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Screening effects in the electron bremsstrahlung from heavy ions
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A fully relativistic approach is presented for the calculation of the bremsstrahlung emitted by an electron
scattered off an ionic target. The ionic target is described as a combination of a nuclear electrostatic potential
and a screening potential induced by the electronic cloud of the ion. The approach allows us to investigate the
influence of the target electrons on the properties of the emitted radiation. We calculate the double differential
cross section and Stokes parameters of the bremsstrahlung of an electron scattered off uranium ions in different
charge states, ranging from bare to neutral uranium. Results on the high-energy endpoint of the electron
bremsstrahlung from Li-like uranium ions U89+ are compared to the recent experimental data. For this process,
it is found that taking into account the screening effect leads to a change of the cross section on the level of 14%,
which can, in principle, be seen in present-day experiments.
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I. INTRODUCTION

Electron bremsstrahlung is a process of the photon emis-
sion induced by the electron deceleration in the field of the
ionic or atomic target. Investigations of this process are both
of fundamental and of practical interest since they can provide
information about the electronic structure and polarization
properties of the target (see, e.g., reviews [1,2]).

Experimentally, bremsstrahlung is most studied for neutral
atomic targets. The state-of-the-art theoretical calculations
rely on the partial-wave representation of the Dirac electron
wave function in the field of a finite-range central potential.
This approach provides results in a remarkable agreement
with experiment [3–9]. For incident electrons with energies
above a few hundred keV, the dominant contribution to the
bremsstrahlung comes from the scattering off the nuclear
field, whereas the contribution of the electronic cloud is small.
In this case, the field of the atomic target is often replaced with
the pure Coulomb potential [10–13]. At higher collision ener-
gies starting from several MeV and large momentum transfers
(corresponding to large photon emission angles), the extended
size of the nucleus becomes significant and needs to be taken
into account. The corresponding theoretical calculations are
performed with the Dirac wave functions in the electrostatic
potential of the nuclear charge distribution [2,14].

Recently it became possible to study the bremsstrahlung in
collisions of electrons with highly charged ions [15–17]. Since
it is difficult to form a target made of highly charged ions, the
actual study is performed in the inverse kinematics. Namely,
a beam of highly charged ions collides with a cloud of light
neutral atoms. During the collision, the quasifree electron of
the target is ionized and captured into the continuum of the
heavy-ion projectile with simultaneous emission of a photon.

This process is called the radiative electron capture to the
continuum (RECC). In the projectile rest frame, the RECC
process is approximately equivalent to the bremsstrahlung in
which the emitted radiation takes away the entire energy of
the incoming electron, the so-called high-energy endpoint of
the bremsstrahlung spectrum.

So far, theoretical studies of the RECC process (see
calculations in Refs. [15–17]) were carried out under the as-
sumption that the field of the heavy ion is represented by the
pure Coulomb potential. In such an approach, the influence
of the ion’s electronic cloud on the properties of the emitted
radiation is neglected. However, for collision energies around
tens of keV used in actual experiments [15–17], the electrons
of the projectile may yield a sizable effect on the properties
of the emitted radiation. Here we work out a formalism for
calculating the bremsstrahlung from an electron scattered off
a combination of the Coulomb potential and a finite-range
potential induced by the electron cloud of the ion.

Our formalism can be viewed as an extension of one devel-
oped by Yerokhin and Surzhykov [5] where the cases of the
pure Coulomb and a finite-range potential were implemented.
The particular form of the potential is important since it de-
fines the asymptotic behavior of the Dirac wave function at
long radial distances. In order to perform radial integrations
with highly oscillating functions, we use the method of the
complex-plane rotation of the integration contour, which re-
lies on the analytical properties of the Dirac wave functions in
the asymptotic region. The Dirac solutions for a finite-range
potential at long distances are represented by spherical Bessel
functions, which is the simplest case for the complex-plane
rotation. For the pure Coulomb potential, the Dirac wave
functions are described by the regular at the origin solution
of the Dirac-Coulomb equation, i.e., the Whittaker function
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of the first kind Mαβ . For the sum of the Coulomb and a finite-
range potential, the Dirac wave functions at long distances
are represented by a linear superposition of the regular and
irregular Dirac-Coulomb wave functions. This significantly
complicates the numerical implementation of the complex-
plane rotation method of computation of radial integrals.

In the present paper, we apply the developed method for
calculating the bremsstrahlung emitted by electrons scattered
off uranium ions. By comparing the results obtained for dif-
ferent charge states of the ion, we study the screening effects
of the target electrons on the angular distribution and polar-
ization of the emitted photons. We also calculate the triple
differential cross section of RECC for Li-like uranium studied
experimentally in Ref. [17]. The theoretical results are found
to be in good agreement with the experimental data. It is found
that the presence of the projectile electrons modify the cross
section of this process by 14%. This is comparable with the
experimental uncertainty of Ref. [17] but can be detected in
dedicated future experiments.

The paper is organized as follows. In Sec. II we recall basic
relations for the electron bremsstrahlung. The double differen-
tial cross section and the Stokes parameters are discussed in
Secs. III A and III B, respectively. Section III C is devoted to
the comparison of the obtained results with the experimental
data from Ref. [17]. Finally, a summary is given in Sec. IV.

Relativistic units (me = h̄ = c = 1) and the Heaviside
charge units (e2 = 4πα) are utilized throughout the paper.

II. BASIC FORMALISM

A fully differential cross section of the electron
bremsstrahlung in the field of the ionic or atomic target is
given by

dσp f μ f ,kλ; piμi

dω d�kd�p f

= (2π )4ω2 p f ε f εi

pi
|τp f μ f ,kλ; piμi |2, (1)

where ε, p, and μ are the energy, asymptotic momentum, and
polarization of the electron in the initial (i) and final ( f ) states,
p = |p|, (ω, k) is the four-momentum of the emitted photon
with the polarization λ. The amplitude is expressed by

τp f μ f ,kλ; piμi =
∫

d3r � (−)†
p f μ f

(r)R̂†
kλ(r)� (+)

piμi
(r). (2)

Here the photon emission operator is defined as follows:

R̂†
kλ(r) = −

√
α

(2π )2ω
α · ε∗

λe−ik·r, (3)

where α stands for the vector of Dirac matrices and the
Coulomb gauge fixes the circular polarization vector ελ. The
wave functions of the incoming � (+)

pμ and outgoing � (−)
pμ elec-

trons are given by [18–20]

� (±)
pμ (r) = 1√

4π pε

∑
κmj

il e±iδκ
√

2l + 1C jμ
l01/2μ

× D j
mjμ

(ϕp, θp, 0)�εκmj (r). (4)

Here κ = (−1)l+ j+1/2( j + 1/2) is the Dirac quantum num-
ber determined by the angular momentum j and the parity
l , mj is the angular momentum projection, δκ is the phase
shift induced by the scattering potential (for details see Ap-
pendix B), CJM

j1m1 j2m2
is the Clebsch-Gordan coefficient, DJ

MM ′
is the Wigner matrix [21,22], and the azimuthal ϕp and polar
θp angles define the direction of the momentum p. The partial
waves,

�εκmj (r) = 1

r

(
Gεκ (r)�κmj (r̂)

iFεκ (r)�−κmj (r̂)

)
(5)

are the continuum Dirac eigenstates in the scattering central
potential V (r), where Gεκ and Fεκ are the large and small
radial components, �κmj is the spherical spinor [22], and
r̂ = r/|r|. In the present paper, V (r) is an effective (Coulomb
and screening) potential created by the nucleus and target
electrons,

V (r) = Vnucl(r) + Vscr (r) −−−−→
r→+∞ −αZas

r
, (6)

where Zas = Z − Ne with Ne being the number of target elec-
trons. We note that the constructed wave functions of the
incoming and outgoing electrons (4) effectively take into
account the electron-target interaction in a nonperturbative
manner.

Description of the target electrons by a spherically sym-
metric potential is an approximation which is well justified
for the collision energies above several keV. The residual
electron-correlation effects can be estimated by using differ-
ent screening potentials. It was found in Ref. [3] that for
neutral atoms differences between screening potentials are
within 1%, and our calculations confirm this. For very low
collision energies, however, the screening-potential approx-
imation may no longer be applicable, and one can expect,
e.g., the formation of resonances in the scattering process.
Investigations of such effects, although extremely interesting,
are beyond the scope of the present paper.

The multipole expansion of the photon field [18] is

ε∗
λe−ikr =

√
2π

∑
LML

i−L
√

2L + 1DL∗
MLλ(ϕk, θk, 0)

∑
p=0,1

(−iλ)pa(p)∗
LML

(r), (7)

where a(p)
LML

’s are the magnetic (p = 0) and electric (p = 1) vectors,

a(0)
LML

(r) = jL(ωr)YLLML (r̂),

a(1)
LML

(r) =
√

L + 1

2L + 1
jL−1(ωr)YLL−1ML (r̂) −

√
L

2L + 1
jL+1(ωr)YLL+1ML (r̂), (8)

with jL standing for the spherical Bessel function of the first kind [23] and YJLM are the vector spherical harmonics [22].
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Substituting Eqs. (3) and (4) into Eq. (2) and utilizing Eqs. (5) and (7), we obtain the bremsstrahlung amplitude expressed as
an infinite triple sum over the partial waves and photon multipoles,

τp f μ f ,kλ; piμi = 1

4π

√
α

2πω

1√
piεi p f ε f

∑
κimi

ili eiδκi

√
2li + 1

2 ji + 1
C jiμi

li0 1/2μi
D ji

miμi
(ϕpi , θpi , 0)

∑
κ f m f

i−l f eiδκ f
√

2l f + 1

× C
j f μ f

l f 0 1/2μ f
D

j f ∗
m f μ f (ϕp f , θp f , 0)

∑
LML

(−i)L
√

2L + 1C jimi
j f m f LML

DL∗
MLλ(ϕk, θk, 0)

∑
p=0,1

(−iλ)p〈εiκi‖α · a(p)∗
L ‖ε f κ f 〉. (9)

Here 〈εiκi‖α · a(p)∗
L ‖ε f κ f 〉 are the reduced matrix elements

whose explicit form is presented in Appendix A. Numerical
evaluation of the reduced matrix elements is a difficult task.
For the pure Coulomb potential, the method of calculation of
these elements was worked out in Ref. [5]. Here we expand
this algorithm to the case of the central potential being a
superposition of the Coulomb and short-range potentials. The
developed approach is discussed in details in Appendix B.

III. NUMERICAL CALCULATIONS

Here we concentrate on the evaluation of the
bremsstrahlung from electrons scattered off uranium
(Z = 92) targets in various charge states. Interest in this
system is formed by a series of performed [15–17] and
planned experiments. We restrict ourselves to the case when
the incident electron and the target are spin unpolarized, and
only the emitted photon is detected. For such a scenario,
all characteristics of the process are defined by the double
differential cross section (DDCS),

dσλ ≡ dσλ; pi

dω d�k
= 1

2

∑
μiμ f

∫
d�p f

dσp f μ f ,kλ; piμi

dω d�kd�p f

. (10)

Note that the description of the target by the effective central
potential, which is used in the present paper, does not allow to
take into account the polarization of the target. By calculating
the transition amplitude according to Eq. (9), one obtains the
DDCS as an infinite sum over the angular momentum quan-
tum number of the incoming (κi) and outgoing (κ f ) electron
and over the photon multipoles (L). In our calculations we
truncate the summation over κi and κ f and perform the finite
summations over all L allowed by the angular momentum
selection rules. In the cases studied in the present paper, it was
sufficient to truncate the summations by |κi,max| = 2|κ f ,max|
and |κ f ,max| = 13 · · · 17.

A. Double differential cross section

We start by studying the dependence of the DDCS on the
choice of the effective screening potential. Here, we consider
Perdew-Zunger (PZ) [24] and core-Hartree (CH) potentials
with the latter one defined as

V (CH)
scr (r) = α

∫ +∞

0
dr′ ρe(r′)

r>

, (11)

where r> = max(r, r′), the charge density is given by

ρe(r) =
Ne∑

i=1

[
G2

niκi
(r) + F 2

niκi
(r)

]
, (12)

and normalized to the number of electrons in the target,∫ +∞

0
dr ρe(r) = Ne. (13)

Here Gniκi and Fniκi are the solutions of the Dirac equation in
the combination of the nucleus field and the core-Hartree
potential (11), obtained in a self-consistent manner with the
use of the modified RADIAL package [25].

The normalized DDCS,

dσ = ω

Z2

∑
λ=±1

dσλ (14)

for the bremsstrahlung from 50 and 500 keV electrons in
the field of the Ne-like uranium U82+, being described by
different scattering potentials, is presented in Fig. 1. The
energy of the emitted photon ω = 0.99εi. In such a case,
when the photon carries away almost the whole energy of
the incoming electron, the influence of the target electrons on

FIG. 1. Normalized double differential cross-section (14) as a
function of the photon emission angle θk . The incident electron with
the kinetic energy εi = 50 keV (black) and 500 keV (red) is scattered
off the Ne-like uranium U82+, which is described by the Coulomb
potential with Zas = 82 (dotted), core-Hartree (solid), and Perdew-
Zunger (dashed-dot) potentials. The results for the bare uranium
U92+ (dashed) are presented as well. The photon energy ω = 0.99εi.
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the bremsstrahlung is the most pronounced. And, as a result,
the strong dependence of the DDCS on the choice of the
screening potential is expected. From Fig. 1, it is seen that the
difference between the DDCS, calculated with the CH and PZ
scattering potentials, is negligible. In what follows, therefore,
we perform the calculations only with the core-Hartree poten-
tial. Although the form of the screening potential almost does
not affect the results, taking into account of the short-range
potential leads to prominent changes in the DDCS, which
correspond to a rather large a difference between the dotted
and solid lines in the figure. This difference amounts to about
10% and 20% for low and high kinetic energies of the incident
electron. Figure 1 also shows that the cross sections for the
screening potentials lie in between the values for the purely
Coulomb potentials with the charges Z and Zas. This can be
explained as follows. In the case of the screening potential,
the incoming electron can penetrate the repulsion field of the
target electrons and decelerate via photon emission in the
vicinity of the nucleus. In this region, the nucleus charge is
almost unscreened, thus, resulting in the shift of the cross
section for the pure Coulomb potential with the charge Zas

toward the one for Z .
We now turn to the investigation of dependence of the

bremsstrahlung DDCS (14) on the number of target elec-
trons Ne. In Figures 2–4, we present the results for the
bremsstrahlung of 50−, 100−, and 500-keV electrons, respec-
tively, in the fields of the bare, Ne-like, Xe-like, and neutral
uranium targets. The scattering potential of the neutral atom
is described by a sum of three Yukawa terms [26,27],

Vneut (r) = −αZ

r

3∑
i=1

Aie
−αir, (15)

with Ai and αi standing for the potential amplitude and scal-
ing constant, respectively. We note that our results for the
neutral atom are in good agreement with ones from Ref. [5]
where completely different algorithms have been utilized.
From Fig. 2, it is seen that for low energies of the incident
electron, the dependence on the number of target electrons
becomes the most prominent. In contrast, at high energies,
the differences in the DDCS for different charge states of
the target become smaller. This can be explained as follows.
The bremsstrahlung from high-energy electrons comes mainly
from the region close to the nucleus, whereas the contribution
from the target electrons is of minor importance. For incident
electrons with low energies, the region of the dominant con-
tribution is shifted to distances that are closer to the spectator
electrons and, as a result, the dependence on the number of
the target electrons increases. It should also be mentioned that
the emitted photons with the energies ω = 0.99εi are mostly
emitted in the course of bremsstrahlung from the nuclear
region. In this case, as can be seen from Figs. 2–4, the curves
corresponding to the different charge states of the target lay
closer to each other when compared to other photon energies.

B. Stokes parameters

To study the polarization properties of the
bremsstrahlung, we consider the Stokes parameters defined

FIG. 2. Normalized double differential cross-section (14) as a
function of the photon emission angle θk . The results are represented
for the bare U92+ (black solid), Ne-like U82+ (red dashed), Xe-like
U38+ (blue dotted), and neutral (green dashed-dot) uranium targets.
The incident electron kinetic energy is εi = 50 keV. The photon
energies ω are as shown in the panels.

by

P1 = dσ0◦ − dσ90◦

dσ0◦ + dσ90◦
, P2 = dσ45◦ − dσ135◦

dσ45◦ + dσ135◦
,

P3 = dσ+1 − dσ−1

dσ+1 + dσ−1
. (16)
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FIG. 3. The same as Fig. 2 but for εi = 100 keV.

Here dσχ stands for the DDCS (10) of the linear polarized
bremsstrahlung with the polarization angle χ , whereas dσ+1

and dσ−1 are the cross sections for the emission of right and
left circularly polarized photons, respectively. To obtain the
expression for dσχ , one needs to replace ελ in Eq. (3) with the
vector of the linear polarization,

εχ = 1√
2

∑
λ=±1

eiλχελ. (17)

Since the incident electron and the target are spin unpolarized,
P2 and P3 are identically equal to zero [4]. Therefore, only
the degree of linear polarization P1 is relevant. In Fig. 5, the

FIG. 4. The same as Fig. 2 but for εi = 500 keV.

Stokes parameter P1 is shown as a function of the photon
emission angle θk for the same set of the parameters as in
Figs. 2–4. From this figure, it is seen that the dependence of
P1 on the number of target electrons is barely recognizable.

C. Radiative electron capture to the continuum

In collisions of highly charged heavy ions with light atoms
or molecules, an ion can capture an electron from the target
discrete spectrum. If the electron is captured to the projectile
continuum and one photon is emitted, the process is called
RECC. A theoretical description of RECC was first pre-
sented by Jakubassa-Amundsen in a series of papers [28–31].
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FIG. 5. The degree of linear polarization P1 as a function of the photon emission angle θk . The results are represented for the bare U92+

(black solid), Ne-like U82+ (red dashed), Xe-like U38+ (blue dotted), and neutral (green dashed-dot) uranium targets. The first, second, and
third rows correspond to the incident electron kinetic energies εi = 50, 100, and 500 keV, respectively. The photon energies ω = 0.25εi, 0.5εi,
0.75εi, and 0.99εi are presented in the first, second, third, and fourth columns, respectively.

Measurements of the RECC allow one to study electron
bremsstrahlung at the high-energy endpoint. At this endpoint
where the emitted photon carries away the highest possible
energy, the bremsstrahlung emission exhibits the most strong
dependence on the charge state of the projectile.

With this in mind, we turn to the theoretical description
of the RECC channel in the collision of Li-like uranium ions
with a supersonic gas-jet target of molecular nitrogen,

U89+(1s22s) + N2 → U89+(1s22s) + [N+
2 ]∗ + e−(ε f , θp f )

+ γph(ω, θk ).

This process was experimentally studied just recently in
Ref. [17]. In the projectile reference frame, the RECC process
is related to the high-energy endpoint of the bremsstrahlung
from the target quasifree electrons scattered off the heavy
projectile. Utilizing this relation and approximating the field
of the Li-like uranium by the pure Coulomb potential with
the charge Z = 89, the theoretical description has been per-
formed. Such a description accounts for the presence of the
target electrons only by means of the effective nuclear charge.

However, for considered energies of the incident quasifree
electrons ε′

i = 41.64 keV (here and throughout, primes refer
to the variables defined in the projectile reference frame), the
electronic structure can provide a significant contribution to
the cross section. Here we evaluate this contribution with the
usage of the developed algorithm.

To compare the theoretical results with the measured 0◦
electron spectra of the RECC one needs to average the
bremsstrahlung triple differential cross section (TDCS) over
laboratory-frame polar θp f and azimuthal ϕp f angles as fol-
lows [16,17]:

dσ (RECC)
pi

dω d�kd�p f

∣∣∣∣
θp f =0◦

= Zt

γ 2(1 − β cos θk )2

×
∫ θmax

0
dθp f

sin θ ′
p f

1 − cos θmax

×
∫ 2π

0

dϕp f

2π

∑
λ

dσ
(brem)
λ;pi

dω′d�′
kd�′

p f

.

(18)
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Here Zt = 7 is the nuclear charge of the target nitrogen atom,
β = 0.3808 and γ = 1.081 are the velocity and Lorentz fac-
tors of the projectile, respectively, and the prefactor originates
from the relation between the solid angles in the projectile
d�′

k and laboratory d�k frames (see, e.g., Ref. [32]),

d�′
k

d�k
= 1

γ 2(1 − β cos θk )2
. (19)

The bremsstrahlung TDCS is averaged over the initial and
summed over final polarizations and averaging over 0◦ �
θp f � θmax and 0◦ � ϕp f < 360◦ covered by the spectrometer
is held. The emission angles of the scattered electron θ ′

p f
and

emitted photon θ ′
k in the projectile frame are connected to the

observation angles θp f and θk in the target frame as follows:

θ ′
p f

= π − arctan

[
sin θp f

γ (cos θp f − βε f /p f )

]
, (20)

θ ′
k = π − arctan

[
sin θk

γ (cos θk − β )

]
. (21)

The relation of the projectile-frame energies ε′
f and ω′ to the

corresponding observables in the target frame is given by the
Lorentz transformation,

ε′
f = ε′

i + γ ε f − γ βp f cos θp f , (22)

ω′ = γω(1 − β cos θk ). (23)

We fix the photon emission angle θk = 90◦ (θ ′
k = 67.6◦ in

the projectile reference frame) and the maximal polar angle
θmax = 3.0◦ to match the conditions in Ref. [17].

In Fig. 6, the TDCS of RECC is presented as a func-
tion of the captured electron energy in the laboratory (target)
frame. The experimental TDCS measured on a relative scale
were normalized to the theoretical results employing the core-
Hartree potential. Note that the experimental data points for
the energies below the cusp energy (in the target frame) some-
times have negative values. It is a consequence of the applied
background correction, in which the background counts are
subtracted from the total number of counts. From Fig. 6, it is
seen that the results obtained for the core-Hartree potential,
which effectively accounts for the interaction of the quasifree
electron with the Li-like uranium ion, differs from the ones
obtained for the pure Coulomb potential. We conclude that
taking into account the screening effects leads to significant
changes in TDCS. As the photon energy ω′ approaches the
initial kinetic energy of the electron ε′

i, the difference between
two theoretical curves increases and reaches 14% at the high-
energy endpoint. At lower photon energies, the deviation is
about 10%. The uncertainty of the experimental data from
Ref. [17] was dominated by the statistical uncertainty, which
could be reduced straightforward in a future measurement.
Therefore, such a deviation can, in principle, be detected in
experiment. This justifies the importance of the calculations
accounting for the electron-target interaction in a nonpertur-
bative regime.

IV. CONCLUSION

In this paper, we have presented the fully relativistic de-
scription of the electron bremsstrahlung in the field of ionic

Expt.

FIG. 6. The RECC triple differential cross section as a function
of the measured electron energy. The photon emission angle is fixed
as θk = 90◦ and the TDCS is averaged over 0◦ � θp f � 3.0◦ and
0◦ � ϕp f < 360◦. The results are shown for U89+ described by the
core-Hartree potential (red solid) and pure Coulomb potential with
Z = 89 (black dashed dot). Experimental data from Ref. [17] are
represented by (blue) solid circles with error bars due to the statistical
uncertainty.

targets. The electron-target interaction was treated nonper-
turbatively by using solutions of the Dirac equation for the
combination of the Coulomb and the screening potentials for
the incoming and outgoing electrons. In the case of the pure
Coulomb and a finite-range potential, our calculations were
shown to agree with those reported in Ref. [5].

The developed approach was applied to the evaluation of
the double differential cross sections and Stokes parameters
of the bremsstrahlung from the bare, Ne-like, Xe-like, and
neutral uranium. We found that for 50-keV incident electrons
taking into account the screening effects alters the double
differential cross section by 10–20% as compared to the case
of the pure Coulomb potential. In contrast, the linear polariza-
tion of the bremsstrahlung was shown to be insensitive to the
charge state of the target.

Furthermore, we have applied the developed method to
the calculation of the radiative electron capture to the con-
tinuum in the collision of the Li-like uranium ions with
molecular nitrogen, which was experimentally studied re-
cently in Ref. [17]. It was demonstrated that accounting for
the electronic structure of U89+ projectile results in significant
changes in the triple differential cross section. The changes
as high as 14% were found in comparison with the results
obtained for the pure Coulomb potential with the effective
charge Z = 89 (used in Ref. [17]). Effects of this magnitude
can be detected in modern experiments at heavy-ion storage
rings. We conclude that the screening effects should be taken
into account in the theoretical description of the electron
bremsstrahlung from the highly charged ions in the energy
region of a few tens of keV.
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On the experiment side, heavy-ion storage rings offer flex-
ible conditions regarding the collision systems where intense
beams of basically any element in a selected charge state
can be provided for collisions with any gaseous internal
target [33]. With the commissioning of FAIR, such highly
charged ion beams will be available in a broad range of
energies from basically at rest up to a few GeV/u [34]. The
developed here methodology is important for guiding current
as well as future experiments.
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APPENDIX A: REDUCED MATRIX ELEMENTS

Results for the reduced matrix elements in Eq. (9) are

(−i)〈εiκi‖α · a(0)∗
L ‖ε f κ f 〉 = PLL(i, f ),

(−i)〈εiκi‖α · a(1)∗
L ‖ε f κ f 〉 =

√
L + 1

2L + 1
PLL−1(i, f )

−
√

L

2L + 1
PLL+1(i, f ). (A1)

Here the radial integrals are given by

PJL(i, f ) =
∫ +∞

0
dr jL(ωr)[SJL(κi,−κ f )Gεiκi (r)Fε f κ f (r)

− SJL(−κi, κ f )Gε f κ f (r)Fεiκi (r)], (A2)

where the angular coefficients SJL(κi, κ f ) are defined as in
Ref. [5],

SJL(κi; κ f ) = (−1)l f

√
3

2π
� ji j f li l f JCL0

li0 l f 0

⎧⎨
⎩

ji li 1/2
j f l f 1/2
J L 1

⎫⎬
⎭,

(A3)

with �ab···c = √
(2a + 1)(2b + 1) · · · (2c + 1) and {· · · }

stands for 9 j symbol [22].

APPENDIX B: RADIAL FUNCTIONS

Outside the finite-range potential, the radial parts of the
electron continuum wave functions are expressed through the
solutions of the Dirac equation in the pure Coulomb potential
with the effective asymptotic charge Zas as follows:

(Gεκ Fεκ ) = cos δscr
(
G(reg)

εκ F (reg)
εκ

) + sin δscr
(
G(irr)

εκ F (irr)
εκ

)
,

(B1)

where the phase shift δscr is induced by the short-range screen-
ing potential. This phase shift is calculated with the use of
the modified RADIAL package [25] by matching the inner
solutions for the finite-range potential with the asymptotic
point-Coulomb Dirac solutions as described in Ref. [25]. The
regular and irregular at origin solutions can be expressed in
terms of the Coulomb functions [23,25],

(
G(reg)

εκ

F (reg)
εκ

)
= N

(
p
√

γ 2 + ν2(γ + κ )Fγ (−ν, pr) + αZas(εκ − γ me)Fγ−1(−ν, pr)

αZas p
√

γ 2 + ν2Fγ (−ν, pr) + (γ + κ )(εκ − γ me)Fγ−1(−ν, pr)

)
, (B2)

(
G(irr)

εκ

F (irr)
εκ

)
= N

(
p
√

γ 2 + ν2(γ + κ )Gγ (−ν, pr) + αZas(εκ − γ me)Gγ−1(−ν, pr)

αZas p
√

γ 2 + ν2Gγ (−ν, pr) + (γ + κ )(εκ − γ me)Gγ−1(−ν, pr)

)
. (B3)

Here N is the normalization factor defined as

N =
√

ε + me

π p

1

γ
√

p2(γ + κ )2 + α2Z2
as(ε + me)2

, (B4)

with γ =
√

κ2 − (αZas)2 and the Sommerfeld parameter ν = αZasε/p. The Coulomb functions in (B2) and (B3) can be expressed
through the Whittaker functions of the second kind Wα,β as follows [23]:

Fλ(η, ρ) = H+
λ (η, ρ) − H−

λ (η, ρ)

2i
, Gλ(η, ρ) = H+

λ (η, ρ) + H−
λ (η, ρ)

2
, (B5)

H±
λ (η, ρ) = eπη/2 exp

{
∓i

[
πλ

2
− σλ(η)

]}
W∓iη, λ+1/2(∓2iρ), (B6)

with σλ(η) standing for the argument of the Euler’s gamma function �(λ + 1 + iη) [23].
Since the integrand in (A2) is an oscillating function, we apply the rotation of the integration path into the complex plane.

For this purpose, the integral PJL(i, f ) is divided into two parts,

PJL(i, f ) = P(R)
JL (i, f ) + P(C)

JL (i, f ), (B7)
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where the first part,

P(R)
JL (i, f ) =

∫ R

0
dr jL(ωr)[SJL(κi,−κ f )Gεiκi (r)Fε f κ f (r) − SJL(−κi, κ f )Gε f κ f (r)Fεiκi (r)] (B8)

is calculated numerically utilizing functions and subroutines from the modified RADIAL package [25]. The remaining part,

P(C)
JL (i, f ) =

∫ +∞

R
dr jL(ωr)[SJL(κi,−κ f )Gεiκi (r)Fε f κ f (r) − SJL(−κi, κ f )Gε f κ f (r)Fεiκi (r)] (B9)

is a linear combination of integrals,

I ≡ Iαi,βi ; α f ,β f ; L(si, s f ) =
∫ +∞

R
dr jL(ωr)Wαi,βi (2ipisir)Wα f ,β f (2ip f s f r), (B10)

where si and s f are equal to +1 or −1. The point R is chosen so that for r > R the asymptotics of all appearing Whittaker
functions,

Wα,β (z) −−−−→
|z|→+∞

e−z/2zα

[
N−1∑
n=0

(1/2 − α + β )n(1/2 − α − β )n

n!
(−z)−n + O(|z|−N )

]
(B11)

converge with the required accuracy. Here (x)n = x(x +
1) · · · (x + n − 1) stands for the Pochhammer’s symbol [23].
It can be seen from (B11) that the Whittaker functions
Wα,β (2ipr) and Wα,β (−2ipr) are regular in the lower and
upper halves of the complex r plane, respectively. They both
decrease exponentially with r moving away from the real axis.
Substituting (B11) into (B10) and utilizing the explicit form of
Bessel functions [23],

jL(z) =
∑
s=±1

L∑
n=0

(−is)L+1−n (L + n)!

n!(L − n)!

eisz

(2z)n+1
, (B12)

we arrive at

I =
∫ +∞

R
dr rαi+α f −1

∑
s=±1

ei(sω−si pi−s f p f )r
∑
n�0

cn

rn
. (B13)

Since for the bremsstrahlung process pi > p f + ω, we per-
form the π/2 rotation of the integration path to the upper
half of the complex r plane for si = −1 and to the lower one
for si = +1. Employing the change in variables r = R + isiξ

gives us the converging factor e−piξ in each integral I .
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