
PHYSICAL REVIEW A 105, 052802 (2022)

Bohr-Weisskopf effect: From hydrogenlike-ion experiments to heavy-atom
calculations of the hyperfine structure
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We study the influence of electron screening on the Bohr-Weisskopf (BW) effect in many-electron atoms.
The BW effect gives the finite-nucleus magnetization contribution to the hyperfine structure. Relativistic atomic
many-body calculations are performed for s and p1/2 states of several systems of interest for studies of atomic
parity violation and time-reversal-violating electric dipole moments—Rb, Cs, Fr, Ba+, Ra+, and Tl. For s states,
electron screening effects are small, and the relative BW correction for hydrogenlike ions and neutral atoms is
approximately the same. We relate the ground-state BW effect in H-like ions, which may be cleanly extracted
from experiments, to the BW effect in s and p1/2 states of neutral and near neutral atoms through an electronic
screening factor. This allows the BW effect extracted from measurements with H-like ions to be used, with
screening factors, in atomic calculations without recourse to modeled nuclear structure input. It opens the way
for unprecedented accuracy in accounting for the BW effect in heavy atoms. The efficacy of this approach is
demonstrated using available experimental data for H-like and neutral 203Tl and 205Tl.
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I. INTRODUCTION

Precision studies of the hyperfine structure in heavy atoms
and ions play an important role in atomic and nuclear physics.
They allow for stringent tests of quantum electrodynamics in
strong electromagnetic fields [1–3], determination of nuclear
magnetic moments [4–7] and tests of nuclear structure models
[8–16], as well as tests of atomic structure theory needed for
precision atomic searches for physics beyond the standard
model [17–19].

In precision hyperfine calculations, one must account for
the finite distribution of the nuclear magnetic moment across
the nucleus, which gives a contribution to the hyperfine struc-
ture known as the Bohr-Weisskopf (BW) effect [20]. For
heavy systems, it is not currently possible to obtain this in-
formation from nuclear structure calculations with sufficiently
high accuracy for a number of applications, and other methods
are sought to deduce or control it. A notable example is in tests
of bound-state quantum electrodynamics (QED) in hydrogen-
like ions: the size of the BW effect is comparable to the size
of the QED radiative corrections, and a method to remove the
BW contribution in a specially constructed difference of the
effects in H-like and Li-like ions is utilized [21].

The last few years have seen a resurgence of interest in
the Bohr-Weisskopf effect and in improved modeling of the
nuclear magnetization distribution. This includes its use in
the determination of nuclear magnetic moments [5–7], in un-
derstanding the neutron distribution in nuclei [12,13], and in
reliable tests of atomic wave functions in the nuclear vicinity
[22,23]. The high sensitivity of the hyperfine structure to
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modeling of the finite nuclear magnetization distribution for
a number of systems of interest for precision atomic tests
of the standard model has only recently come to light [24].
In some cases this amounts to a difference in the hyperfine
structure of several percent. Inaccurate modeling of the nu-
clear magnetization distribution and BW effect has significant
ramifications for fundamental physics tests, and the ability to
test these models is critically important to these areas of study
[16,24].

Progress has been made recently in testing nuclear mag-
netization models using available experimental data for
heavy atoms. Studies of the differential hyperfine anomaly—
the difference in nuclear-size effects for different isotopes
of the same system—support the validity of the nuclear
single-particle model for many of the considered atoms
[5,7,12,13,15,16,25]. The adoption of this model in place of
the widely used uniformly magnetized ball model represents
an advancement in the treatment of nuclear structure effects
in heavy atoms and leads to a significant shift in the hyperfine
structure in some cases.

While the differential hyperfine anomaly gives a much-
needed window into the nuclear magnetization distribution, it
tests the difference in the BW effect between isotopes, while a
test for a single isotope would provide a more powerful probe.
For many-electron atoms, the atomic theory uncertainty limits
the direct extraction of the BW effect from comparison of
calculated and measured values for the hyperfine structure.
Remarkably, this was carried out successfully [23] for an
isotope of Ra+ for the unusual case in which the BW effect
is several times larger than the atomic theory uncertainty
[23,24], with a BW uncertainty approaching 10% (taking the
atomic theory uncertainty to be 0.5%). Direct extraction for
high-lying levels of heavy atoms is another possibility, where
the atomic theory uncertainty is expected to be significantly
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smaller than for the lower levels [22,26]. To overcome lim-
itations due to modeling of the BW effect in heavy atoms,
it has been proposed to replace the effect with a ratio of
measured and calculated values of the hyperfine structure [22]
in a similar vein to the specific difference method used to test
QED [21] (see also discussion of the methods in Ref. [27]).

In the current paper, we consider extraction of the
Bohr-Weisskopf effect from hydrogenlike ions for use in
many-electron atoms. Indeed, the cleanest way to probe the
magnetization distribution is through measurements with H-
like ions, due to the high precision of both measurements and
theory. Note that while in muonic atoms the size of the BW
effect may be an overwhelming ∼100% of the size of the total
hyperfine interval, uncertainties connected to the experiments
and theory hinder the high-precision determination of the ef-
fect [28,29]. Measurements have been performed for several
H-like ions of interest for tests of QED, including 209Bi82+

[30], 207Pb81+ [31], and 203,205Tl80+ [9]. The Bohr-Weisskopf
effects for these systems have been extracted with uncertain-
ties at the level of 1% (see, e.g., Ref. [11], and Refs. [5,15]
with updated nuclear magnetic moment values for 209Bi [3]
and 207Pb [32]).

In this paper, we study the effects of electron screening on
the BW effect and calculate screening factors that relate the
ground-state BW effect in H-like ions to the effect in s and
p1/2 states of neutral and near neutral atoms for systems of
interest for precision atomic searches for new physics. This
approach is based on the same principle highlighted in a recent
work [23] on the theory of the BW effect in molecules—
that the BW effect in atoms (and molecules) is determined
fundamentally by the BW matrix element for the 1s state of
the H-like system. The uncertainty of the screening factors
for s states of many-electron atoms is negligibly small. We
demonstrate the validity of the approach with Tl, for which
there are both H-like and neutral-atom precision hyperfine
data available. It is hoped that this paper will stimulate new
experiments with H-like ions for the considered systems.

II. THE BOHR-WEISSKOPF EFFECT

The relativistic electron Hamiltonian for the interaction
with the nuclear magnetic dipole moment is

hhfs = α μ · (n × α) F (r)/r2, (1)

where α is a Dirac matrix, n = r/r is the radial unit vec-
tor, μ = μI/I with I the nuclear spin and μ the magnetic
moment, α ≈ 1/137 is the fine-structure constant, and F (r)
describes the nuclear magnetization distribution [F (r) = 1
for the pointlike case]. We use atomic units (h̄=|e|=me=1,
c=1/α) unless stated otherwise. Matrix elements of the oper-
ator (1) may be expressed as A〈I · J〉, where J is the total
electron angular momentum, and A is the magnetic dipole
hyperfine constant.

The contribution to the hyperfine structure arising from
account of the finite nuclear magnetization distribution is
known as the Bohr-Weisskopf effect [20]. This is a sizable
effect for heavy nuclei and typically enters at the percent level.
In this paper we use two nuclear magnetization models—
the uniform distribution (“ball” model) and a simple nuclear
single-particle model. Until recently it has been standard

practice in the heavy-atom community to use the ball model
or to use the same (Fermi) model that describes the nuclear
charge distribution. In the ball model,

FBall(r) = (r/rm)3 for r < rm, (2)

and FBall(r) = 1 for r > rm. A value for the nuclear magnetic
radius, rm, is usually found from the root-mean-square (rms)
charge radius rrms, rm = √

5/3 rrms. It has been shown re-
cently [5,16,22,24] that for a number of systems of particular
interest in studies of fundamental symmetries violations the
ball model leads to sizable errors in the calculated hyper-
fine constants by as much as several percent. A model that
has been shown [5,15,16] to be substantially more accurate
for such systems is the simple nuclear single-particle model
[20,33,34]. Indeed, recent studies of the differential hyper-
fine anomaly [5,15,16] (see also Refs. [12,13]) support the
single-particle model for isotopes of Rb, Cs, Ba+, Fr, and
Tl. The results for Fr are also supported from measurements
in 207Pb81+ and 209Bi82+ (see, e.g., supplemental material in
Ref. [5]) and those for Tl from measurements in 203,205Tl

80+

(as discussed below). Further, the BW effect for 225Ra
+

has
been directly extracted [23] from atomic measurements, in
good agreement with the single-particle model. The mag-
netization distribution in the single-particle model may be
included in many-electron atomic calculations in a straight-
forward way [35]:

FSP(r) = FBall(r)[1 + �F (I, L, r/rm)]. (3)

Expressions for the term �F , which depends on the nuclear
spin, configuration, and magnetic moment, may be found in
Refs. [35,36]. The simplest version of the model [36]—which
we use in this paper—takes the nucleon wave function to be
constant across the nucleus, and excludes nuclear spin-orbit
effects. More sophisticated modeling, in the Woods-Saxon
potential and with spin-orbit interaction included [8,37], leads
to relatively small corrections for 87Rb, 133Cs, 211Fr [24], and
isotopes of Tl [15] (see also Refs. [8,38]).

It is convenient to express the hyperfine constant in the
following form (see, e.g., Ref. [34]):

A = A0(1 + ε) + δAQED, (4)

with the Bohr-Weisskopf effect given as a relative contribution
ε. Here, A0 corresponds to the hyperfine constant found with
a pointlike nuclear magnetization distribution (F = 1) and
with a finite nuclear charge distribution. We model the latter
using a Fermi distribution, with the rms charge radii from
Ref. [39] and the thickness parameter taken to be 2.3 fm. It is
particularly useful to parametrize the BW effect as a relative
rather than an absolute correction, as for heavy alkali-metal-
like atoms and ions ε is, to a high degree, independent of
(i) electron correlation effects beyond core polarization, (ii)
principal quantum number, and (iii) ionization degree (for s
states), as we explore further below. All of this is a conse-
quence of the short-range nature of the BW effect; see, e.g.,
Ref. [21], and discussion below. The QED contribution to
the hyperfine structure, δAQED, must also be considered, as
it enters with comparable size to the Bohr-Weisskopf effect
[8] (see also, e.g., Refs [11,24,36,40–43]).
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For hydrogenlike ions, the simple atomic structure allows
for calculations with particularly high precision. Accurate de-
termination of the Bohr-Weisskopf effect from experiments is
therefore possible,

A1s
expt = A1s

0 (1 + ε1s) + δA1s
QED, (5)

as long as the QED contribution δA1s
QED and the nuclear

magnetic moment—which enters both terms on the right-
hand side of Eq. (5)—are known sufficiently well. Indeed,
the QED contributions have been evaluated with high pre-
cision for hydrogenlike ions spanning much of the periodic
table [8,21,34,36,37,40,42,44–49]. The BW effect is known
to ∼1% or better from measurements with 203,205Tl

80+
[9],

207Pb81+ [31], and 209Bi82+ [2].

A. Electron screening

For many-electron atoms, the situation is different, and
direct extraction of the BW effect from comparison of theory
with experiment is strongly limited by uncertainties in the
atomic structure that enter A0. We proceed by introducing an
electron screening factor,

xscr = ε/εH-like, (6)

and express the hyperfine constant for many-electron systems
as

A = A0(1 + xscr εH−like ) + δAQED, (7)

where εH−like is the BW effect for the 1s or 2p1/2 state of
the H-like ion of the same nucleus. For states with j > 1/2,
the Bohr-Weisskopf effect is essentially zero in the hydro-
genlike case, and only becomes nonzero for many-electron
atoms due to core polarization effects. The screening factors
depend only very weakly on the nuclear model and on atomic
many-body effects beyond core polarization, as we explore
further below, and they may therefore be determined with high
accuracy.

Indeed, the possibility to accurately determine such elec-
tronic screening factors forms the basis of the specific
difference approach for removal of the BW effect in tests of
QED, which has been formulated for Li-like ions and imple-
mented for Li-like Bi [3,21,50].

It is worth noting that QED corrections δAQED to the hy-
perfine structure for many-electron atoms may be rigorously
evaluated, with uncertainties well below those connected to
nuclear structure evaluation of the BW effect. Calculations
have been performed for the ground states of the alkali-metal
atoms in Ref. [41], and for the lowest-lying p1/2 and p3/2

states in Refs. [42,49]. High-precision calculations of the hy-
perfine structure for the ground states of Rb, Cs, Ba+, Fr, and
Ra+ were carried out in Ref. [24], and the QED corrections
evaluated with uncertainties amounting to only 0.1% or less
of the hyperfine constants.

To elucidate the behavior of the electron wave functions at
small distances and the BW effect, consider the single-particle
Dirac equation (HD − ε)φ = 0, where

HD = c α · p + (β − 1) c2 + V, (8)

with p the electron momentum operator, β a Dirac matrix, and
V the sum of nuclear and electronic potentials. We express the

single-particle electron orbitals as

φnκm(r) = 1

r

(
fnκ (r) 
κm(n)

ignκ (r) 
−κ,m(n)

)
, (9)

where f and g are the large and small radial components
of the orbital [normalized as

∫
( f 2 + g2) dr = 1], 
 are

two-component spherical spinors, n is the principal quan-
tum number, and κ = (l − j)(2 j + 1) is the Dirac quantum
number (with j and l the total and orbital angular momen-
tum quantum numbers, and m = jz). Then, for a spherically
symmetric potential V (r), the single-particle radial Dirac
equation may be expressed for a given κ as[

V (r) − ε c(κ/r − ∂r )
c(κ/r + ∂r ) V (r) − ε − 2c2

][
fnκ

gnκ

]
= 0. (10)

The Bohr-Weisskopf effect can be seen via Eqs. (1) and (4)
to depend on the factor F (r) − 1, which is nonzero only inside
the nucleus:

εnκ =
∫ rm

0 fnκ (r)gnκ (r) [F (r) − 1]/r2 dr∫
fnκ (r)gnκ (r)/r2 dr

. (11)

At small radial distances, r � a0/Z , the electronic screen-
ing potential is negligible, and V ≈ −Z/r. It is seen from
Eq. (10) that for a given κ the only state dependence comes
from the energy ε. Since |V | � |ε|, the electron wave func-
tions for each angular symmetry differ only by a multiplicative
constant in this region, determined by the normalization of
the wave function. This applies to states of different principal
quantum number n of the same atom, and is valid across all
degrees of ionization of the atom, from neutral to H-like. In
the context of the Bohr-Weisskopf effect, this behavior has
been exploited in the formulation of the specific difference
[21] and ratio [22] methods, and the n independence of the
BW effect has been observed experimentally in neutral 85,87Rb
[51,52].

Note furthermore that in the nuclear region the potential
|V | � mc2, and there is a symmetry between the fκ and gκ ′

components with κ ′ = −κ , as may be seen from Eq. (10).
Therefore, in this region fs1/2 ∝ gp1/2 and fp1/2 ∝ gs1/2 , and the
integrand in the numerator of Eq. (11) for s and p1/2 states is
different only by a numerical factor. The above consideration
means that the nuclear magnetization effects in atoms (and
molecules) may be related fundamentally to the BW matrix
element for the 1s state of the H-like system, a point that was
highlighted in a recent work by Skripnikov [23] in which the
theory for molecules was set out and applied to RaF.

Though the s-state Bohr-Weisskopf effect depends only
weakly on correlation effects, the many-body effect known
as core polarization (hyperfine correction to the states in the
atomic core) gives an important contribution, particularly for
states with l > 0 [53]. We include this effect in the calcula-
tions via the relativistic time-dependent Hartree-Fock (TDHF)
method, equivalent to the random-phase approximation with
exchange. Calculations are performed in the V N−1 approxima-
tion (N refers to the total number of electrons in the system),
with the N − 1 core electrons solved for self-consistently in
the average potential formed by the remaining core electrons.
Thallium is also treated using this approach, with the 6s2 sub-
shell relegated to the core. Without core polarization, this is
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TABLE I. Electron screening factors xscr [Eq. (6)] for the lowest s1/2 (p1/2) states of several atoms of interest with respect to the 1s1/2

(2p1/2) states of their H-like counterparts. These are strongly n and isotope independent (see text). The ratio ηsp [Eq. (14)] for H-like systems
is presented in the last row. An empty cell indicates that the value is consistent with zero within errors.

87Rb 133Cs 135Ba
+ 203,205Tl 211Fr 225Ra

+

xscr (s1/2) 1.022 1.047 1.048(3) 1.088 1.104 1.103(2)
xscr (p1/2) 0.61(4) 0.72(3) 1.40(4) 0.997(3) 1.021(5)
ηsp 21.3 9.07(5) 8.65(1) 3.60 3.02(1) 2.93

the relativistic Hartree-Fock (RHF) approximation and V N−1

is the RHF potential. The valence electron wave functions
and binding energies are found in this potential. Account of
core polarization leads to a correction to the potential δV
that is first order in the external field (hyperfine interaction)
and all orders in the Coulomb interaction. It is found by
self-consistently solving the set of TDHF equations

(H − εc)δψc = −(hhfs + δV − δεc)ψc (12)

for the core electrons. Here, H , ψc, and εc are the RHF
Hamiltonian, core electron orbitals, and core electron binding
energies, respectively, and δψc and δεc are hyperfine-induced
corrections for core orbitals and energies. The core polar-
ization correction to the hyperfine structure is included by
replacing the hyperfine operator hhfs with hhfs + δV in the
valence electron matrix element. This well-known method has
been described at length many times before, and we refer the
reader to Ref. [54] and to recent works [5,16,24,26] for details
about implementation for the hyperfine structure.

Our calculated electronic screening factors for the lowest s
and p1/2 states of Rb, Cs, Fr, Tl, Ba+, and Ra+ are presented
in Table I. The BW effects for many-electron atoms were
found from TDHF calculations for the hyperfine structure, the
relative difference between results with the finite- and point-
nucleus magnetization distributions yielding ε; these values
have been reported in our recent papers on the BW effect
[5,16,24]. The screening factors are found by taking the ratio
of the BW result in atoms with that for the hydrogenlike coun-
terpart. While the Bohr-Weisskopf effect depends strongly on
the nuclear model and on the nuclear magnetic radius, the
screening factors do not, which means they may be calculated
with high accuracy without the need for a sophisticated nu-
clear model. This is demonstrated in Fig. 1. To estimate the
uncertainties in the screening factors, we include an error term

equal to the largest difference between the values calculated
using the single-particle and ball models, both with and with-
out the inclusion of dominant correlation corrections beyond
TDHF (the correlation potential; for details see Ref. [54], and
Refs. [5,24,26] for recent implementations). On top of this,
we include an error term equal to 5% of the core polarization
correction to xscr, which is sizable for p1/2 states though neg-
ligible for s states, to capture missed higher-order many-body
effects.

The screening factors presented in Table I are also ap-
plicable with high accuracy to the atomic states with higher
principal quantum number (e.g., n = 7, 8, 9, . . . for Cs); the
n independence was demonstrated for the BW effect in
Ref. [24]. It is worth emphasizing that the screening factors
are also strongly isotope independent.

B. H-like s-p ratio

Motivated by the symmetry between fs/p and gp/s, and
noting that (for hydrogenlike ions)

A0(1 + ε) = 2gI μN κ

j( j + 1)

∫
fnκ (r)gnκ (r) F (r)/r2 dr, (13)

where gI = μ/(μN I ) and μN is the nuclear magneton, we
construct the ratio

ηsp = ε1s/ε2p1/2 (14)

for hydrogenlike ions. To a good approximation, the ratio of
the BW effects for s and p1/2 states is independent of principal
quantum number, due to the proportionality relations that hold
in the nuclear region, and the ratio scales with nuclear charge
as Z−2, as described below.

Calculated values for ηsp are given in Table I. The results
depend only to a small extent on the finite nuclear charge
distribution. For example, for Cs54+, the value for ηsp (in the
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FIG. 1. Effect of relative changes in the nuclear magnetic radius for 133Cs on the 6s Bohr-Weisskopf effect (left), the hydrogenlike
ε(1s)/ε(2p1/2) ratio (middle), and the 6s screening factor (right). The Bohr-Weisskopf effect depends strongly on the nuclear model and
on the nuclear magnetic radius, while the screening factors and εs/εp ratios do not. The scale of the dependence is similar for other atoms.
Here, ε0, x0, and η0 correspond to nuclear single-particle model values found with magnetic radius rm = rc = √

5/3 rrms. The nuclear spin and
parity for 133Cs are Iπ = 7/2+.
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nuclear single-particle model) changes from 9.0 to 9.1 when
the finite nuclear charge distribution is accounted for. These
ratios also depend only to a small extent on the nuclear mag-
netization model and effective magnetic radius. For Cs54+, the
ratios differ by �0.5% between the ball and single-particle
models; see Fig. 1. For reasonable variations in the magnetic
to charge radius, the resulting uncertainties are negligibly
small. These have been taken into account in the uncertainty
estimates in the results presented in Table I. Our finding of
the robust nature of the ratio to changes in nuclear structure
is in agreement with calculations of the closely related ratio
ε2s/ε2p1/2 that was the subject of a recent study [6]. In that
work [6], excellent agreement with the results of analytical
calculations [34] was demonstrated, and the ratio was shown
to be given by (εns/εnp1/2 )−1 = 3/4 Z2α2 to leading order.
This relation is also correct to leading order for 1/ηsp, and
gives values that are in agreement with our results to within
about 10%.

If measurements are made of the hyperfine splitting of the
ground state of a hydrogenlike ion, the empirical value for the
BW effect ε1s may be accurately extracted [Eq. (5)]. Then,
the calculated ratio ηsp may be used to determine the p1/2

hydrogenlike BW effect. These, together with the calculated
screening factors xscr, may be used to determine the BW
effects in s and p1/2 states of many-electron atoms with high
accuracy as follows:

As = As
0

[
1 + xs

scr ε1s
] + δAs

QED,

Ap = Ap
0

[
1 + (xp

scr/ηsp) ε1s
] + δAp

QED.
(15)

We note, furthermore, that the BW effects for states with
higher angular momenta (p3/2, d3/2, . . .) may be determined
from the H-like 1s BW effect in a similar way; nonzero
BW effects for these states arise only due to account of
many-body effects, in particular core polarization. Therefore,
the proposed method removes entirely the nuclear structure
uncertainty from atomic many-body calculations of the hy-
perfine structure.

III. DEMONSTRATION WITH THALLIUM

To demonstrate the method and its effectiveness, we
consider two isotopes of thallium, 203Tl and 205Tl, that
have been widely studied in the context of the hyper-
fine structure and the BW effect; see the theoretical works
[8,10,15,16,34,38,53,55,56]. This is the simplest heavy-atom
system for which experimental data [9,57,58] are available
both for the hydrogenlike ion and neutral atom.

Empirical values for the BW effects in the 1s state of
hydrogenlike 203Tl and 205Tl are presented in Table II. These
were found from measured hyperfine splittings in these ions
[9], along with the QED value calculated in Ref. [8] and
the small Wichmann-Kroll magnetic loop correction from
Ref. [37] amounting to δA1s

QED = −0.0116(1) (μ/μN ) eV—
in excellent agreement with a value extrapolated from
Ref. [40])—together with our calculated values for A1s

0 . (Note
that we have introduced the uncertainty for δA1s

QED, which may
be conservative.) Then, with our calculated ratio ηsp presented
in Table I, we can infer with reasonably high accuracy the
BW effect for the 2p1/2 state. Finally, using the screening

TABLE II. BW effect, ε (%), for 1s and 2p1/2 states of H-like
Tl, and 6p1/2 and 7s states of neutral Tl. Single-particle model (SP)
values are shown alongside results found using the measured value
for H-like 1s.

ε (SP) ε (empirical)a

Tlb 203Tl 205Tl Method

H-like 1s1/2 −1.95 −2.216(10) −2.236(11) Expt.
2p1/2 −0.54 −0.616(3) −0.621(3) ηsp

Neutral 6p1/2 −0.78 −0.86(3) −0.87(3) ηsp, xscr

7s1/2 −2.13 −2.41(1) −2.43(1) xscr

aFound using H-like 1s measurement [9], QED calculations [8,37],
and atomic calculations (A0, x, and η) from this paper.
bWith Iπ = 1/2+, the SP and ball models coincide for 203Tl and 205Tl,
and the BW effect is nearly the same for these isotopes.

factors (Table I), we can find the BW effect for the 6p1/2

and 7s1/2 states for neutral Tl. These results are presented
in Table II, along with calculated values for ε. Note that for
the considered Tl isotopes the single-particle model and ball
models coincide, since they have spin and parity designations
Iπ = 1/2+.

To test the empirically deduced BW values we have ob-
tained for neutral Tl, we consider the differential hyperfine
anomaly [59]

1�2 ≡ A(1)/g(1)
I

A(2)/g(2)
I

− 1 ≈ ε (1) − ε (2) + δ(1) − δ(2), (16)

for which there are accurate experimental data. The QED
contributions to the hyperfine constants are very weakly iso-
tope dependent, and they cancel in the ratio. (It is informative
that for the isotopes of H-like 203,205Tl the QED values are
the same as the given digits in Ref. [8].) The anomaly 1�2

is composed of the differential finite nuclear magnetization
(Bohr-Weisskopf) and differential finite nuclear charge (Breit-
Rosenthal [60], δ) effects. It often happens that for nearby
isotopes of the same atom the Breit-Rosenthal effects strongly
cancel and the differential anomaly is dominated by the dif-
ferential BW effect [4]. However, this is not always so, in
particular when the nuclear spins of the isotopes are the same
[4], as is the case for the considered Tl isotopes.

In Table III, we present the differential anomalies 203�205

for H-like and neutral Tl. The first column of results cor-
responds to calculations performed in the SP model. In the
next column, the empirically deduced results are presented,
found from the Bohr-Weisskopf results derived from the hy-
drogenlike ion measurements shown in Table II. The values
include the contribution from the Breit-Rosenthal effect; in-
deed, this effect gives nearly the whole contribution to the
calculated single-particle values for the considered isotopes.
Due to strong cancellations in the differential anomaly for the
Tl isotopes, the associated relative uncertainties are signifi-
cantly larger than for the BW effects. Comparison with the
measured values shows that the calculated SP results are too
small by about a factor of 2. On the other hand, the empirically
deduced results agree with the measured data. These checks
give confidence to the proposed approach for the screened
empirically deduced BW corrections.
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TABLE III. Differential hyperfine anomaly 203�205 (%) for the
1s and 2p1/2 states of H-like Tl, and the 6p1/2 and 7s states of
neutral Tl. The values “SP” and “Via 1s” are results of this paper, the
former found in the single-particle model and the latter found using
the measured H-like 1s result from Table II; measured values are
presented under “Experiment.” We do not show the extracted value
for 1s1/2, since this matches the experimental value by definition.

SP Via 1s Experiment

H-like 1s1/2 0.014 0.032(12) [9] (2001)
2p1/2 0.004 0.008(4)

Neutral 6p1/2 0.005 0.012(6) 0.01036(3) [57] (1956)
0.0121(47) [58] (2012)

7s1/2 0.014 0.034(14) 0.0294(81) [58] (2012)

Nuclear magnetic radius

In the modeling of the nuclear magnetization distribution,
the nuclear magnetic radius is often taken to correspond to
that of the charge radius; in particular their root-mean-square
radii are taken to be the same. However, this is a rough ap-
proximation, as typically the magnetization distribution does
not come from the bulk of the nucleus; it arises largely from
unpaired nucleons. Following a recent similar study by Pros-
nyak et al. [56] (and earlier works on H-like 185,187Re [61],
H-like 203,205Tl [9], and muonic 203,205Tl and 209Bi [62]), we
introduce an effective magnetic radius, rm, into Eqs. (2) and
(3) for F (r), that is defined as the value required to reproduce
the observed magnetic hyperfine anomalies. In general, this
radius will depend on the model used for F (r), and it also
has some dependence on the modeling of the charge distribu-
tion. Below, we will demonstrate this method using 203Tl and
205Tl.

We proceed in two independent ways. First, we find the
value of rm that reproduces the observed s-state BW effect
for the 203,205Tl hydrogenlike ions, accounting for the QED
effects as above [Eq. (5)]. These results depend on values
of individual magnetic moments, which we take from the
compilation of Stone [63]. This is shown by the horizon-
tal and vertical black lines in Fig. 2. We then consider the
6p1/2 and 7s1/2 differential hyperfine anomalies for the neutral
atoms. By fixing the magnetic radius for one isotope, we
may deduce that required for the other isotope in order to
reproduce the observed anomaly. The differential anomaly is
particularly sensitive to the difference in the squared mag-
netic radii of the two isotopes [9,53,56], but cannot on its
own lead to a determination of either magnetic radius, as
can be seen in the diagonal lines in Fig. 2. Note that the
differential anomaly depends on the ratio of the magnetic
moments μ(205Tl)/μ(203Tl) = 1.009 836 13(6) [64], which is
known to higher precision than the individual moments [65].
By combining the two sets of results from hydrogenlike and
neutral atom data, the effective nuclear magnetic radii may be
accurately determined.

The two lines from the neutral 6p and 7s anomalies in
Fig. 2 agree precisely, with smaller error bars for the 6p
data. Note that this coincidence is not guaranteed, as the
lines are calculated independently. Indeed, at the Hartree-Fock
level (i.e., without core polarization), the two lines do not
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FIG. 2. Magnetization radius (in units of the reference radius
rc = √

5/3 rrms) for 203,205Tl, as constrained by measurements of
the H-like Bohr-Weisskopf effect (Table II) and the neutral-atom
differential hyperfine anomaly (Table III). Solid black lines are from
experimental BW effect for 203,205Tl

80+
. Diagonal colored lines relate

rm for 203Tl and 205Tl deduced from experimental hyperfine anomaly
for 6p1/2 (magenta) and 7s1/2 (blue) states. Uncertainties are indi-
cated by shaded regions.

coincide. The shaded regions in the plot represent the (1σ )
uncertainties. For the hydrogenlike ions, the uncertainty is
dominated by that attributed to the QED calculations. For
the neutral systems, the uncertainty comes both from the
experimental determination of the anomalies and from the
theoretical calculations connected mostly to the account of
many-body effects. In particular, the former dominates the
7s result, and the latter dominates the 6p1/2. Our results
give the following values for the effective magnetic radii:
rm/rc = 1.077(3) for 203Tl, and rm/rc = 1.083(3) for 205Tl,
and their ratio rm(205Tl)/rm(203Tl) = 1.0057(5). Our results
for individual magnetic radii are smaller than those found
in Ref. [56], while the inferred difference in the squared
rms magnetic radii agrees with previous works [9,56]; the
deviation could be explained by the different modeling of
the nuclear charge distribution. As a final consistency check,
we calculate the BW effect for 6p1/2 and 7s states of neutral
Tl using the deduced effective magnetic radii. For 203Tl we
find ε(6p) = −0.886% and ε(7s) = −2.41%, and for 205Tl
we find ε(6p) = −0.893% and ε(7s) = −2.43%, in excellent
agreement with the BW values determined from hydrogenlike
measurements, shown in Table II.

IV. CONCLUSION

We propose a joint theoretical and experimental scheme
to accurately extract the Bohr-Weisskopf effect from H-like
ions for use in calculations with heavy atoms. Using the
presented method, the BW effect for many-electron atoms
may be determined with high accuracy from a measurement
of the ground-state hyperfine structure for the corresponding
hydrogenlike ion. This method allows one to remove nuclear
uncertainties from calculations of the hyperfine structure, and
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to perform a clean and reliable test of atomic theory uncer-
tainty in the nuclear region through hyperfine comparisons.
This is important for precision atomic calculations needed in
studies of atomic parity violation and time-reversal-violating
electric dipole moments. At the same time, experimental de-
termination of the Bohr-Weisskopf effect will aid in better
understanding nuclear structure by providing a window for
testing nuclear models, including the neutron distribution.
We hope this paper will stimulate new measurements with

hydrogenlike ions, where experimental capability is rapidly
expanding.
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