOI: 10.1103/PhysRevA.105.052805

I. INTRODUCTION

At present there are several methods of the relativistic
correlation calculations of atoms, such as multiconfigura-
tion Dirac-Fock [1–5], configuration interaction (CI) [6–10],
many-body perturbation theory (MBPT) [11–13], CI +
MBPT [14–17], coupled cluster [18–22], and others. Calcu-
lations are usually done in the no-virtual-pair approximation
using Dirac-Coulomb, or Dirac-Coulomb-Breit approxima-
tions [23]. QED corrections may be included using radiative
potential method [24,25] and QEDMOD potential [26,27].

The coupled cluster method is one of the most popular
and effective methods for calculation of atoms with a small
number of open-shell electrons (or holes). Calculations of the
spectra of atoms and ions with many valence electrons (e.g.,
transition metals, lanthanides, and actinides) are very difficult
and usually not very accurate. The reason for that is a com-
bination of strong correlations and a very large configuration
space. To account for strong correlations one needs nonper-
turbative methods, such as CI. On the other hand, a large
configuration space makes such calculations very expensive.
As a compromise one can try to combine CI with perturbation
theory (PT). We will first assume that all closed atomic shells
are considered frozen. Then we are treating only valence cor-
relations and consider a combination of the valence CI with
valence perturbation theory (VPT). Later, we will see that this
approach can also be used to treat core-valence correlations.

Recently there were several attempts [28–31] to develop an
effective and fast CI + VPT method to speed up calculations
for such systems, where straightforward CI calculations are
impossible. Application of these methods for systems with
a large number of valence electrons was demonstrated in
Refs. [32,33]. A general idea of all these calculation schemes
is to make CI in a smaller subspace P and calculate cor-
rections from a complementary subspace Q using VPT. In
Refs. [28–30] it is suggested to neglect nondiagonal blocks
of the CI matrix in the subspace Q, which is equivalent to

using VPT. All these methods require summation over all
many-electron basis states of the complementary subspace Q.
Although calculating this sum is much easier than calculating
and diagonalizing the whole CI matrix, it is still too expensive
for the number of valence electrons approaching, or exceeding
ten.

In the paper [30], the sum over determinants was partly
substituted by the sum over configurations that led to a sig-
nificant increase in calculation speed. Here we want to make
another step in this direction. To this end, we will partly
substitute VPT with many-body perturbation theory (MBPT).
The method we propose here is similar to the old CI + MBPT
method [14] but uses different splitting of the problem into
the CI and MBPT parts. In particular, we suggest to account
for double excitations (D) from the subspace P by means of
the MBPT and treat single excitations (S) within VPT, or, if
possible, include them directly in CI. We think that this variant
is not only more efficient for treating valence correlations but
may also be used for the core-valence correlations.

II. FORMALISM

A. Valence correlations

Consider a many-electron atom or ion with N valence
electrons, where N is of the order of 10. Let us first assume
that other electrons always occupy closed core shells, which
is known as a frozen-core approximation. Our aim is to solve
the N-electron Schrödinger equation and find the spectrum of
this system.

We start with splitting N-electron configuration space in
two orthogonal subspaces P and Q. The subspace P, which
we call valence, includes the most important shells. It may
be not obvious from the start, which orbitals are “important.”
We definitely must include into subspace P all orbitals with
occupation numbers of the order of unity in the physical states
we are interested in. Complementary subspace Q includes
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S, D, and so on excitations from the valence shells to the
virtual ones, thus, Q = QS + QD + · · · . We start by solving
the matrix equation in the subspace P,

P̂HP̂�a = EaP̂�a, (1)

where H is the Hamiltonian for valence electrons and P̂ is
the projector on the subspace P. We can find a correction
from the complementary subspace Q using the second-order
perturbation theory:

δEa =
∑
n∈Q

〈�a|P̂HQ̂|n〉〈n|Q̂HP̂|�a〉
Ea − En

, (2)

where |n〉 are N-electron Slater determinants in the comple-
mentary subspace Q and En = 〈n|Q̂HQ̂|n〉.

The wave function �a is a linear combination of the Slater
determinants:

�a =
∑
m∈P

Ca
m|m〉 =

∑
p,mp

Ca
p,mp

|p, mp〉. (3)

Here and below indexes p and q run over configurations in
the subspaces P and Q, respectively, and indexes mp and nq

numerate determinants within one configuration. Now Eq. (2)
takes the form

δEa =
∑
p,mp

∑
p′,mp′

Ca
p,mp

Ca
p′,mp′

∑
q,nq

× 〈p, mp|H |q, nq〉〈q, nq|H |p′, mp′ 〉
Ea − Eq,nq

, (4)

where the sum over the subspace Q is also split in two.
For an atom with N ≈ 10, the dimension of space Q is

very large, which makes evaluation of expression (4) very
lengthy. Therefore, our aim is to substitute double sum over
q and nq by a single sum over q. To this end we do the
following approximation: we substitute the energy Eq,nq in the
denominator by the configuration average:

Ēq = 1

Nq

Nq∑
nq=1

Eq,nq , (5)

where Nq is the number of determinants in configuration q.
Using this approximation we rewrite (4) in the form

δEa =
∑
p,mp

∑
p′,mp′

Ca
p,mp

Ca
p′,mp′

∑
q

×
〈p, mp|H

(∑
nq

|q, nq〉〈q, nq|
)
H |p′, mp′ 〉

Ea − Ēq
. (6)

FIG. 1. Set of connected second-order diagrams. Black dots
correspond to the core potential and wavy lines to the Coulomb
interaction. Double and single lines denote electrons in valence and
virtual orbitals respectively. Nonsymmetric diagrams (b) and (e)
have mirror twins.

Below we will show that in some very important cases one
can get rid of the internal sum over nq.

Hamiltonian H includes one-particle and two-particle
parts. The former consists of the kinetic term and the core
potential, while the latter corresponds to the Coulomb (or
Coulomb-Breit) interaction between valence electrons. Thus,
in the sum over q remain only configurations, which differ
by no more than two electrons from configurations p and p′.
This means that, within this approximation, the subspace Q
is actually truncated to QS + QD. All nonzero contributions
correspond to the diagrams, shown in Fig. 1.

According to our definition of the spaces P and Q, the
latter must include at least one electron in the virtual shell.
Diagrams (a), (b), and (e) include only one intermediate
line, so they describe single excitations from the subspace P.
Diagrams (c) and (d ) include two intermediate lines, but only
diagram (d ) describes double (D) excitations, because both
intermediate lines correspond to the virtual shells.

Figure 1 shows that all many-electron matrix elements in
Eq. (6) are reduced to the effective one-electron, two-electron,
and three-electron contributions. Effective one-electron con-
tributions are described by diagram (a); diagrams (b), (c),
and (d ) correspond to the two-electron contributions. Finally,
diagram (e) describes effective three-electron contributions.

For combinatorial reasons the number of configurations
with two excited electrons is much bigger, than the number of
those with only one such electron. Therefore the vast majority
of terms in Eq. (6) correspond to the two-electron excitations
from configurations p and p′. For these terms in the Hamil-
tonian H only the two-electron interaction V can contribute,
so we can neglect the one-electron part and make substitution
H → V . As we saw above, all such terms are described by the
single diagram (d ) from Fig. 1.

Let us consider the sum over doubly excited configurations.
It can be written as

δED
a =

∑
p,mp

∑
p′,mp′

Ca
p,mp

Ca
p′,mp′

∑
q∈QD

〈p, mp|V
(∑

nq
|q, nq〉〈q, nq|

)
V |p′, mp′ 〉

Ea − Ēq
. (7)

Nonzero contributions come from determinants |q, nq〉, which differ from both determinants |p, mp〉 and |p′, mp′ 〉 by two
electrons. It is clear that it must be the same two electrons, see Fig. 1. In this case, we can explicitly sum over the inter-
mediate magnetic quantum numbers, and thus the second-order expression from (7) is reduced to the effective two-particle
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interaction [14]:

δED
a =

∑
p,mp

∑
p′,mp′

Ca
p,mp

Ca
p′,mp′

〈p, mp|V eff |p′, mp′ 〉. (8)

The matrix element of this effective interaction V eff , which corresponds to the diagram in Fig. 1(d), can be expressed in terms of
the multipolar expansion and effective radial integrals Rk,eff

a,b,c,d , similar to the matrix element of the Coulomb interaction:

〈c, d|V eff [Fig. 1(d)]|a, b〉 =
∑
k,κ

(−1)mc+mb+1
√

(2 ja + 1)(2 jb + 1)(2 jc + 1)(2 jd + 1)

×
(

jc ja k
−mc ma κ

)(
jb jd k

−mb md κ

)(
jc ja k
1
2 − 1

2 0

)(
jb jd k
1
2 − 1

2 0

)
Rk,eff

a,b,c,d , (9)

where round brackets denote 3 j symbols, ji and mi are total angular momenta and their projections on the quantization axis, and
k is multipolarity of the effective radial integral. The expression for the latter has the form [14]

Rk,eff
a,b,c,d =

∑
k1,k2

∑
m,n

(−1)χ (2 jm + 1)(2 jn + 1)

× (2k + 1)

{
jc ja k
k1 k2 jm

}{
jb jd k
k2 k1 jn

}(
jm ja k1
1
2 − 1

2 0

)(
jb jn k1
1
2 − 1

2 0

)

×
(

jc jm k2
1
2 − 1

2 0

)(
jn jd k2
1
2 − 1

2 0

)(
jc ja k
1
2 − 1

2 0

)−1( jb jd k
1
2 − 1

2 0

)−1 Rk1
a,b,m,nRk2

c,d,m,n

�E
, (10)

where curly brackets denote 6 j coefficients, the phase χ = ja + jb + jc + jd + jm + jn + k1 + k2 + k + 1, and �E is energy
denominator, which we discuss later. Indexes a, b, c, d , and m, n correspond to the orbitals from the subspaces P and Q,
respectively.

Let us emphasize that the necessary step, which allows us
to express the inner sum in Eq. (4) in terms of the effective ra-
dial integrals (10) is the averaging of the energy denominators
(5). This is an additional approximation. Some many-electron
configurations may include thousands of states and spread
over large energy intervals. Thus, it is not obvious that this
approximation is sufficiently accurate. Below we made several
test calculations for very different systems and showed that
error introduced by this approximation is small for all cases
considered.

All single excitations are described by the remaining dia-
grams from Fig. 1. The diagram (a) has a form of the effective
one-electron radial integral, while diagrams (b) and (c) are
reduced to the two-electron effective radial integrals. In prin-
ciple, these effective radial integrals can be calculated and
stored. However, the diagram (e) corresponds to the effective
three-particle interaction. It is difficult to include such inter-
actions into CI matrix for several reasons:

i. When N > 3 the number of such effective three-particle
integrals is huge.

ii. It is difficult to store them and find them.
iii. The number of the nonzero matrix elements in the

matrix drastically increases. The matrix becomes less sparse
and its diagonalization is much more difficult and time-
consuming.

Because of all that it is inefficient to use the MBPT ap-
proach for three-particle diagrams and it is much easier to treat
them within the determinant-based PT. However, it is difficult
then to separate them from other contributions, which corre-
spond to single excitations. Thus, it is better not to use MBPT
for single excitations at all. We suggest to use instead any form
of the determinant-based VPT described in Refs. [28–31].

This means that we do VPT in the subspace QS . Note that
the dimension of this subspace is incomparably smaller than
the dimension of the QD subspace. In some cases it may be so
small that we can include QS in the subspace P, where we do
CI.

B. Core-valence correlations

It is easy to use the scheme described above for the
core-valence correlations as well. Now P subspace corre-
sponds to the frozen-core approximation and the subspaces
QS and QD include single and double excitations from the
core, respectively. This means that these subspaces include
many-electron states with one and two holes in the core. As
before, the second-order MBPT corrections are described by
one-electron, two-electron, and three-electron diagrams. All
one-electron diagrams are given in Fig. 2. Excitations from the
core correspond to the hole lines with arrows looking to the

FIG. 2. Set of one-electron second-order diagrams accounting
for the excitations from the core. Diagrams (e) and ( f ) have mirror
twins. Diagrams (c) and (d ) describe double excitations from the
core.
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FIG. 3. Diagrams which correspond to the double excitations
from closed shells. These diagrams are described by the effective
one-electron radial integrals, designated by a black circle.

left. It is easy to see that only diagrams (c) and (d ) describe
double excitations. Therefore, we need to calculate them and
store as one-electron effective radial integrals, see Fig. 3 (note
that there are no one-electron contributions for the valence
excitations).

There is only one two-electron diagram, which corresponds
to the double excitations from the core. This diagram must
be calculated and added to the similar diagram for valence
excitations, which was discussed in the previous section, see
Fig. 4. Finally, in analogy with the valence correlations, the
three-particle diagrams correspond to the single excitations
from the core.

We conclude that, to account for both valence and core-
valence correlations, we need to calculate one-electron and

FIG. 4. Diagrams contributing to the effective two-electron ra-
dial integrals. The first diagram accounts for the double excitations
from the valence to the virtual shells and the second diagram ac-
counts for the double excitations from closed core shells.

two-electron effective radial integrals, which correspond to
the diagrams from Figs. 3 and 4. At the same time, we need
to include all single excitations from the core shells and all
single excitations to the virtual shells either in the subspace
P or in the subspace QS . After that, we make CI calculation
with effective radial integrals possibly followed by the VPT
calculation in the QS subspace.

Expressions (9) and (10) give contributions of the diagram
of Fig. 4(a). For the diagram Fig. 4(b) we need to substitute
virtual orbitals m, n in Eq. (10) by core orbitals s, t . Expres-
sions for diagrams Figs. 3 were derived in Ref. [14]:

〈b|V eff [Fig. 3(a)]|a〉 = − δ ja, jbδma,mb

∑
k

(2 jα + 1)(2 js + 1)(2 jt + 1)

2k + 1

×
(

ja js k
1
2 − 1

2 0

)2( jt jα k
1
2 − 1

2 0

)2 Rk
a,t,s,αRk

b,t,s,α

�E
, (11)

〈b|V eff [Fig. 3(b)]|a〉 = (−1)k1+k2+1δ ja, jbδma,mb (2 jα + 1)(2 js + 1)(2 jt + 1)

×
∑
k1,k2

{
ja js k2

jα jt k1

}(
ja js k1
1
2 − 1

2 0

)(
jt jα k1
1
2 − 1

2 0

)(
ja jt k2
1
2 − 1

2 0

)(
js jα k2
1
2 − 1

2 0

)

× Rk1
a,α,s,t R

k2
b,α,t,s

�E
. (12)

In the above expressions the indexes a, b and s, t correspond
to valence and core orbitals, respectively, while the index α

runs over valence and virtual orbitals.

C. Sketch of the possible calculation scheme

Let us describe a most general computational scheme.
i. Basis set orbitals are divided into four groups: inner

core, outer core, valence, and virtual orbitals. The inner core
is kept frozen on all stages of calculation.

ii. Effective radial integrals are calculated for the valence
orbitals, which account for the double excitations from the
outer core and the double excitations from the valence orbitals
to the virtual ones.

iii. A full CI calculation is done for the valence electrons.
The effective radial integrals are added to the conventional
radial integrals when the Hamiltonian matrix is formed.

iv. Determinant-based PT is used in the complementary
subspace QS , which includes single excitations from the outer
core and single excitations to the virtual states.

Depending on the number of the valence electrons and the
size of the core, this scheme can be simplified. If there are only
two valence electrons, one can include all virtual basis states
into valence space. Single excitation from the core can be also
added to the valence space. Double excitations from the core
are accounted for through the effective radial integrals, while
single excitations are included explicitly in the CI matrix.
Formally this means that we substitute P, Q decomposition
by the P′, QD decomposition:

P + Q = P + QS + QD = P′ + QD, (13)

P′ ≡ P + QS. (14)

In the new valence space P′, we solve matrix equation with
the energy-dependent effective Hamiltonian [14]:

Heff (E ) = H + Veff (E ), (15)

P̂′Heff (Ea)P̂′�a = EaP̂′�a, (16)
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where P̂′ is the projector on the subspace P′. When the size
of the matrix Heff becomes too large, one can neglect the
nondiagonal part of the matrix in the QS space, as in the emu
CI method [29].

III. ENERGY DENOMINATORS

Let us discuss the energy denominator �E in Eq. (10). For
simplicity we consider the Rayleigh-Schrödinger perturbation
theory, where the denominator in Eq. (6) would be Ēp − Ēq.
Here Ēp and Ēq are average energies (5) for configurations p
and q. Note that, to return to the Brillouin-Wigner perturbation
theory we need to add Ea − Ēp, which can be approximately
done using the method suggested in Ref. [14].

In the conventional MBPT the denominator Ēp − Ēq is
reduced to the difference of the Hartree-Fock energies of
the orbitals εi which are different in these two configura-
tions. That would give the following energy denominator in
Eq. (10):

�E ≡ �E (ab → mn) = εa + εb − εm − εn, (17)

where we assume that configuration q differs from p by ex-
citation of two electrons from shells a and b to virtual shells
m and n, respectively. This expression neglects the interaction
of the electrons with each other and depends on the choice
of the Hartree-Fock potential. To improve this approximation,
we consider general expression for the average energy of the
relativistic electronic configuration.

Average energy of the relativistic configuration

The average energy of the relativistic configuration
Ēp [34,35]:

Ēp =
∑
a∈p

qaIa + 1
2

∑
a∈p

qa(qa − 1)Uaa +
∑

a<b;a,b∈p

qaqbUab,

(18)
where qa and qb are occupation numbers for the shells a and b
in configuration p and matrix elements of the potential U are
given by

Uab =

⎧⎪⎪⎨
⎪⎪⎩

F 0(a, a) +
∑
k>0

2 f k
a,aF k (a, a), a = b

F 0(a, b) +
∑

k

gk
a,bGk (a, b), a 	= b.

(19)

In these equations Ia is the one-electron radial integral, while
F k (a, b) and Gk (a, b) are standard Coulomb and exchange
two-electron radial integrals [35]. The angular factors f k

a,a and
gk

a,b are also defined in agreement with Ref. [35]:

f k
a,a = −1

2

2 ja + 1

2 ja

(
ja ja k
1
2 − 1

2 0

)2

,

gk
a,b = −

(
ja jb k
1
2 − 1

2 0

)2

,

(20)

where ja and jb are the one-electron total angular momenta.
Let us use Eq. (18) to calculate the energy difference be-

tween configurations p and q which differ by the excitation of
two electrons from shells a, b to shells m, n. In other words
we need to calculate how the energy changes when occupation

numbers change in the following way: δqa = δqb = −1 and
δqm = δqn = 1. To this end we, can use Taylor expansion of
Eq. (18) near the initial configuration p:

Ēq = Ēp +
∑

a

∂Ēp

∂qa
δqa + 1

2

∑
a,b

∂2Ēp

∂qa∂qb
δqaδqb, (21)

where derivatives are given by

∂Ēp

∂qa
= Ia +

(
qa − 1

2

)
Uaa +

∑
b	=a

qbUab

= Ia − 1
2Uaa +

∑
b

qbUab, (22)

∂2Ēp

∂qa∂qb
= Uab. (23)

Note that all higher derivatives vanish, so expression (21) is
exact. With its help we get

�E (ab → mn)

= Ia + Ib − Im − In +
∑
c∈p

qc(Uac + Ubc − Umc − Unc)

− Uaa − Ubb − Uab − Umn + Uam + Ubn + Uan + Ubm.

(24)

This expression can be also used for the special cases a = b,
δqa = −2, and/or m = n, δqm = 2.

Equation (24) includes the sum over the occupied shells
of the initial configuration p. Let us introduce one-electron
energies in respect to this configuration as

εa = Ia +
∑
c∈p

qcUac − (1 − δqa,0)Uaa. (25)

Then Eq. (24) is simplified to

�E (ab → mn) = εa + εb − εm − εn

−Uab − Umn + Uam + Ubn + Uan + Ubm.

(26)

The first line here reproduces the conventional MBPT denom-
inator (17), while the second line gives corrections caused by
the interactions of the electrons with each other. It is impor-
tant that in this form we do not have explicit sums over all
electrons, which significantly simplifies calculations.

In the relativistic calculations the nonrelativistic configu-
rations are typically not used. However, sometimes one may
need to find the average energy of the nonrelativistic config-
uration. In the Appendix we derive the necessary expressions
for this case.

IV. NUMERICAL TESTS

We made four test calculations for very different systems.
In the first two calculations for He I and B I, there was no core
and we tested our method for the valence correlations. Then
we applied our method for the highly charged ion Fe XVII,
where there is a very strong central field, correlation correc-
tions are rather small, and perturbation theory must be quite
accurate. In this system we had core 1s2, so we calculated
core-valence correlation corrections as well as valence ones.
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TABLE I. Ground-state binding energy of He I (in a.u.). CI calculations are made for three spaces: P, P + QS , and P + Q. �P+Q is the
difference from the CI result in the P + Q space. Three variants of PT calculations are made based on the CI calculation in P + QS space: (a)
determinant-based PT, (b) effective Hamiltonian with Hartree-Fock denominators (17), (c) effective Hamiltonian with corrected denominators
(26). Experimental binding energy is given for comparison in the last column [36].

PT NIST

P P + QS P + Q (a) (b) (c) Ref. [36]

E (1s2) 2.8626 2.8700 2.9010 2.9021 2.9064 2.9031 2.9034
�P+Q 0.0384 0.0310 0.0000 −0.0011 −0.0054 −0.0021 −0.0024

Finally, we made calculations for Sc I, where valence 3d
electrons have a large overlap with the core shell 3p6 and core-
valence correlation corrections are as important as valence
ones.

A. Ground state of He I

Helium is the simplest system where correlation effects
can be tested. We calculate the ground-state energy, where
correlation corrections are the largest. We choose the space
P to include shells n = 1, . . . , 3. The space Q includes virtual
shells s, p, d with 4 � n � 20. For this model problem, we
can easily do CI in the whole space P + Q thus producing the
“exact” solution and compare these results with different vari-
ants of the perturbation theory discussed above. The results
are listed in Table I.

One can see that the valence CI provides accuracy on the
order of 1%. The accuracy does not improve when we account
for the single excitations to the virtual shells. However, when
we include double excitations the agreement with the “exact”
answer is significantly better. The determinant-based PT gives
the best result. The results obtained with the effective Hamil-
tonian are less accurate, but corrections to the denominators
reduce the discrepancy. Even the uncorrected variant of the
MBPT is closer to the “exact” answer by an order of magni-
tude compared with the valence CI.

B. Ground state of B I

B is a five electron system. The full CI calculation here
is already very expensive. The determinant-based PT is also
rather lengthy, so we made calculations only with the effective
Hamiltonian and compared our results with the experiment
[36]. The effective radial integrals were calculated using the
Hartree-Fock denominators. We tested two variants of the
valence space: the first one, P, included shells n = 1, . . . , 3
and the second one, P̃, included also the shell n = 4. Cor-
responding Q and Q̃ spaces included s, p, d , f , g shells up
to n = 20. Results of these calculations for the ground state
2P1/2 are given in Table II. We see that the accuracy of the CI
calculation does not change much when we include an extra

shell in the subspace P. The accuracy of the CI calculation
in the subspaces P + QS and P̃ + Q̃S is only slightly better
than similar calculation in the subspaces P and P̃. Only in-
cluding double excitations by means of the MBPT improves
the agreement with the experiment by more than an order of
magnitude.

C. Spectrum of Fe XVII

Ten-electron ion Fe XVII plays an important role in as-
trophysics and plasma physics, see Ref. [37] and references
therein. The spectrum of this ion was calculated within sev-
eral different approaches [38] with relative accuracy of about
0.03%. Here we repeat these calculations using the modified
method. We use basis set [17spdf g]. Virtual orbitals starting
from 4s and up are formed from B splines using the method
from Ref. [39]. Valence subspace P includes shells 2s, 2p,
3s, 3p, 3d , 4s, 4p, 4d , and 4 f , while the 1s shell is frozen.
Single excitations to all higher orbitals are included in the
subspace QS and the subspace Q′

S in addition includes single
excitations from the 1s shell. We make two CI calculations in
the spaces P and P + QS , respectively. Then we repeat these
calculations using the effective Hamiltonian, which accounts
for the excitations to the subspace QD. Finally, we make CI
calculation in the P + Q′

S for the effective Hamiltonian H ′
eff

which accounts for the double excitations from 1s shell as well
as for the double excitations to the virtual shells with n � 5.
Results of all these calculations are given in Table III.

One can see that already the CI calculation in the subspace
P is quite accurate here, the relative errors being about 0.3%.
This is not surprising for such a strong central field. When we
increase the size of the configuration space by adding single
excitations to the virtual shells n = 5, . . . , 17 the errors sub-
stantially decrease but remain of the same order of magnitude.
The same happens when we do CI for the effective Hamilto-
nian in the subspace P. Only when we include both single
and double excitations to the virtual shells by doing CI for the
effective Hamiltonian in the subspace P + QS we increase the
accuracy by an order of magnitude, the errors being 0.04%

TABLE II. Ground-state binding energy of B I (in a.u.). CI calculations are made for valence spaces P and P̃, which included three and
four lower shells, respectively. Experimental binding energy is given for comparison in the last column [36].

P + QS P̃ + Q̃S NIST

P H Heff P̃ H Heff Ref. [36]

E ( 2P1/2) 24.5683 24.5976 24.6595 24.5721 24.5999 24.6581 24.6581
�NIST 0.0898 0.0605 −0.0014 0.0860 0.0582 0.0000 0.0000
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TABLE III. Low-lying energy levels of Fe XVII in respect to the ground state (in cm−1). The subspace QS includes single excitations to
virtual shells n = 5–17. The subspace Q′

S in addition includes single excitations from the 1s shell. Effective Hamiltonians account for the
respective double excitations. For each calculation we also give relative accuracy in percent.

NIST CI(P) CIemu(P + QS ) CIemu(P + Q′
S )

Config. Level Ref. [36] H Heff H Heff H ′
eff

2p6 1S0 0 0 0 0 0 0
2p53p 3S1 6093450 6076370 −0.28% 6083540 −0.16% 6088405 −0.08% 6095600 0.04% 6095086 0.03%
2p53p 3D2 6121690 6105049 −0.27% 6111933 −0.16% 6117307 −0.07% 6124215 0.04% 6123709 0.03%
2p53p 3D3 6134730 6118010 −0.27% 6125056 −0.16% 6130067 −0.08% 6137137 0.04% 6136602 0.03%
2p53p 1P1 6143850 6127278 −0.27% 6134193 −0.16% 6139345 −0.07% 6146283 0.04% 6145772 0.03%
2p53s 2o 5849490 5830778 −0.32% 5838679 −0.18% 5842900 −0.11% 5850823 0.02% 5850330 0.01%
2p53s 1o 5864770 5846269 −0.32% 5854109 −0.18% 5858397 −0.11% 5866260 0.03% 5865678 0.02%
2p53s 1o 5960870 5942198 −0.31% 5950103 −0.18% 5954316 −0.11% 5962244 0.02% 5961601 0.01%
2p53d 3Po

1 6471800 6455306 −0.25% 6462010 −0.15% 6463149 −0.13% 6469882 −0.03% 6468962 −0.04%
2p53d 3Po

2 6486400 6470075 −0.25% 6476738 −0.15% 6477839 −0.13% 6484531 −0.03% 6483612 −0.04%
2p53d 3F o

4 6486830 6471630 −0.23% 6478532 −0.13% 6478129 −0.13% 6485057 −0.03% 6484147 −0.04%
2p53d 3F o

3 6493030 6477585 −0.24% 6484338 −0.13% 6484319 −0.13% 6491101 −0.03% 6490177 −0.04%
2p53d 1Do

2 6506700 6491383 −0.24% 6498026 −0.13% 6498360 −0.13% 6505032 −0.03% 6504101 −0.04%

or less. Adding S and D excitations from the 1s shell leads
to corrections to the transition energies within 0.01%. Our
final accuracy is similar to the accuracy obtained in Ref. [38],
where CI space included all double and some triple excitations
to all virtual shells (the basis set there was different, but of
the same length). In our present calculation, the size of the
space P + QS is about 1.4 million determinants, and the size
of the space P + Q′

S is close to 2 million determinants, which
is significantly less than the CI space of Ref. [37].

D. Spectrum of Sc I

The ground-state configuration for Sc I is [Ar]3d14s2 and
lowest excited states belong to the configurations 3d24s and
3d4s4p. The 3d shell has a large overlap with the core shells
3s and 3p. Because of that, the frozen-core approximation
cannot reproduce even the lowest part of the spectrum. In-
cluding 3s and 3p shells into the valence space makes its size
extremely large. Therefore, this is a good system to apply our
method.

We use a short basis set [9spdf gh], which is constructed
as described in Ref. [39]. In the valence space P, the shells
n � 3 are closed and the virtual shells n � 8 and all h orbitals
are empty. The space QS includes single excitations from the
upper core shells n = 3 and single excitations to the virtual
shells. We keep core shells up to n � 2 frozen on all stages.
Results of the calculation of the spectrum are presented in
Table IV, where excitation energies from the ground state
in cm−1 are shown for approximately ten lower levels of
each parity. The sizes of the valence space P and P + QS

are about 6 × 104 and 1 × 106 determinants, respectively.
We list the results of three calculations: the full CI in the
valence space P and emu CI [29] in the space P + QS for
the bare and the effective Hamiltonians. The effective radial
integrals were calculated with the Hartree-Fock denomina-
tors. For each of these calculations we also give differences
from the experimental values [36] and the averaged absolute
difference.

One can see that all the levels in the CI calculation are
shifted from their experimental energies: the levels of the
configuration 3d24s lie higher by three thousand inverse cen-
timeters, while the levels of the configuration 3d4s4p lie lower
by two thousand inverse centimeters. The picture changes
drastically when we add single excitations and solve the prob-
lem in the space P + QS . Now the levels of the configuration
3d24s lie lower by three thousand inverse centimeters, while
the levels of the configuration 3d4s4p are almost in place. Fi-
nally, when we use the effective Hamiltonian, which accounts
for the double excitations, the levels get closer to their places
with the average deviation about 300 cm−1, or seven times
smaller, than for the CI calculation.

In this test calculation, we used a rather short basis set
and were probably rather far from saturation. Therefore we
cannot reliably estimate the ultimate accuracy of the method
for scandium. Looking at the results we see that the size of the
PT corrections is very large and there is also large cancellation
between contributions of the single and double excitations.
Therefore, it is unlikely that converged results would be sig-
nificantly better than what we got here. On the other hand,
we see systematic improvement in our final results compared
with the pure valence calculation. It is also worth mentioning
that, if one would try to include all double excitations in CI
calculations, the size of the configuration space would be
much above 1 × 108, even for the basis set as short as this
one.

V. CONCLUSIONS

We suggest a modified version of the CI + MBPT method
[14] with the different division of the many-electron space
into parts where nonperturbative and perturbative methods
are used. This proposed division may be more practical for
the atoms with many valence electrons, where the size of the
valence space may be too big for solving the matrix eigen-
value problem. This method can be used in the all-electron
calculations for light atoms as well as for the calculations
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TABLE IV. Low-lying energy levels of Sc I (in cm−1). For each calculation we also give the differences with NIST [36] and the average
absolute difference |�|av = 1

k

∑k
i=1 |�i|. For the CI calculations in the P + QS space we use the emu CI approach [29] where we neglect

nondiagonal matrix elements in the QS subspace. On the diagonal we use averaging over relativistic configurations, see Eq. (18).

NIST CI(P) CIemu(P + QS )
Ref. [36] H H Heff

Config. Level E E � E � E �

3d4s2 2D3/2 0 0 0 0 0 0 0
2D5/2 168 147 −21 157 −11 155 −13

3d24s 4F3/2 11520 14945 3425 7361 −4159 11786 266
4F5/2 11558 14968 3410 7422 −4136 11847 290
4F7/2 11610 15001 3391 7489 −4121 11914 304
4F9/2 11677 15047 3370 7541 −4136 11963 285

3d24s 2F5/2 14926 17368 2442 11331 −3595 15661 735
2F7/2 15042 17455 2413 11453 −3589 15781 739

3d24s 2D5/2 17013 19972 2960 14574 −2439 17475 462
2D3/2 17025 19980 2955 14601 −2424 17500 475

3d24s 4P1/2 17226 20329 3103 14606 −2620 17472 246
4P3/2 17255 20339 3084 14679 −2576 17552 297
4P5/2 17307 20380 3073 14739 −2568 17606 299

3d4s4p 4F o
3/2 15673 13921 −1751 16019 346 15872 200

4F o
5/2 15757 14002 −1754 16099 342 15953 197

4F o
7/2 15882 14139 −1743 16211 330 16064 183

4F o
9/2 16027 14290 −1737 16340 314 16194 168

3d4s4p 4Do
1/2 16010 14265 −1745 16318 308 16448 438

4Do
3/2 16022 14311 −1711 16351 329 16517 495

4Do
5/2 16141 14375 −1766 16403 262 16559 418

4Do
7/2 16211 14458 −1753 16503 292 16621 410

3d4s4p 2Do
3/2 16023 14172 −1851 16516 493 16442 419

2Do
5/2 16097 14189 −1907 16525 428 16449 352

3d4s4p 4Po
1/2 18504 16854 −1650 18528 24 18529 25

4Po
3/2 18516 16930 −1586 18538 23 18543 27

4Po
5/2 18571 17007 −1565 18577 6 18572 1

|�|av 2247 1595 310

with the frozen core. In the latter case, the single and double
excitations from (some of) the core shells can be treated per-
turbatively. We ran four rather different tests which showed
systematic one-order-of-magnitude improvement of the re-
sults when we added MBPT corrections to the CI calculations.
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APPENDIX: AVERAGE ENERGY OF THE
NONRELATIVISTIC CONFIGURATION

In the average over nonrelativistic configuration (LS av-
erage) [40,41], the occupation numbers for the relativistic
orbitals qa may be noninteger, while occupation numbers for
nonrelativistic orbitals qA are still integer (we use capital let-
ters A, B, M, N to designate nonrelativistic orbitals). Below we
show that properly defining one-electron integrals IA and two-
electron matrix elements UAB we obtain expressions similar to
Eqs. (25) and (26).

The average energy of the nonrelativistic configuration R
can be written as

ĒR =
∑

a

q̃aIa + 1

2

∑
a

q̃a(q̃a − wa)F 0(a, a) +
∑
a<b

q̃aq̃bwabF 0(a, b)

+
∑

a,k>0

q̃a(q̃a − wa) f k
aaF k (a, a) +

∑
a<b,k

q̃aq̃bwabgk
abGk (a, b), (A1)

where

q̃a = 2 ja + 1

4la + 2
qA, wa = qA − q̃a + 2 ja

4la + 1
, wab =

{ 4la+2
4la+1

qA−1
qA

, A = B
1, A 	= B.

(A2)
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Using the expressions

q̃a(q̃a − wa) = 2 ja + 1

4la + 2

2 ja
4la + 1

qA(qA − 1), wabq̃aq̃b = 2 ja + 1

4la + 2

2 ja′ + 1

4la + 1
qA(qA − 1), A = B, ja 	= ja′ , (A3)

we rewrite equation (A1) in the form

ĒR =
∑

A

qA

∑
ja

2 ja + 1

4la + 2
Ia + 1

2

∑
A

qA(qA − 1)
∑

a,a′∈A

(2 ja + 1)(2 ja′ + 1 − δa,a′ )

(4la + 2)(4la + 1)
F 0(a, a′)

+ 1

2

∑
A	=B

qAqB

∑
a∈A,b∈B

(2 ja + 1)(2 jb + 1)

(4la + 2)(4lb + 2)

[
F 0(a, b) +

∑
k

gk
abGk (a, b)

]

+ 1

2

∑
A

qA(qA − 1)
∑

a,a′∈A

∑
k>0

2 ja + 1

4la + 2

2 ja′ + 1

4la + 1
gk

aa′Gk (a, a′). (A4)

In the last sum, the term k = 0 is absent since ja 	= ja′ and k � | ja − ja′ |. Now we can introduce nonrelativistic analogs of the
integrals Ia and matrix elements Uab and rewrite Eq. (A1) like Eq. (18):

ĒR =
∑

A

qAIA + 1

2

∑
A

qA(qA − 1)UAA + 1

2

∑
A	=B

qAqBUAB, (A5)

IA =
∑
a∈A

2 ja + 1

4la + 2
Ia, (A6)

UAA =
∑

a,a′∈A

(2 ja + 1)(2 ja′ + 1)

(4la + 2)(4la + 1)

[
F 0(a, a′) +

∑
k>0

gk
aa′Gk (a, a′)

]
−

∑
a∈A

(2 ja + 1)

(4la + 2)(4la + 1)
F 0(a, a), (A7)

UAB =
∑

a∈A,b∈B

(2 ja + 1)(2 jb + 1)

(4la + 2)(4lb + 2)

[
F 0(a, b) +

∑
k

gk
abGk (a, b)

]
. (A8)

Using Eq. (A5) we get the following derivatives by analogy with Eqs. (22) and (23):

∂ĒR

∂qA
= IA +

∑
B

qBUAB − 1

2
UAA,

∂2ĒR

∂qA∂qB
= UAB. (A9)

The difference in energy between two configurations is

�Ē =
∑

A

IAδqA +
∑

A

(
qA − 1

2

)
UAAδqA +

∑
B 	=A

qBUABδqB + 1

2

∑
A,B

UABδqAδqB. (A10)

This equation allows us to find the energy of a double excitation δqA = −1, δqB = −1, δqN = 1, δqM = 1:

�Ē (AB → NM ) = IA + IB − IM − IN +
∑

C

qC (UAC + UBC − UMC − UNC )

−UAA − UBB − UAB − UNM + UAN + UBN + UAM + UBM . (A11)

If we introduce an averaged one-electron energy by analogy with (25) we can rewrite (A11) as

εA = IA +
∑

B

qBUAB − (1 − δqA,0)UAA, (A12)

�Ē (AB → NM ) = εA + εB − εM − εN − UAB − UNM + UAN + UBN + UAM + UBM . (A13)

We obtained corrections to the standard MBPT energy denominator (17) using two approximations. Averaging over rela-
tivistic configurations gives expression (26) and averaging over nonrelativistic configurations leads to expression (A13). These
expressions differ only by the definitions of the one-electron energies and two-electron matrix elements.
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